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A B S T R A C T

Poisson and negative binomial regression models are fundamental statistical analysis tools for traffic safety
evaluation. The regression parameter estimation could suffer from the finite sample bias when event frequency is
low, which is commonly observed in safety research as crashes are rare events. In this study, we apply a bias-
correction procedure to the parameter estimation of Poisson and NB regression models. We provide a general
bias-correction formulation and illustrate the finite sample bias through a special scenario with a single binary
explanatory variable. Several factors affecting the magnitude of bias are identified, including the number of
crashes and the balance of the crash counts within strata of a categorical explanatory variable. Simulations are
conducted to examine the properties of the bias-corrected coefficient estimators. The results show that the bias-
corrected estimators generally provide less bias and smaller variance. The effect is especially pronounced when
the crash count in one stratum is between 5 and 50. We apply the proposed method to a case study of infra-
structure safety evaluation. Three scenarios were evaluated, all crashes collected in three years, and two hy-
pothetical situations, where crash information was collected for “half-year” and “quarter-year” periods. The
case-study results confirm that the magnitude of bias correction is larger for smaller crash counts. This paper
demonstrates the finite sample bias associated with the small number of crashes and suggests bias adjustment
can provide more accurate estimation when evaluating the impacts of crash risk factors.

1. Introduction

Accurately evaluating the crash risk associated with transportation
infrastructure and driver characteristics is essential to improving safety.
Traffic safety is usually measured by crash frequency, which can be the
number of crashes that occurred in a roadway segment, or the number
of crashes a driver experienced, over a specified period (e.g., one year)
(AASHTO, 2010). As crashes are rare events, it is not uncommon to see
crash-count data with low sample mean and excessive zero responses
(Lord and Mannering, 2010; Lord and Geedipally, 2018). Poisson and
negative binomial (NB) regression have been the fundamental statis-
tical analysis tools for count data; however, a small number of events
brings challenges to parameter estimation and inference. This paper
focuses on the finite sample bias for parameter estimation caused by a
small number of events when fitting a Poisson or NB regression model.
Poisson and NB regression models are important methods in trans-

portation safety studies. For instance, safety performance function, an
essential tool to evaluate crash risk provided by The Highway Safety
Manual, is based on the Poisson/NB regression (AASHTO, 2010). NB

regression assumes that the rate in a Poisson model follows a Gamma
distribution and can accommodate over-dispersion, a common issue for
crash-count data. The coefficient estimates of the two models can be
used to evaluate risk factors associated with crashes.
There are other models developed for transportation safety studies

by relaxing certain assumptions in the Poisson and NB regressions. For
example, the generalized estimating equation (GEE) and random/mixed
effect models can be used when data violate the independence as-
sumption. The GEE model takes into account the within-subject corre-
lation, such as spatial-temporal correlation or observations with re-
peated measures, by an empiric covariance matrix (Lord and Persaud,
2000; Lord et al., 2005). The random/mixed effect model assumes a
distribution for the unobserved effect over subjects, and it can handle
multiple sources of correlation (Guo et al., 2010; Guo and Fang, 2013;
Chen and Tarko, 2014). Semi-parametric models and generalized ad-
ditive models relax the linear assumption of Poisson and NB models to
accommodate more-complicated relationships between crash rate and
risk factors (Xie and Zhang, 2008; Li et al., 2010).
As crashes are rare events, the number of crashes for a specific road
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segment or a driver is usually limited, leading to a low average oc-
currence rate and/or a large number of zeros in the crash-count data
(Shankar et al., 1997; Kumara and Chin, 2003). The low event fre-
quency can cause biased estimation and inaccurate inference for the
count models (Fridstrøm et al., 1995; Lord and Bonneson, 2005; Lord
and Miranda-Moreno, 2008). Lord (2006) showed that a low sample
mean and small sample size can seriously affect the estimation of the
dispersion parameter of the NB model. The commonly used goodness-
of-fit test statistics (scaled deviance and Pearson's χ2) are also in-
appropriate for the low mean value problem (Wood, 2002). When ex-
cessive zero responses exist in the dataset, both the Poisson model and
the NB model will produce inaccurate prediction (Lord and Geedipally,
2011). For a thorough review of the low-occurrence problem in trans-
portation safety, please refer to Lord and Mannering (2010) and Lord
and Geedipally (2018).
Zero-inflated models, proposed by Lambert (1992), are commonly

used in analyzing crash counts with an excessive number of zeros
(Miaou, 1994; Shankar et al., 1997, 2003; Carson and Mannering, 2001;
Lee and Mannering, 2002; Kumara and Chin, 2003; Qin et al., 2004;
Aguero-Valverde, 2013; Songpatanasilp et al., 2015; Anastasopoulos,
2016). Nevertheless, they have also been subject to several criticisms
(Lord et al., 2005, 2007; Malyshkina et al., 2009). In fact, Lord et al.
(2005) argued that the assumed safe period with an event rate being
zero in zero-inflated models does not reflect the actual crash-generating
process. Alternatively, many methods have been proposed and applied.
For instance, Malyshkina and Mannering (2010) proposed a zero-state
Markov switching model and Park and Lord (2009) applied finite
mixture models to such datasets. Recently, researchers have proposed
more-flexible models, including Sichel (SI), Negative Binomial-Lindley
(NB-L), Negative Binomial-Generalized Exponential (NB-GE), and Ne-
gative Binomial-Crack (NB-CR). These models incorporate more para-
meters into the underlying count distribution so that the extra degree of
freedom can account for the excessive number of zeros (Zou et al.,
2013, 2015; Lord and Geedipally, 2011, 2018; Vangala et al., 2015).
These models may better fit the data, but they are hard to estimate and
difficult for practitioners to understand.
Poisson and NB regression models are generally estimated using the

maximum likelihood method. The resultant estimators for the unknown
parameters are called maximum likelihood estimators (MLEs). The
MLEs have the consistency property that ensures the MLEs converging
to the true values when the sample size is sufficiently large. However,
McCullagh and Nelder (1989) showed that the MLEs could be biased
and the bias is not negligible for a modest sample size. When the
number of events is limited, a bias adjustment to the MLEs can improve
the parameter estimation. Generally, there are two types of approaches
to bias reduction for MLEs. One approach is based on applying the
Jefferys invariant prior to the likelihood function to directly generate
an improved estimator (Firth, 1993; Kosmidis and Firth, 2009;
Kosmidis et al., 2010). The other approach reduces the bias by sub-
tracting the approximated bias from the regular MLE (McCullagh and
Nelder, 1989; Cordeiro and McCullagh, 1991; Lambrecht et al., 1997).
McCullagh and Nelder (1989) determined a specific correction formula
for the coefficient estimation of generalized linear models (GLMs).
The finite sample bias of Poisson and NB regression models has been

sporadically investigated in the literature (Saha and Paul, 2005; Giles
and Feng, 2011). Saha and Paul (2005) studied the bias-corrected dis-
persion parameter estimation of the NB regression, which showed less
bias and superior efficiency compared to the MLE, the method of mo-
ments estimator, and the maximum extended quasi-likelihood estima-
tors in most instances. Giles and Feng (2011) derived the bias-correc-
tion formula for the parameter estimation of Poisson regression from
Cox and Snell's (1968) general definition of residuals. Although con-
siderable research has been devoted to reducing the bias of MLE under
Poisson and NB models, limited research has been conducted in trans-
portation safety to identify the situations where the bias correction is
necessary and factors affecting the magnitude of bias.

This paper aims to study the finite sample bias for the parameter
estimation of Poisson and NB regression models in the context of traffic
safety modeling. We demonstrate a bias-correction procedure based on
the approximated bias provided by McCullagh and Nelder (1989), fol-
lowed by deriving the explicit bias correction formula for one special
scenario, Poisson regression with a single binary explanatory variable.
Using a Monte Carlo simulation study, we quantitatively evaluate the
magnitude of bias and identify factors affecting the bias. We apply the
bias-correction method to an infrastructure safety evaluation, which
involves a three-year crash dataset collected from road segments with
different pavement types. We also examine the relationship between
the bias correction magnitude and crash counts by hypothetically re-
ducing the number of crashes in the pavement data.
The remainder of this article is organized as follows. Starting from

the basic setup of the Poisson and NB regressions and the analytic bias
results of McCullagh and Nelder (1989), Section 2 derives the explicit
bias-correction formula for one illustrative special scenario. Section 3
examines the benefit of bias correction through a Monte Carlo simu-
lation study, which also elucidates when the bias correction starts to
make a difference and to what extent the bias-adjustment procedure is
beneficial. Section 4 demonstrates the bias correction through a real-
case safety application and two hypothetical situations by reducing the
number of crashes. Section 5 summarizes this work with some discus-
sion.

2. Method

Poisson and NB regression models assume that the frequency of
events Yi, e.g., the crash count, follows a Poisson distribution,

= …Y E i nPoisson( · ), 1, 2, , ,i i i (1)

where λi is the crash occurrence rate for the ith road segment or the ith
driver. The λi is a constant in the Poisson regression and a random
variable in the NB regression, respectively. In the NB regression,
random variable λi follows a Gamma distribution, i.e.,

k µGamma( , ),i i

where μi is the mean of the crash occurrence rate λi and 1/k is the
dispersion parameter of the NB regression. The NB regression is more
dispersed for smaller k. The Poisson regression is a special case of the
NB regression when k=∞. In Eq. (1), the Ei is the corresponding ex-
posure, which could be the length of the observation period or the total
vehicle miles traveled.
A logarithm link function is used to link the event rate λi in the

Poisson regression or the expected event rate μi in the NB regression
with a linear transformation of p explanatory variables, Xi1, Xi2, …, Xip.
That is,

= =
= X

µlog( ) or log( ) ,
,

i i i i

i i (2)

where β is a vector of regression coefficients, β=(β0, β1, …, βp)′; Xi is
the covariates vector for entity i, Xi=(1, Xi1, …, Xip)′. The coefficient βj
indicates the impact of the jth variable on crash risk, j=1, …, p. The
estimation of (β1, …, βp) is the focus of the safety evaluation.

2.1. Adjusting finite sample bias for regression coefficient estimation

The MLE for the regression coefficient β is obtained by maximizing
the log-likelihood function

= + +
=

[ ]XL e E Y E Y( ) · ( log( )) log( !) .X
i

i

n

i i i i
1

i

(3)

Denote the MLE as ˆ , which, in general, has no closed-form expression.
The estimation is typically based on a numerical method, such as the
Newton-Raphson method.
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The MLE ˆ is asymptotically unbiased and normally distributed.
However, ˆ in general is a biased estimator and the difference between
ˆ and the true value β might not negligible for a small sample size
(McCullagh and Nelder, 1989; Firth, 1993). The approximation of
MLEs’ bias can be traced at least as far back as Bartlett (1953), being a
side-product of when Bartlett studied the confidence interval for one
unknown parameter from a random sample. Cox and Snell (1968) ex-
tended Bartlett's (1953) result to multidimensional MLEs. McCullagh
(1987) derived the bias using a similar procedure but with tensor no-
tation and showed that the bias is of order n( )1 . McCullagh and
Nelder (1989) approximated the bias of GLMs with a canonical link
using the leading n( )1 term. Since Poisson regression and NB re-
gression are GLMs and the log link is a canonical link, we apply the bias
approximation for ˆ provided by McCullagh and Nelder (1989) as

X WX X Wbias(ˆ) ( ) ,1 (4)

where X=(X1, X2, …, Xn)′, W=cov(Y), and ξ is an n-dimensional
vector with the ith element being = Qi

1
2 ii

i
i

3
2
. Qii is the ith diagonal

element of the matrix Q=X(X′WX)−1X′, = /i i i3
2 2, and κ2i=∂λi/

∂ηi. With log-link, κ3i= eηi, and κ2i= eηi. Therefore, the ξi is reduced to
= Qi

1
2 ii. An estimate of the approximated bias in Eq. (4) can be

= X WX X Wbias(ˆ)ˆ ( ˆ ) ˆ ˆ,1 (5)

where Ŵ and ˆ are obtained by plugging in the regular MLE ˆ . The bias-
corrected coefficient estimate ˜ can be calculated as

= = X WX X W˜ ˆ bias(ˆ)ˆ ˆ ( ˆ ) ˆ ˆ.1 (6)

The bias-correction procedure in (6) is applicable to both the
Poisson and NB models. The only difference is that the Ŵ of an NB
model involves the estimated dispersion parameter while that of a
Poisson model does not. The procedure can be applied for both con-
tinuous and discrete explanatory variables. In both cases, the covariates
matrix X represents the corresponding explanatory variable data.
To provide a more illustrative understanding for the finite sample

bias of β, we obtain the explicit bias formula for the following special
case of the Poisson/NB regression.

2.2. A special case: Negative binomial regression with one binary
explanatory variable

Consider a NB model with a single dichotomous exploratory vari-
able, i.e.,

= +µ Xlog( ) ,i i0 1

where Xi is either 0 or 1. In epidemiology, the observation group with
Xi=0 is typically referred to as the reference group and the group with
Xi=1 is the treatment group. The coefficient β1 represents the treat-
ment effect, the impact of =X{ }i i

n
1 on the response variable =Y{ }i i

n
1, and it

is the focus of the evaluation.
From Eq. (4), the approximated bias for 1̂ is

=
V V
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2

1
2

,1
0 1 (7)
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A detailed derivation can be found in Appendix A. It is difficult to es-
timate V0 and V1, the variance of crash counts in each stratum. The
estimation of V0 and V1 depends on the estimation of μ0, μ1, and k,
which often requires an iterative estimation procedure. Practically,

under the finite sample situation, μ0Ei or μ1Ei for one observation is
typically small. The magnitude of higher order terms µ E

k
( )i0 2

and µ E
k

( )i1 2

are much smaller than μ0Ei and μ1Ei, respectively. Thus we consider to
approximate V0 and V1 by C0 and C1, the expected number of crashes in
the reference group and treatment group.
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= = =
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Therefore, the bias of 1̂ can be approximated by

C C
bias( ˆ ) 1

2
1

2
,1

0 1 (8)

where the expected crash counts in each stratum, C0 and C1, can be
estimated by the observed number of crashes in the reference group and
treatment group. The balance of crash counts in different stratum also
matters to the magnitude of bias. The magnitude would be larger when
the number of crashes in different stratum were more unbalanced.

3. Simulation

We conducted a Monte Carlo simulation study to evaluate the per-
formance of the regular MLE ˆ and the bias-corrected MLE ˜ . The ob-
jectives were to examine if the bias-correction procedure could lead to a
more accurate estimation, to identify the non-negligible finite sample
bias situations, the magnitude of bias, and the factors affecting bias.
Without loss of generality, we consider observations generated from

an NB regression, whose expected event rate is associated with a binary
predictor variable. That is,

Y E
k µ

Poisson( · )
Gamma( , ) (9)

where

= =+µ e X, 0 or 1.X0 1

We generated n=5000 observations from the above NB model. The
distribution of the exposure, Ei, is similar to the application described in
Section 4. The specific simulation setup for β0 and β1 can be found in
Table 1, where μ0 is the expected event rate for the reference group and
μ1 is the expected event rate for the treatment group. The simulation
parameters are setup such that the expected number of crashes within
each group, C0 and C1, range from 4 to 1000. Within which, 2500
observations come from the reference group (X=0) and 2500 ob-
servations are from the treatment group (X=1). We enumerate the
parameter k in model (9) within {0.5, 50, ∞ }. For each scenario of
model setting, the simulation is repeated 1000 times. Note that the NB
model will get close to a Poisson model when the value of k becomes
large. When k=∞, the simulation is generated from the Poisson re-
gression.
Fig. 1 shows the probability of both the reference group and treat-

ment group having at least one events when C0 and C1 range from 1 to
1000. When the expected number of total crashes in either group is

Table 1
Simulation setup for β0 and β1, and μ0= exp(β0), μ1= exp(β0+ β1).

β0 β1 μ0 μ1

1.5 −1.0 4.48 1.65
1.5 −0.5 4.48 2.72
1.5 −0.1 4.48 4.06
1.5 0.1 4.48 4.95
1.5 0.5 4.48 7.39
1.5 1.0 4.48 12.18
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greater than four, with probability approximately equal to one, there
would be at least one event within each group. The shaded area in-
dicates the scenarios included in the simulation. x-axis is the logarithm
of the expected total number of crashes for the reference group C0 to the
base 10; y-axis is the logarithm of the expected total number of crashes
for the treatment group C1 to the base 10.

3.1. Simulation results

We present the simulation results in three parts. Recall that the
regular MLE of β is denoted as ˆ and the bias-corrected MLE of β is
denoted as ˜ . For each model setting, the simulation is repeated 1000
times. Firstly, we use the percentage bias of 1̂ and 1̃ to show the effect
of bias correction using some example cases. The percentage bias of 1̂
and 1̃ are calculated as

= ×

= ×

pct bias( ˆ ) 1
1000

ˆ
100%, pct bias( ˜ )

1
1000

˜
100%,

1
1 1

1
1

1 1

1

where β1 is the underlying true parameter as set in Table 1. Secondly,
we use the side-by-side plot to compare the bias of ˆ

1 and the bias of ˜
1

for comprehensive simulation scenarios, where the biases are calculated
as

= =bias( ˆ ) 1
1000

ˆ , bias( ˜ ) 1
1000

˜ .1 1 1 1 1 1

Lastly, we use the difference between the variance of ˆ
1 and the var-

iance of ˜
1 to show that the bias-corrected MLE has smaller variance

than the regular MLE. The variance difference of the two estimators are
calculated as

=var( ˆ ) var( ˜ ) 1
1000

( ˆ ave( ˆ )) 1
1000

( ˜ ave( ˜ )) ,1 1 1 1
2

1 1
2

where =ave( ˆ ) ˆ
1

1
1000 1 and =ave( ˜ ) ˜

1
1

1000 1.
Fig. 2 plots the percent bias of 1̂ and 1̃ when β1= 0.1 (event rate in

treatment group is 10% higher than the reference group), k=∞ , and
the expected number of crashes in the treatment group (C1) is 9, 28, and
89. It shows that the bias-corrected estimator is more close to the true
parameter value than the regular MLE for the majority cases. The
percent bias of the bias-corrected estimator 1̃ are around 0% except for
some unlikely scenarios that the expected number of crashes in the
reference group (C0) is smaller than five, while the percent bias of the
uncorrected MLE 1̂ are further away from zero percent, ranging from
-60% to 100%. The left plot also shows that the bias of 1̂ decreases
when the expected number of crashes in the reference group increases,
which testifies our approximation of bias( ˆ )1 in Eq. (7).

Fig. 3 comprehensively shows the bias of ˆ and the bias of ˜ side-by-
side for all the simulation scenarios. From the plot, we can see the
regular MLE 1̂ underestimates β1 when the expected number of events
in the reference group is larger than the expected number of events in
the treatment group (C0 > C1), and it overestimates β1 when the ex-
pected number of events in the reference group is smaller than the
expected number of events in the treatment group (C0 < C1). The bias
is more severe when the difference between the expected numbers of
events in the two groups is larger. In other words, the bias is smaller
when the expected event counts in the two groups are more balanced.
For the bias-corrected MLE 1̃, the bias is relatively small for a

“larger area” in the plot, which again shows the effectiveness of bias-
correction procedure for the majority scenarios. The procedure over-
corrects for small expected number of crashes in either the reference
group or the treatment group (the bottom and left “edges” in the right
plots). Higher-order correction can help the estimation when the
number of events for one group is small. In addition, the two “edges”
get narrower as the k increases, which means the benefit of bias cor-
rection is more prominent when the k becomes larger.
Fig. 4 shows the difference between the sample variance of 1̂ and

the sample variance of 1̃. The difference are non-negative for all the
scenarios plotted. Non-negative means that the bias-corrected coeffi-
cient estimate 1̃ has smaller variance compared to the regular MLE 1̂,
especially when the expected number of events in either group is lim-
ited. (The bottom-left corner has darker yellow.) A smaller sample
variance means a more stable estimate, so the bias-corrected estimator

1̃ is better.
For a short summary, the simulation study shows that (1) bias-

corrected MLE ˜ is less biased and has smaller variance compared to the
regular MLE ˆ ; (2) the benefit is more substantial as the k increases; (3)
the effect of bias correction is more pronounced when the number of
crashes in one stratum of a categorical explanatory variable is less than
50; (4) the bias-corrected MLE ˜ , as well as the regular MLE, is unstable
with too few events in one stratum of a categorical explanatory variable
(i.e., when the number of crashes is less than five for Poisson and less
than seven for Negative Binomial); (5) the balance of the crash counts
within strata of a categorical explanatory variable also matters to the
magnitude of bias.

4. Case study

To illustrate the benefit of bias correction and examine the magni-
tude of bias, we applied the bias-correction procedure to an infra-
structure safety evaluation dataset. This dataset includes information
from 5238 short road segments, which are collected from 2012 to 2014
in the State of Washington. The length for each segment is 0.1 mile. The
number of crashes with property damage is the safety response. A total

Fig. 1. The heatmap for the probability of at least one events in both the reference group and the treatment group (C0 is the expected total number of crashes in the
reference group and C1 is that of the treatment group.)
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Fig. 2. The comparison between the percent bias of 1̂ (left) and the percent bias of 1̃ (right) when β1= 0.1 and k=∞ (C0 is the expected total number of crashes in
the reference group and C1 is that in the reference group.)

Fig. 3. The contour plots of the bias of 1̂ (left) and the bias of 1̃ (right) (C0 and C1 is the expected total number of crashes in the reference and treatment group,
respectively.). Here “yellow” represents positive bias (overestimation), “blue” represents negative bias (underestimation), and “green” means relatively small bias.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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of 32,298 crashes was observed during the study period. There is 59.9
percent of zero responses in the dataset. Million vehicle miles traveled
is used as the exposure. For the 5238 short road segments, the overall
average crash rate is 2.7 per million vehicle miles traveled.
Table 2 lists the 12 covariates used in the analysis, including route

type, whether the road segment is an entrance/exit, whether it is an
intersection, whether it is a ramp, whether it is a wye connection,
whether it is a divided highway, rural/urban, number of lanes, pave-
ment type, friction, gradient, and horizontal curvature. For categorical
variables, we list their number of observations and percentage in each
stratum. For continuous variables, we present their mean and standard
deviation.
The NB regression was implemented because of the existence of

overdispersion. The estimated dispersion parameter is 2.06. The dif-
ference between bias-corrected coefficient estimates ˜ and regular MLEs
ˆ , as well as the percentage change × 100%

˜ ˆ
ˆ , are given in Table 3.

The first stratum of each categorical variable is treated as the reference
level, so there is no coefficient estimation and hence no bias correction
for it.
Comparing the magnitude of bias correction along with the number

of crashes (two columns under the “original dataset” tab), the bias
correction is generally larger for a stratum having a smaller number of
events. For example, the bias correction is the largest for the coefficient
of ‘BST’ pavement type (14.8× 10−3, − 2.5%), which only has 20
crashes in its stratum. In addition, it is the number of events rather than
the sample size that matters to the bias magnitude. For instance, there is
only one observation for five lanes, but it has 103 crashes. The bias
correction magnitude for this stratum is trivial.
To test if the number of crashes affects the magnitude of bias, we

also conducted bias correction for two hypothetical pavement datasets
where the crash count and exposure of each road segment is reduced to
only 1/6 and 1/12, respectively, of the original pavement dataset. The
covariates used in the two hypothetical pavement datasets are the same
as the original dataset. The original data were collected for three years.
Reducing the crash count and exposure to 1/6 is thus like the data being
collected for only half a year, resulting in the total number of crashes
being 5192. The number of crashes in each stratum of the categorical
covariates and the bias correction magnitude can be found under the
“‘half-year’ dataset” tab in Table 3. Similarly, reducing the crash count
and exposure to 1/12 is like the data collection only lasting for a
quarter of a year, resulting in a total crash count of 2502. Its results are
under “‘quarter-year’ dataset.” After reducing the number of crashes,
the percentage of zero responses are 76.7 percent and 82.5 percent for
the “half-year” dataset and the “quarter-year” dataset, respectively.
There is no longer a crash for the ‘BST’ pavement type, so “NA” (not
available) appears in the corresponding bias magnitude places. By
comparing the results from the original dataset and the two hypothe-
tical datasets, we find that the magnitude of the correction gets larger
when the number of crashes decreases. This testifies that the number of
crashes is the factor that influences the magnitude of bias rather than
the number of observations.
It is seen that the balance of event counts in one stratum compared

to the reference stratum also matters to the magnitude of bias correc-
tion. For example, the magnitude for the coefficient of five lanes is
smaller than that for three lanes, even though the number of crashes for
five-lane road segments is rarer. The reason is that the number of cra-
shes happening on five-lane roads is more comparable to the number of
events occurring within the reference level. It is worth pointing out that
how the bias correction will change the significance of certain covariate
is case-dependent. The significance can be directly related to the con-
fidence interval, which is automatically adjusted based on the bias-

Fig. 4. The heatmap for the difference between the sample variance of 1̂ and the sample variance of 1̃.

Table 2
Descriptive statistics of pavement data.

Categorical variable Levels Frequency Percentage

Route type Interstate 2236 42.7%
State route 1160 22.1%
United States route 1842 35.2%

Entrance/Exit No 5163 98.6%
Yes 75 1.4%

Intersection No 4906 93.7%
Yes 332 6.3%

Ramp No 4759 90.9%
Yes 479 9.1%

Wye connection No 5211 99.5%
Yes 27 0.5%

Divided highway No 1883 35.9%
Yes 3355 64.1%

Rural/Urban Rural 3467 66.2%
Urban 1771 33.8%

No. of lanes 1 1752 33.4%
2 2481 47.4%
3 624 11.9%
4 38 7.3%
5 1 0.0%

Pavement type Asphalt Concrete (ACP) 3846 73.4%
Portland Cement Concrete
(PCCP)

1229 23.5%

Bituminous Surface (BST) 119 2.3%
ACP/PCCPa 44 0.8%

Continuous variable Range Mean Std. deviation

Friction 5.0–85.2 51.8 13.4
Gradient 0.0–6.4 1.4 1.4
Horizontal curvature 0.0–10.5 0.9 1.1

a Half of the road segment is ACP and the other half is PCCP.
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corrected point estimator.
To sum up, the number of events is a key statistic affecting the

magnitude of bias rather than the number of observations collected.
The balance of event counts within different strata also plays a sig-
nificant role to the bias magnitude.

5. Discussion

This study introduces a finite sample bias correction for Poisson and
NB regression models in traffic safety modeling where the number of
crashes is small. We applied the bias approximation formula, provided
by McCullagh and Nelder (1989), to correct the MLE of the regression
coefficients, and conducted a Monte Carlo simulation to examine the
properties of this bias-corrected MLE. The simulation results show that
the bias-corrected MLEs not only have less bias but also smaller var-
iance. The benefit is more pronounced when the number of events in
one stratum of a categorical explanatory variable is between 5 and 50.
Based on McCullagh and Nelder's (1989) general bias approxima-

tion, we derived the explicit bias formulas for one special Negative
Binomial regression scenario, namely a model with one single binary
explanatory variable. Through the explicit bias formula, we demon-
strated that the leading factors affecting the magnitude of bias are the
number of events and the balance of event counts in different strata of a
categorical explanatory variable. Generally, the coefficient estimation
bias is higher for a smaller number of events and highly unbalanced
event counts among strata.
We also demonstrated a bias correction procedure using a real

safety application, which evaluated the crash risk factors for road

infrastructure. The comparison between the original data and reduced
data shows that the magnitude of bias is directly related to the number
of events.
As crashes are rare events and the number of crashes in a stratum

could be small, we suggest that a robust approach would be using bias-
corrected estimation when evaluating the effects of crash risk factors. In
practice, it is not possible to control the number of crashes in every
stratum of a risk factor. Using bias correction would provide a more-
accurate and robust estimation.
On a related topic, the bias correction for variance and significance

level of estimated parameters is also of key interest. A common practice
for variance estimation is to still use the original MLE (King and Zeng,
2001). There is limited literature on whether bias in variance estima-
tion exists. The significant level is directly related to the upper and
lower boundary of the confidence interval, which is affected by both the
point estimate and variance of the estimator. How the bias correction
would affect significance of the results is worth further investigation.
We would like to remark that the bias-correction procedure is not

restricted to the Poisson and NB regression models. It can be applied to
other regression models of which their parameters are obtained by
MLE, and up to the third (partial) derivatives exist for their maximum
likelihood functions. For future study, it will be interesting to in-
vestigate bias correction for random/mixed effect models and other
count-frequency models, such as the random parameters model
(Anastasopoulos and Mannering, 2009; Chen and Tarko, 2014;
Mannering et al., 2016; Shaon et al., 2018).

Table 3
Bias magnitude for the explanatory variables of pavement data.

Variables original dataset “half-year” dataset “quarter-year” dataset

No. of crashes ×˜ ˆ ( 10 )3 (pct change) No. of crashes ×˜ ˆ ( 10 )3 (pct change) No. of crashes ×˜ ˆ ( 10 )3 (pct change)

Route type
I 29543 4851 2377
SR 1053 0.2 (0.0%) 134 8.0 (-0.8%) 51 39.1 (-2.1%)
US RTE 978 0.2 (-0.1%) 110 9.0 (-1.0%) 35 43.4 (-2.5%)

Entrance/Exit
0 31047 5006 2423
1 527 0.0 (0.0%) 89 0.6 (0.1%) 40 4.0 (1.3%)

Intersection
0 30836 4986 2410
1 738 0.0 (0.0%) 109 0.8 (0.1%) 53 −3.0 (-0.3%)

Ramp
0 22641 3610 1738
1 8933 0.0 (0.0%) 1485 0.0 (0.0%) 725 0.1 (0.1%)

Wye Connection
0 31381 5063 2447
1 193 0.0 (0.0%) 32 −1.2 (-0.1%) 16 −3.0 (-0.2%)

Divided highway
0 1384 174 69
1 30190 0.0 (0.0%) 4921 3.6 (-0.2%) 2394 19.7 (-0.9%)

Rural/Urban
Rural 2422 291 101
Urban 29152 0.0 (0.0%) 4804 −1.4 (-0.1%) 2362 −4.7 (-0.3%)

No. of lanes
1 910 100 33
2 6270 0.0 (0.0%) 943 −1.6 (-0.5%) 433 −6.7 (-1.2%)
3 12904 0.0 (0.0%) 2132 −1.8 (-0.3%) 1038 −7.4 (-0.8%)
4 11387 0.0 (0.0%) 1903 −1.8 (-0.5%) 950 −7.4 (-1.4%)
5 103 0.0 (0.0%) 17 0.0 (0.0%) 9 1.3 (0.1%)

Pavement type
ACP 9911 1519 692
ACP/PCCP 611 0.0 (0.0%) 101 0.7 (0.4%) 51 3.0 (1.2%)
BST 20 14.8 (-2.5%) 0 NA 0 NA
PCCP 21032 0.0 (0.0%) 3475 0.0 (-0.1%) 1720 −0.1 (-0.1%)

Friction 0.0 (0.0%) 0.0 (0.0%) 0.0 (0.0%)
Gradient 0.0 (0.0%) 0.0 (0.0%) 0.1 (0.1%)
Horizontal Curvature 0.0 (0.0%) 0.1 (0.2%) 0.2 (0.8%)
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Appendix A

For the NB regression with only one binary exploratory variable, suppose there are n data points available for model estimation, =X Y E{ , , }i i i i
n

1,
with Xi being either 0 or 1, and Yi and Ei are the corresponding event count and exposure, respectively. Assume there are n1 data points with Xi=1
and n0 data points with Xi=0, and n0+ n1= n.
Without the loss of generality, we arrange the data =X Y E{ , , }i i i i

n
1 with Xi=1 instances before Xi=0 instances. That is,

= = …
= + …

X i n
i n n

1 if 1, , ,
0 if 1, , .i

1

1

For the Xi=1 group, denote μ1 as the mean of event rate and V1 as the variance for the sum of crash counts, = =V Y XVar( | 1)i i i1 .

= = = +
=

V Y X µ E
µ E

k
Var | 1

( )
.

i
i i

i

n

i
i

1
1

1
1

21

Similarly, denote the mean of event rate as μ0 and V0 as the variance for the sum of crash counts, = =V Y XVar( | 0),i i i0 for the Xi=0 group.

= = = +
= +

V Y X µ E
µ E

k
Var | 0

( )
.

i
i i

i n

n

i
i

0
1

0
0

2

1

The data matrix X and covariance matrix W in Eq. (4) are

Denote

= = = +

= = = +

=

= +

V Y X µ E
µ E

k

V Y X µ E
µ E

k

Var | 1
( )

,

Var | 0
( )

.

i
i i

i

n

i
i

i
i i

i n

n

i
i

1
1

1
1

2

0
1

0
0

2

1

1

That is, V1 is the sum of the upper half of the diagonal elements of the matrix W, and V0 is the sum of the lower half of the diagonal elements.
Then

= + = +
c V V V

V V V V
c V V

V V VX WX X WX[ ]cc , ( ) 1 [ ]cc ,0 1 1

1 1
1

0 1

1 1

1 1 0

and
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= =
= …

= + …
Q V

i n

V
i n n

1
2

1
2

if 1, , ;

1
2

if 1, , .
i ii

0
1

1
1

Therefore, the bias of the MLE =ˆ ( ˆ , ˆ )0 1 is

= = V

V V

X WX X Wbias(ˆ) ( )

1
2

1
2

1
2

,1 0

0 1

that is,

=
V V

bias( ˆ ) 1
2

1
2

.1
0 1
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