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Money laundering is a process designed to conceal the true origin of funds that were originally derived from illegal activities. Because
money laundering often involves criminal activities, financial institutions have the responsibility to detect and report it to the appropriate
government agencies in a timely manner. But the huge number of transactions occurring each day make detecting money laundering
difficult. The usual approach adopted by financial institutions is to extract some summary statistics from the transaction history and conduct
a thorough and time-consuming investigation on those suspicious accounts. In this article we propose an active learning through sequential
design method for prioritization to improve the process of money laundering detection. The method uses a combination of stochastic
approximation and D-optimal designs to judiciously select the accounts for investigation. The sequential nature of the method helps identify
the optimal prioritization criterion with minimal time and effort. A case study with real banking data demonstrates the performance of the
proposed method. A simulation study shows the method’s efficiency and accuracy, as well as its robustness to model assumptions.
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1. BACKGROUND

Money laundering is an act designed to hide the true origin
of funds by sending them through a series of seemingly legit-
imate transactions. Its main purpose is to conceal the fact that
funds were acquired as a result of some form of criminal ac-
tivity. These laundered funds can in turn be used to foster fur-
ther illegal activities, such as the financing of terrorist activity
or trafficking of illegal drugs. Even legitimate funds that are
laundered to avoid reporting them to the government, as is the
case with tax evasion, have substantial costs to society. Finan-
cial institutions that have the responsibility to detect and prevent
money laundering face the challenge of detecting potential sus-
picious activities among the millions of legitimate transactions
that occur each day. Once suspicious activities are detected, the
investigation process usually has to retrieve transaction data for
suspicious customers, separate “inflow” and “outflow” of funds,
filter relevant transaction types (e.g., wire transfer, cash), and
suppress irrelevant information. Then investigators create trans-
action summaries for each day, week, month, or the whole pe-
riod to extract such basic statistics as total amount, frequency,
average, maximum, count of wire transfer, and so on. By gath-
ering other related information (e.g., customer profiles, income)
from other sources (e.g., Internet, third party), investigators use
heuristics and experience to create a “story” and identify suspi-
cious activities, including

• Who is the customer?
• What banking product does the person use (e.g., checking,

credit card, investment)?
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• What kind of transactions does the person conduct (e.g.,
Automated Clearing House [ACH], wire transfer, cash)?

• What transaction channel does the person use (e.g., ATM,
Internet)?

• Where are the transactions conducted (i.e., geographic lo-
cation)?

• What are the transaction amounts and frequencies?
• Any other information and past or related incidence.

Finally, investigators apply their judgment to determine the
need to submit a Suspicious Activity Report (SAR) to the Fi-
nancial Criminal Enforcement Network (FinCEN). An investi-
gation can easily take 10 hours just to classify a case as either
suspicious or nonsuspicious.

The challenge of detecting money laundering arises not only
from the huge amount of transactions occurring each day, but
also from the different kinds of businesses with money laun-
dering activities. The behaviors of various business categories
can be quite different. For example, money laundering activities
in personal accounts can be completely different from those in
small business accounts, and so the knowledge and experience
regarding potentially suspicious money laundering activities for
personal accounts cannot be applied to those for small business
accounts. Even the behaviors of the same business category in
different time periods appear to be different in money launder-
ing activities.

Table 1 shows a sample of transaction data. The transaction
history contains various types of information. The information
structure can be very complex or can involve multiple bank ac-
counts, financial organizations, parties, and jurisdictions. Trans-
action frequency and amounts can be useful information for de-
tecting suspicious money laundering activities. For example, an
account is suspicious if transactions are conducted in bursts of
activity in short periods, especially in a previously dormant ac-
count. The information on different types of transactions also is
an important indicator for investigating money laundering ac-
tivities. The basic summary statistics can be dozens of continu-
ous and categorical variables; thus, investigating every account
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Table 1. A sample of transaction data

Acct No. D/C PostDate TransAmt TransCode Description

999999 D 1/23/2005 $1,295.00 9059 Check Check

999999 D 5/19/2004 $1,020.00 9059 Check Check

999999 D 1/23/2005 $10,000.00 9059 Check Check

999999 D 3/2/2004 $5.00 9593 Returned Item Charge Returned Item Charge

999999 D 2/24/2004 $5.00 9593 Returned Item Charge Returned Item Charge

999999 D 10/12/2004 $34.00 9203 Overdraft Charge Overdraft Charge

999999 D 7/13/2004 $60.00 9659 Check Card Purchase Dr Jm Layton And Ep Lay5194121949512823

999999 D 6/10/2004 $129.36 9905 Pos Withdrawal Costco Whse # 0001 84426275161089999910830

999999 D 6/14/2004 $51.49 9905 Pos Withdrawal Bed, Bath & Beyo 84426275165089999914310

999999 D 6/10/2004 $168.44 9905 Pos Withdrawal Costco Whse # 0001 84426275161089999910370

999999 D 7/18/2004 $34.84 9905 Pos Withdrawal Costco Whse # 0001 84426275197089999916890

999999 D 5/24/2004 $33.20 9905 Pos Withdrawal Costco Gas # 00662 84426275144089999924800

999999 D 6/22/2004 $158.65 9905 Pos Withdrawal Bed, Bath & Beyo 84426275173089999922610

999999 D 6/10/2004 $190.64 9905 Pos Withdrawal Costco Whse # 0001 84426275161089999910750

999999 C 1/14/2004 $100.00 9003 Deposit Deposit

999999 C 8/10/2004 $20.00 9003 Deposit Deposit

999999 C 5/11/2004 $10,000.00 9003 Deposit Deposit

999999 C 8/31/2004 $3,300.00 9003 Deposit Deposit 0831CA319P007160134679

999999 C 6/29/2004 $2,079.95 9003 Deposit Deposit

999999 C 10/7/2004 $2,500.00 9003 Deposit Deposit

999999 C 1/30/2005 $22.43 9699 Automatic Deposit Deposit Merchant Bankcd 267917678885

999999 C 1/30/2005 $22.43 9699 Automatic Deposit Deposit Merchant Bankcd 267917678885

999999 C 6/16/2004 $64.97 9660 Reverse Check Card Purchase The Home Depot 4715 5166010183470016

999999 C 7/21/2004 $151.61 9660 Reverse Check Card Purchase Hardware Sales 5202207788501885

999999 C 9/20/2004 $24.95 9660 Reverse Check Card Purchase Twx*Sports Illustrated 5259000879500624

999999 C 4/27/2004 $14,032.37 9039 Deposit To Close Account Deposit To Close Account

999999 C 11/30/2004 $3,243.59 9003 Deposit Deposit

999999 C 7/6/2004 $400.00 9003 Deposit Deposit

999999 C 10/6/2004 $2,981.07 9003 Deposit Deposit

999999 C 7/21/2004 $100.00 9007 Miscellaneous Deposit Transfer From Checking 22782403

for money laundering would be extremely time-consuming and
cost-prohibitive.

One detection strategy to overcome this problem and im-
prove the process of money laundering detection is segmenta-
tion and risk prioritization. First, we segment accounts into dis-
tinct clusters based on a similarity measure and business knowl-
edge. Then, for each cluster we prioritize a group of accounts
based on their likelihood of suspicious activity and severity. By
incorporating statistical modeling and knowledge of investiga-
tion experience, we can extract several profile features (which
are nonlinear functions of transaction data) using the transac-
tion history of each account. This is a common method of an-
alyzing such data in financial institutions. The profile features
can be a nonlinear projection from those basic summary sta-
tistics of transaction data or a complicated augment of trans-
actions with pooling, multiscale extraction, and smoothing. If
these profile features are highly representative of the suspi-
ciousness for the transaction history, then they can be used
to set rules for prioritization of account investigation. The ac-
counts with high priority are investigated thoroughly to deter-
mine whether or not they are suspicious. When a new account
belonging to certain cluster is introduced, the corresponding
prioritization rule can be used to decide whether or not the
account merits a detailed investigation. This can significantly
improve productivity by focusing investigations only on those
cases that really matter. In this work we develop a statistical
methodology to perform risk prioritization.

The rest of the article is organized as follows. We formulate
the risk prioritization as a sequential design problem in Sec-
tion 2. In Section 3 we review some existing methods in se-
quential designs and the concept of optimal designs. We pro-
pose our active learning through sequential design approach for
prioritization in Section 4. In Section 5 we apply our proposed
method to a real case study on detecting money laundering. In
Section 6 we provide some simulation results to demonstrate
the performance of our proposed. We end with a discussion and
some conclusions in Section 7.

2. MATHEMATICAL FORMULATION

The problem can be formulated as follows. Let x = (x1, . . . ,

xp)
T be the vector of profile features extracted from a trans-

action history of a group of accounts in the same cluster. Let
Y = 1 if the account is detected as suspicious and Y = 0 oth-
erwise. Then P(Y = 1|x) = F(x) gives the probability of suspi-
ciousness at x. When F(x) exceeds a threshold probability α,
we can investigate that account in detail. The threshold proba-
bility α can be chosen beforehand by an investigator with do-
main knowledge. Assume that F(x) is an increasing function in
each xi. Define the decision boundary lα(x) at level α as

lα(x) = {x : F(x) = α}. (2.1)

The form of the decision boundary lα(x) can be linear, non-
linear, or nonparametric in x. Note that the profile features x
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are nonlinear functions of the transaction data and can approx-
imately characterize the suspiciousness behavior of a transac-
tion history. Thus a linear combination of profile features x as
the decision boundary can be a reasonable choice and useful
for business interpretation. Hereinafter, we refer to the deci-
sion boundary as the threshold hyperplane. Now for a new ac-
count in this cluster, if x falls below lα(x), then we need not
investigate that account further. But if x falls above lα(x), then
we must investigate the account in detail. An institution may
choose a reasonable α so that only a portion of their accounts
must be investigated.

Developing a procedure for efficiently finding the threshold
hyperplane is important. The problem is that F(x) is unknown,
and thus lα(x) is also unknown. Data on x and Y can be used
to estimate lα(x). For this purpose, a training set of the inves-
tigated accounts is needed; however, labeling the suspicious-
ness (1 or 0) for a large number of accounts is time-consuming
and extremely expensive. Finding a way to minimize the num-
ber of investigated accounts and use these accounts to construct
the threshold hyperplane would be beneficial. Thus the goal is
to determine an optimal threshold hyperplane for prioritization
with a minimum number of investigated accounts.

This calls for the use of active learning (Mackay 1992; Cohn,
Ghahramani, and Jordan 1996; Fukumizu 2000) techniques in
machine learning. Here the learner actively selects data points
to be added into the training set. To minimize the number of
investigated accounts and use these accounts to construct the
threshold hyperplane, we need to judiciously select the ac-
counts for investigation. Recently, active learning methods us-
ing support vector machines (SVMs) have been developed by
several researchers (Campbell, Cristianini, and Smola 2000;
Schohn and Cohn 2000; Tong and Koller 2001). We can apply
these to the present problem.

For binary response, active learning with SVMs is mainly
for two-class classification. The decision boundary in SVMs
implements the Bayes rule P(Y|x) = 0.5, which is the optimal
classification rule if the underlying distribution of the data is
known. Note that the decision boundary of SVMs can be con-
sidered a special case of (2.1). In money laundering detection,
often the interest lies in values other than α = 0.5. Finding the
threshold hyperplane at a higher value of α, such as α = 0.75,
is important. Note that the concept of active learning in ma-
chine learning is closely related to that of sequential designs
in the statistics literature. In sequential designs, the data points
for investigation are selected sequentially by the users; that is,
the next data point to be selected for investigation is based on
information gathered from previously investigated data points.
The present problem differs from classical sequential designs,
however. Because the accounts are already available, we cannot
arbitrarily select the setting of accounts for investigation. To ad-
dress these points, we exploit the synergies between these two
approaches to develop a new active learning through sequen-
tial design (ALSD) approach. Our ALSD approach provides a
more flexible way to obtain the threshold hyperplane for dif-
ferent values of α. The sequential nature of the method helps
identify the optimal threshold hyperplane with reasonable time
and effort.

3. REVIEW OF SEQUENTIAL DESIGNS

The problem of estimating the threshold hyperplane is simi-
lar to that of stochastic root-finding in sequential designs. Sup-
pose that we want to estimate the root of an unknown univari-
ate function E(Y|x) = F(x) from the data (x1,Y1), . . . , (xn,Yn).
In sequential designs, the data points are chosen sequentially;
that is, xn+1 is selected based on x1, x2, . . . , xn, and their cor-
responding response Y1,Y2, . . . ,Yn. There are two approaches
to generating sequential designs: stochastic approximation and
optimal design.

In stochastic approximation methods, the x’s are chosen such
that xn converges to the root as n → ∞. Wu (1985) proposed
a stochastic approximation method for binary data, known as
the logit-maximum likelihood estimation (MLE) method, in
which F(x) is approximated by a logit function e(x−μ)/σ /(1 +
e(x−μ)/σ ). Then determination of xn+1 is a two-step procedure.
First, maximum likelihood (ML) estimates μ̂n, σ̂n of μ,σ are
found from (x1,Y1), (x2,Y2), . . . , (xn,Yn). Then xn+1 is chosen
as xn+1 = μ̂n + σ̂n log α

1−α
. Ying and Wu (1997) showed the

almost-sure convergence of xn to the root irrespective of the
function F(x). Joseph, Tian, and Wu (2007) proposed an im-
provement to Wu’s logit-MLE method by giving more weight
to data points closer to the root via a Bayesian scheme.

In the optimal design approach to sequential designs, first
a parametric model for the unknown function is postulated,
and then the x points are chosen sequentially based on some
optimality criterion (Kiefer 1959; Fedorov 1972; Pukelsheim
1993). For example, Neyer (1994) proposed a sequential D-
optimality–based design in which xn+1 is chosen so that the
determinant of the estimated Fisher information is maximized.
It is well known that a D-optimal criterion minimizes the vol-
ume of the confidence ellipsoid of the parameters (Silvey 1980).
The root is solved from the final estimate of the function F(x).

The performance of the optimal design approach is model-
dependent. Performance is best when the assumed model is
the true model, but deteriorates as the model deviates from the
true model. One attractive property of the stochastic approxi-
mation methods, including the logit-MLE, is the robustness of
their performance to model assumptions. This occurs because
as n grows large, the points become clustered around the root,
allowing estimation of the root irrespective of the model as-
sumption. Understandably, the performance of the stochastic
approximation method is not as good as that of the optimal de-
sign approach when the assumed model in the latter approach is
valid. This point was confirmed by Young and Easterling (1994)
through extensive simulations.

Our proposed ALSD approach combines the advantages
of both the stochastic approximation and optimal design ap-
proaches. Our approach is expected to be robust to model as-
sumptions like the stochastic approximation methods and also
to produce performance comparable to that of the optimal de-
sign approach when the model assumptions are valid. Unlike
most existing sequential design methods, our proposed ap-
proach can handle multiple independent variables, which occur
in the money laundering detection example as well as other ap-
plications (e.g., junk e-mail classification).
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4. METHODOLOGY

4.1 Active Learning Through Sequential Design

In pool-based active learning (Lewis and Gale 1994), there
is a pool of unlabeled data. The learner has access to this pool
and can request the true label for a certain amount of data in
the pool. The main issue is to find a way to choose the next
unlabeled data point to get the response. Our proposed ALSD
approach attempts to “close in” on the region of interest effi-
ciently while improving the estimation accuracy of lα(x) for a
given α.

For ease of exposition, we explain the methodology with two
variables, x = (x1, x2)

T . It can be easily extended to more than
two variables. We assume that each variable has a positive re-
lationship with the response; that is, for larger values of xj, the
probability of getting the response Y = 1 increases. Define a
synthetic variable z by z = wx1 + (1 − w)x2, where w is an
unknown weight factor in [0,1]. By doing this, we can convert
the multivariate problem into a univariate problem, allowing the
existing methods for sequential designs to be easily applied.

As in the case of Wu’s logit-MLE method, we model the un-
known function F(x) in (2.1) using the parametric form,

F(x|θ) = e(z−μ)/σ

1 + e(z−μ)/σ
, (4.1)

which has three parameters, θ = (μ,σ,w)T . As noted before,
here convergence is independent of the logit model if the lin-
earity assumption in x is valid. By the definition given in (2.1),
the threshold hyperplane lα(x) at level α is

lα(x) =
{

x = (x1, x2)
T :

z − μ

σ
= log

(
α

1 − α

)
,

where z = wx1 + (1 − w)x2

}
, (4.2)

which is a linear hyperplane of x. Suppose that we have
(x1,Y1), (x2,Y2), . . . , (xn,Yn) in the training set. Based on
these training data, we can estimate the threshold hyperplane
ln,α = {x : F(x|θ̂n) = α} by

ln,α: ŵnx1 + (1 − ŵn)x2 = μ̂n + σ̂n log

(
α

1 − α

)
, (4.3)

where θ̂n = (μ̂n, σ̂n, ŵn)
T is estimated from the labeled data

(x1,Y1), (x2,Y2), . . . , (xn,Yn). The estimator θ̂n is described in
detail in Section 4.2. Let X be the pool of data. Now, using the
idea in stochastic approximation, we choose the next data point
from X as the one closest to the estimated hyperplane. Note that
we must choose the closest point because none of the points in
X may fall on the hyperplane. Thus

xn+1 = arg min
x∈X

dist(x, ln,α), (4.4)

where dist(x, ln,α) is the distance from x to ln,α (perpendicu-
lar distance from point to line). There can be multiple points
satisfying (4.4) because x ∈ R

2. Moreover, as pointed out in
the previous section, the stochastic approximation method pro-
duces points clustered around the true hyperplane, leading to
poor estimation of some of the parameters in the model. We

can overcome these problems by integrating the foregoing ap-
proach with the optimal design approach.

First, we choose k0 points as candidates closest to the es-
timated threshold hyperplane ln,α . We denote these by x̃1, x̃2,

. . . , x̃k0 . Then we select the next point as the one maximiz-
ing the determinant of the Fisher information matrix among the
candidates. Thus

xn+1 = arg max
x∈{x̃1,x̃2,...,x̃k0 }

det(I(θ̂n,x1,x2, . . . ,xn,x)). (4.5)

The Fisher information matrix for θ can be calculated as

I(θ ,x1,x2, . . . ,xn) =
n∑

i=1

eg(xi)

(1 + eg(xi))2

∂g(xi)

∂θ

∂g(xi)

∂θT , (4.6)

where g(x) = (z − μ)/σ , z = wx1 + (1 − w)x2, and θ =
(μ,σ,w)T . The foregoing approach inherits the advantages of
both stochastic approximation and optimal design. The stochas-
tic approximation method in (4.4) can produce reasonable esti-
mates of μ and σ but very poor estimates of w. Because the
D-optimality criterion in (4.5) ensures that the chosen points
are well spread, we can get a better estimate of w. Thus through
the integration of these two methods, we can expect to get good
estimates of μ, σ , and w.

The number of candidate points (k0) determines the extent of
integration between the two methods; k0 = 1 gives stochastic
approximation, and k0 = N gives a fully D-optimal design. We
study the choice of k0 through simulations in Section 6 (see
Figure 10).

The improved estimation provided by our approach can be
demonstrated by considering the following version of the prob-
lem. Assume that there is at least one point in X lying in the
hyperplane ln,α . Then the selected point xn+1 is the solution of
the following optimization problem:

max
x

det(I(θ̂n,x1,x2, . . . ,xn,x))

(4.7)

s.t. ŵnx1 + (1 − ŵn)x2 = μ̂n + σ̂n log

(
α

1 − α

)
.

As shown in the Appendix, this is equivalent to

max
x

ηT
x I−1(θ̂n,x1,x2, . . . ,xn)ηx

(4.8)

s.t. ŵnx1 + (1 − ŵn)x2 = μ̂n + σ̂n log

(
α

1 − α

)
,

where ηx = (−1/σ,− log(α/(1 − α)), (x1 − x2)/σ )T . The ob-
jective function in (4.8) is the estimated variance of the hyper-
plane where the data are collected. By maximizing this vari-
ance, we are placing the next point at the location of greatest
uncertainty. Note that the objective function in (4.8) is associ-
ated with x only through ηx. It maximizes a quadratic form in
terms of (x1 − x2). Therefore, the point selected by (4.5) is ex-
pected to be distant from the previously selected points when
projected onto the estimated threshold hyperplane ln,α . This is
why our proposed approach can provide a more stable estimate
of the parameter w.
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4.2 Estimation

Because (4.1) is a probabilistic model, it is tempting to con-
sider ML estimation for the parameter θ . Suppose that the la-
beled data are (x1,Y1), (x2,Y2), . . . , (xn,Yn). It is known that
the existence and uniqueness of ML estimation can be achieved
only when successes and failures overlap (Silvapulle 1981; Al-
bert and Anderson 1984; Santner and Duffy 1986); however,
even when we are able to compute the ML estimator, it may
suffer from low accuracy because of the small sample size, es-
pecially for nonlinear models. The use of a Bayesian approach
with proper prior distributions for the parameters can overcome
these problems.

We use the following priors:

μ ∼ N(μ0, σ
2
μ), σ ∼ Exponential(σ0),

(4.9)
w ∼ Beta(α0, β0).

A normal prior is specified for the location parameter μ. The
scale parameter σ is nonnegative, because each xi is assumed
to be positively related to the response Y . Thus an exponential
prior with mean σ0 is used as the prior for σ . Because w is a
weight factor in [0,1], a beta distribution is a reasonable prior
for w.

Assuming that μ,σ , and w are independent of one another,
the overall prior for θ is the product of the priors for each of its
components. Thus the posterior distribution is

f (θ |Y) ∝
n∏

i=1

(
e(zi−μ)/σ

1 + e(zi−μ)/σ

)Yi
(

1

1 + e(zi−μ)/σ

)1−Yi

× e(μ−μ0)
2/(−2σ 2

μ)λ0e−λ0σ wα0−1(1 − w)β0−1, (4.10)

where zi = wxi1 + (1 − w)xi2 and xi = (xi1, xi2)
T . Finding the

posterior mean of the parameters is difficult because it involves
a complicated multidimensional integration. The maximum a
posteriori (MAP) estimators are much easier to compute. The
MAP estimators of μ, σ , and w are obtained by solving

θ̂n = (μ̂n, σ̂n, ŵn)
T = arg max

θ
log f (θ |Y), (4.11)

where

log f (θ |Y) �
n∑

i=1

zi − μ

σ
Yi −

n∑
i=1

log

(
1 + exp

(
zi − μ

σ

))

− (μ − μ0)
2

2σ 2
μ

− λ0σ + (α0 − 1) log(w)

+ (β0 − 1) log(1 − w).

Because proper prior distributions are used, the optimization in
(4.11) is well defined even when n = 1. Thus this Bayesian ap-
proach allows us to implement a fully sequential procedure; that
is, the proposed active learning method can begin from n = 1.
This would not have been possible with a frequentist approach
(Wu 1985), for which some initial sample is needed before the
active learning method can be used.

5. CASE STUDY

We applied the proposed method to transaction data from a
financial institution. The data in this example comprise 92 ac-
counts from personal customers belonging to the same clus-
ter. It contains the recent 2-year transaction history for each
customer. By working with expert investigators, we obtained
a large set of summary variables describing the transaction be-
haviors. Then, using lower-dimensional scoring on these sum-
mary variables, we extracted one profile feature, x1, which mea-
sures how the customer’s behavior is inconsistent with itself
and inconsistent with similar customers (i.e., peer comparison).
Incorporating knowledge of investigation experience, we ana-
lyzed the transaction history of each account through multilayer
decomposition and accumulation, and then selected one more
profile feature, x2, which describes the velocity and amount of
money flowing through the account. To maintain confidential-
ity, we do not disclose more details about the data used here.
Based on discussions with expert investigators, we believe that
these two profile features, x = (x1, x2)

T ∈ R
2, can be highly in-

dicative of suspicious transaction history. A linear combination
of these two profile features can be used to assess suspicious
behaviors of these personal accounts. Larger values of profile
features indicate a higher likelihood of suspiciousness. Profile
features x1 and x2 are standardized to have mean 0 and unit
variance. The standardized data are shown in Figure 1.

Before implementing our ALSD approach, we need to spec-
ify the prior for μ, σ , and w in (4.9). Here we use a heuris-
tic procedure to do this, as follows. First, consider the prior
for w. Assuming equal importance of x1 and x2 on the re-
sponse, we would like the mean of w to be 0.5. Thus we set
α0/(α0 + β0) = w0 = 0.5, which implies α0 = β0. To get a flat
prior, we take α0 = β0 = 3/2. Thus, w ∝ w1/2(1 − w)1/2. Now
we consider the priors for μ and σ . We choose two extreme
points (i.e., two accounts), xl and xu, based on the lowest and
highest values of z (denoted by zl and zu) through the mapping

Figure 1. The standardized data. The solid line represents the initial
estimated threshold hyperplane by w0,μ0, and σ0.
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z = w0x1 + (1 − w0)x2. We assume a αl = 5% suspicious level
for xl and a αu = 95% suspicious level for xu. Plugging these
values into the model (4.1), we obtain

zl = μ + σ log
αl

1 − αl
,

zu = μ + σ log
αu

1 − αu
.

Then we obtain μ0 and σ0 by solving the foregoing equations
as

μ0 =
(

zl log
αu

1 − αu
− zu log

αl

1 − αl

)

/(
log

αu

1 − αu
− log

αl

1 − αl

)
= zl + zu

2
, (5.1)

σ0 = (zu − zl)
/(

log
αu

1 − αu
− log

αl

1 − αl

)
. (5.2)

We take σ 2
μ as the sample variance of zi, i = 1, . . . ,n, where

zi = w0xi1 + (1 − w0)xi2. This completes the prior specification
for the three parameters.

Now we can implement our ALSD method. Suppose that our
objective is to find the threshold hyperplane with α = 0.75. The
initial estimated hyperplane based on only the prior is shown in
Figure 1. The points are then selected one at a time using the
procedure described in the previous section. In this example, we
took k0 = 15 in (4.5). The performance of the proposed method
for the first 20 points is shown in Figures 2 and 3.

Figure 2 shows a series of threshold hyperplanes estimated
using our proposed approach. Data points marked with “×”
were selected, and the response was 1. Data points marked with
“+” were selected, and the response was 0. At the beginning,

Figure 3. Comparison with the estimate based on full information.
The solid line represents the estimated threshold hyperplane after 20
points are sequentially selected. The dashed line represents the esti-
mated threshold hyperplane when all data are labeled.)

there were significant changes in the threshold hyperplane. Af-
ter about 10–15 points, it began to converge, as shown in the
bottom left panel of the figure. The final estimated threshold hy-
perplane (i.e., after 20 points) is shown in Figure 3. The points
above this hyperplane should be given higher priority and be in-
vestigated thoroughly. There are only a few remaining accounts
that require thorough investigation, clearly demonstrating the

Figure 2. Our ALSD approach. Line l5 represents the estimated threshold hyperplane at iteration 5, and so on. The four panels, from top left
to bottom right, represent the first five to the last five (i.e., iterations 15–20) estimated threshold hyperplanes.
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Deng et al.: Active Learning Through Sequential Design 975

efficiency of our proposed method. For a new personal account
in this cluster, the corresponding profile features xnew can be
calculated based on the transaction history. If xnew falls above
the estimated threshold hyperplane, then a thorough investiga-
tion of this account is performed; otherwise, a detailed investi-
gation is not performed.

To assess the accuracy of the proposed method, we requested
that the investigators at this financial institution carefully inves-
tigate all 92 accounts. Based on the information for all of these
accounts, we estimated the threshold hyperplane, shown as a
dashed line in Figure 3. This estimated threshold hyperplane
is very close to that estimated by the active learning method
(shown as a solid line). Thus our proposed method can identify
the true hyperplane using only about 22% (≈ 20/92) of the
data, providing significant savings for the financial institution.

To check the efficiency of the proposed method, we also
compared the proposed method with two naive methods, one
method that randomly selects the next data point for getting
the response and a sequential space-filling procedure using
a maxmin distance criterion (Johnson, Moore, and Ylvisaker
1990). The aim is to select the next data point xn+1 that maxi-
mizes the minimum distance from the chosen data points, that
is,

xn+1 = arg max
x∈X

min
xi∈D

dist(x,xi), (5.3)

where D is the training set containing n chosen data points
xi, i = 1, . . . ,n, and dist(x,xi) is the distance between two data
points x and xi.

To gauge the performance of the three methods, we assessed
the closeness of the estimated threshold hyperplane ln,α and the
optimal threshold hyperplane lα(x) when all data are labeled.
The adopted measure is

dist(ln,α, lα(x)) �
∑
ti∈T

d2
i , (5.4)

where T = {ti} is a set of points lying evenly on the optimal
threshold hyperplane lα(x), ranging from −0.5 to 1, on the co-
ordinate of x1. Here di is the distance between ti and the esti-
mated hyperplane ln,α . Based on (5.4), a distance-based perfor-
mance measure is defined as

Dist_PM = 1

M

M∑
j=1

distj(ln,α, lα(x)), (5.5)

where M is the number of simulations and distj represents
dist(ln,α, lα(x)) for the jth simulation.

We also measured the misclassification error of the three
methods. Misclassification error is estimated by (αFP + (1 −
α)FN)/N, where FP is the number of false-positive results (i.e.,
a nonsuspicious account assigned the suspicious label 1), FN is
the number of false-negative results (i.e., a suspicious account
assigned the nonsuspicious label 0), and N is the total number
of accounts. As Dist_PM increases, the estimated hyperplane
deviates more from the true hyperplane, increasing the misclas-
sification error. Thus these two measures agree with each other
if the linearity assumption in the model holds. Otherwise, the
misclassification error should be used, because it is a more di-
rect and relevant measure for gauging the performance.

Figure 4 shows the learning curves for the three methods
in terms of Dist_PM and misclassification error. Each naive
method was implemented for 100 simulations. Clearly, our pro-
posed ALSD method is much more efficient than the two naive
methods. The threshold hyperplane estimated by our proposed
method moves toward the optimal threshold hyperplane more
quickly and consistently. It converges in about 15 steps, and
its misclassification error reaches 0.086, which is the error rate
of the hyperplane estimated with the full data. Our proposed
method also has a much smaller misclassification error than the
two naive methods in each iteration.

To check the linearity assumption in (4.1), we use dispersion
as a measure of goodness of fit. The dispersion parameter is

Figure 4. Learning curves of the proposed method compared with two naive methods.
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(a) (b)

Figure 5. Diagnostics for our proposed ALSD method: estimates of dispersion parameter (a) and leave-one-out misclassification error (b).

estimated by φ̂ = X2/(n − p), where n is the number of obser-
vations; p is the number of parameters in the model; X2 is the
Pearson statistic, defined as X2 = ∑n

i=1(yi − p̂i)
2/(p̂i(1 − p̂i)),

and p̂i is the estimated probability of yi = 1 from our proposed
method. If the logit model is appropriate, then φ should be 1.
Figure 5(a) shows that φ̂’s are around 1 in the active learning
procedure.

They are also much smaller than the 95% critical values (1.94
for n = 11 and 1.62 for n = 20) in the frequentist approach.
The figure shows that the linearity assumption is adequate in
the current study.

To assess the prediction error due to model lack of fit, we
computed the leave-one-out misclassification error, given in
Figure 5(b) under “linear.” The prediction errors were reason-
ably low. To further improve the prediction accuracy, we could
use a nonlinear hypersurface. One possible nonlinear model is
z = wxα1

1 + (1 − w)xα2
2 with α1, α2 ≥ 0, where α1 and α2 are

estimated from the data. This is a reasonable model because it
maintains the monotonicity of the profile features. Figure 5(b)
plots the leave-one-out misclassification error of the model un-
der “nonlinear.” It shows that using this particular nonlinear
model does not further reduce the misclassification error. In
fact, there is a slight increase for 14 ≤ n ≤ 20. Thus the linear
model seems to be adequate for this problem. Both models es-
timated from the full data are shown in Figure 6, which clearly
shows that the linear hyperplane is a good approximation to the
nonlinear hypersurface.

6. SIMULATIONS

6.1 Numerical Examples

As stated earlier, the proposed method is expected to be flexi-
ble and robust to model assumptions. We conducted some simu-
lations to study its performance. The simulated data were based
on different models of F(x). Four models were used in the

study:

Logistic distribution: F(x) = exp((z − μ)/σ)

1 + exp((z − μ)/σ)
,

Uniform distribution: F(x) = (z − μ)/σ − (−2)/2 − (−2),

Normal distribution: F(x) = �

(
z − μ

σ

)
,

Cauchy distribution: F(x) = 1

2
+ 1

π
tan−1

(
z − μ

σ

)
,

where z = wx1 + (1 − w)x2 and � is the standard normal dis-
tribution function. The true values of the parameters were set

Figure 6. Comparison of the linear hyperplane and the nonlinear
hypersurface estimated from the full data.
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Deng et al.: Active Learning Through Sequential Design 977

Figure 7. Illustrations of simulated data.

as μ = 0.5, σ = 1, and w = 0.7. The response outcome at each
point was generated according to F(x). Figure 7 shows the sim-
ulated data from the four models. The range of x1 remainined
in (−3,3) for all of the plots in the figure.

In this simulation, we chose α = 0.5 and α = 0.8 for illus-
tration. We used the same performance measure as in (5.5). Let
k0 = 15 in (4.5). The hyperparameters were specified following
the heuristic procedure outlined in the previous section. We per-
formed 100 simulations and sequentially selected n = 30 points
in each simulation. To calculate the Dist_PM in (5.5), we used
T = {ti} in (5.4) points lying evenly on the true threshold hy-
perplane of each model. To make T = {ti} more concentrated
in the data region of the true threshold hyperplane, we adjusted
the spread of ti according to the value of α. When α = 0.5, the
ti were evenly spaced on the true threshold hyperplane ranging
from −1.5 to 1.5 on the coordinate of x1, as shown in Figure 7.

For α = 0.8, the ti were evenly spaced on the true threshold
hyperplane ranging from −0.5 to 2.5 on the coordinate of x1.

Because the random method (i.e., select the next data point
randomly) outlined in Section 5 is very naive and performed
poorly, we compared the proposed method with the sequential
space-filling procedure used in Section 5. Note that in our prob-
lem, the accuracy of the estimated threshold hyperplane is cru-
cial for risk prioritization. We used the Dist_PM to evaluate the
performance of each simulation. The performance of these two
methods for two α values is illustrated in Figures 8 and 9.

Clearly, our proposed ALSD method performs much bet-
ter than the sequential space-filling procedure. Comparing Fig-
ures 8 and 9 shows that the methods perform better when α =
0.5. It is well known that the estimation of extreme quantiles is
much more difficult than with α = 0.5 (see, e.g., Joseph 2004).

D
ow

nl
oa

de
d 

by
 [

V
ir

gi
ni

a 
T

ec
h 

L
ib

ra
ri

es
] 

at
 0

6:
44

 0
6 

O
ct

ob
er

 2
01

5 
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Figure 8. Dist_PM for four models with α = 0.5. The solid line represents our proposed ALSD method; the dashed line, the sequential
space-filling procedure.

Figure 9. Dist_PM for four models with α = 0.8. The solid line represents our proposed ALSD method; the dashed line, the sequential
space-filling procedure.
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Deng et al.: Active Learning Through Sequential Design 979

Figure 10. Performance with different k0. Solid line, n = 10; dashed line, n = 20.

The figures also clearly show that our proposed method is quite
robust to model assumptions.

In our proposed ALSD approach in (4.5), k0 candidate points
closest to the estimated hyperplane are selected. Here k0 is con-
sidered a tuning parameter, but its optimal value has not yet
been addressed. We conducted an additional experiment re-
garding the choice of k0. Setting α = 0.6, we used our pro-
posed ALSD method for different k0 (i.e., k0 = 1, 5, 10, 15 and
k0 = N, where N is the total number of data points in the data
set). Here k0 = 1 means active learning using stochastic approx-
imation, whereas k0 = N means active learning using a fully
D-optimal–based sequential design. We generated 100 simula-
tions for each k0 and each model. The hyperparameters were
chosen as outlined in Section 4. Figure 10 shows the simulation
results.

As shown in Figure 10, except for the logistic distribution,
the Dist_PM decreased up to some value of k0 and then in-
creased thereafter. This agrees with our initial intuition that
choosing a large value of k0 may not be good if the assumed
model is not correct. Our method assumes the logistic model.
Thus, when the model was changed to uniform, normal, or
Cauchy, the method did not do well with a large k0. As ex-
pected, the performance did not deteriorate with k0 when the
true model was logistic. It also is clear that k0 = 1 was a
bad choice, because the Dist_PM was the largest in all cases.
Thus using a purely stochastic approximation method for ac-
tive learning was not good in this particular problem. The best
value of k0 is not clear; the simulation results suggest choosing
k0 to be 20%–50% of N.

6.2 Comparison With Support Vector Machines

Active learning using SVMs for classification has been pro-
posed with several variations (e.g., Campbell, Cristianini, and
Smola 2000; Schohn and Cohn 2000; Tong and Koller 2001).
The basic idea is to label points that lie closest to the SVM’s
dividing hyperplane. It is known that the hyperplane in SVM
converges to the Bayes rule P(Y = 1|x) = α, where α = 0.5.
Our proposed ALSD method also can converge to the thresh-
old hyperplane when α = 0.5. Active learning with SVMs re-
quires an initial sample of data points. To provide a fair com-
parison, we used eight points as the initial sample, chosen based
on the stratified random sampling. We implemented the method
as follows. With the initial guess on the parameters μ0, σ0, and
w0, we got z = w0x1 + (1 − w0)x2. We then divided the range
of z into four strata as (−∞,μ0 − 1.6σ0), [μ0 − 1.6σ0,μ0),
[μ0,μ0 + 1.6σ0), and [μ0 + 1.6σ0,+∞). Because each point
x can be mapped into the z value, we randomly choose two x′s
in each stratum based on the corresponding z value. The choice
of the constant ±1.6 was based on the asymptotic optimality of
the estimators under the logistic distribution (see, e.g., Neyer
1994). We chose the hyperparameters as before. We generated
100 simulations for comparison.

From Figure 11, we can see that our proposed ALSD method
has much smaller Dist_PM values compared with the active
learning with SVM approach. Moreover, our ALSD approach
is quite stable, whereas the SVM approach is quite unstable
for small n. The SVM is not robust, because adding one more
point into the training set can cause significant changes in the
SVM’s dividing hyperplane. Thanks to the use of the Bayesian
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Figure 11. Comparison of our ALSD method and active learning with SVM. The solid line represent our proposed ALSD method; the dashed
line, active learning with SVM.

approach, the estimation in the proposed active learning method
is stable.

Our proposed ALSD method seems to converge within 20
steps, whereas the active learning with SVM approach needs at
least 10 more steps to achieve a similar performance. The im-
provement is even more pronounced with heavy-tailed distribu-
tions, such as Cauchy. Thus, in this particular problem, our pro-
posed ALSD method outperformed active learning with SVM
in all respects, including accuracy, stability, and robustness.

7. DISCUSSION AND CONCLUSION

In this article we have proposed an ALSD approach and re-
ported its application to a real-world problem in money launder-
ing detection. Because of the large numbers of transactions and
various business categories of investigational resources, finding
an efficient way to determine the threshold hyperplane for prior-
itization is crucial. Our proposed method can efficiently and ac-
curately estimate the threshold hyperplane, and its performance
is robust to model assumptions. It can help investigators focus
their efforts on those accounts of most importance and thus sig-
nificantly improve money laundering detection.

Our proposed ALSD method uses a combination of stochas-
tic approximation and optimal design methods. From the se-
quential design perspective, we have shown that our proposed
method works better than either the stochastic approximation or
optimal design approaches. Through simulations, we also have
shown that our proposed method outperforms active learning

methods using SVMs. Regarding the choice of k0 [i.e., the num-
ber of candidate points in (4.5)], the results of our simulation
study suggest choosing k0 to be 20%–50% of N.

We have explored the use of our proposed method for two
profile features, x = (x1, x2)

T , with the threshold hyperplane
is linear in x. When the linearity assumption is reasonable, it
can be easily extended to higher dimensions. In multivariate
situations with x = (x1, x2, . . . , xp)

T , we can define a synthetic
variable z as a convex combination of the profile features (i.e.,
z = ∑p

i=1 wixi), where wi ≥ 0 and
∑p

i=1 wi = 1. We then can
apply the active learning criterion (4.5) to select the next data
point. Regarding the choice of the priors, we use the normal
prior for the location parameter μ, the exponential prior for the
scale parameter σ , and the Dirichlet prior for the weight pa-
rameters w = (w1,w2, . . . ,wp)

T . For this to work, we need to
assume monotonic effects for each of the profile features. This
assumption seems reasonable in problems that we have encoun-
tered so far. If the threshold hyperplane has a nonlinear form in
the profile features x, then the linearity assumption in the model
may lead to lack of fit and poor prediction accuracy. This can
be alleviated by using a nonlinear model as described in Sec-
tion 5, that is, by taking z = ∑p

i=1 wix
αi
i , where αi ≥ 0 for all

i = 1, . . . ,p. Another strategy for incorporating the nonlinear-
ity is to consider the so-called “kernel trick” (Schölkopf and
Smola 2002) on the synthetic variable z for the logit model in
(4.1); that is, z can be expressed as an inner product in the re-
producing kernel Hilbert space (Wahba 1990). Generalizing the
active learning criterion (4.5) for the nonlinear threshold sur-
face is an interesting topic for future research.
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Our proposed ALSD method is flexible in estimating the
threshold hyperplane for different values of α. In contrast, the
standard SVM is appropriate mainly for classification problems
with α = 0.5. Lin, Lee, and Wahba (2002) proposed a modified
SVM to account for α different from 0.5; however, an evalua-
tion of this active learning with modified SVM approach is not
available in the literature.

Although our proposed ALSD method was motivated by the
problem of detecting money laundering, the method’s sequen-
tial nature can be linked to other applications, such as sensitivity
experiments (Neyer 1994), bioassay experiments (McLeish and
Tosh 1990), contour estimation in computer experiments (Ran-
jan, Bingham, and Michailidis 2007), and identification of lead
compounds in drug discovery (Abt et al. 2001). Abt et al. (2001)
used a two-stage sequential approach to minimize the number
of physical tests and select a set of good candidate compounds.
Their work shares two common features with ours: large num-
bers of independent variables and high cost to measure the po-
tencies of chemical compounds. These features are common in
other fields; for example, in signal processing or image recog-
nition, observations often are available but are not labeled or in-
vestigated to determine the response. Each observation can be
a functional curve or can consist of many data points in a high-
dimensional space. Because of the complexity of the observa-
tions, obtaining the responses is time-consuming and costly. By
transforming the data into several uncorrelated monotonic pro-
file features, our proposed ALSD method can efficiently exploit
the level of interest of the response.

APPENDIX: EQUIVALENCE BETWEEN (4.7) AND (4.8)

From (4.6), I(θ̂n,x1,x2, . . . ,xn,x) = I(θ̂n,x1,x2, . . . ,xn) +
κxηxη

T
x , where κx = eg(x)/(1 + eg(x))2 and ηx = ∂g(x)

∂θ
. Under mild

regularity conditions, the Fisher information matrix I(θ̂n,x1,x2, . . . ,

xn) is positive semidefinite and nonsingular. Thus, applying the iden-
tity det(A + cxxT ) = det(A)(1 + cxT A−1x), we obtain

det(I(θ̂n,x1,x2, . . . ,xn,x))

= det
(
I(θ̂n,x1,x2, . . . ,xn) + κxηxη

T
x
)

= det(I(θ̂n,x1,x2, . . . ,xn))

× (
1 + κxη

T
x I−1(θ̂n,x1,x2, . . . ,xn)ηx

)
.

Thus minx det(I(θ̂n,x1,x2, . . . ,xn,x)) is the same as minx κxη
T
x ×

I−1(θ̂n,x1,x2, . . . ,xn)ηx. Now under the constraint in (4.7), κx =
α(1 − α) is a constant. Thus we get (4.8). Note that ηx = (−1/σ,

− log(α/(1 − α))/σ, (x1 − x2)/σ )T under the constraint in (4.7).

[Received November 2007. Revised December 2008.]
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