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Because of the advance in technologies, modern statistical stud-
ies often encounter linear models with the number of explanatory
variables much larger than the sample size. Estimation and variable
selection in these high-dimensional problems with deterministic de-
sign points is very different from those in the case of random co-
variates, due to the identifiability of the high-dimensional regression
parameter vector. We show that a reasonable approach is to focus
on the projection of the regression parameter vector onto the linear
space generated by the design matrix. In this work, we consider the
ridge regression estimator of the projection vector and propose to
threshold the ridge regression estimator when the projection vector
is sparse in the sense that many of its components are small. The
proposed estimator has an explicit form and is easy to use in ap-
plication. Asymptotic properties such as the consistency of variable
selection and estimation and the convergence rate of the prediction
mean squared error are established under some sparsity conditions
on the projection vector. A simulation study is also conducted to
examine the performance of the proposed estimator.

1. Introduction. Consider the following linear model:

yi = x′
iβ+ εi, i= 1, . . . , n,(1)

where yi is an observed response variable, xi is a p-dimensional vector of
observed covariates or design points associated with yi, β is a p-dimensional
vector of unknown parameters and εi’s are independent and identically dis-
tributed unobserved random errors with mean 0 and unknown variance σ2.
The theory of linear models is well established for traditional applications
where the dimension p is fixed and the sample size n > p. With modern
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technologies, however, in many biological, medical, social and economical
studies, p is comparable with, or much larger than, n, and making valid
statistical inference is a great challenge.

In the case of p < n, there is a rich literature on variable selection, that is,
identifying nonzero components of β in (1). For variable selection in the case
of p > n and statistical inference afterwards, the development of statistical
theory started about a decade ago. Some excellent advances in asymptotic
theory have been made recently in situations where p diverges to infinity
as the sample size n increases to infinity with the divergence rate O(nl) for
some l > 0 (polynomial-type divergence rate) or O(en

ν

) for some ν ∈ (0,1)
(ultra-high dimension). See, for example, Fan and Peng (2004), Hunter and
Li (2005), Meinshausen and Buhlmann (2006), Zhao and Yu (2006), Zou
(2006), Wang, Li and Tsai (2007), Fan and Lv (2008), Zhang and Huang
(2008), Meinshausen and Yu (2009), Wang (2009) and a review by Fan and
Lv (2010). When xi’s are random covariates, under some conditions, some
variable selection methods have been shown to be selection-consistent in the
sense that, with probability tending to 1 as n→∞, the selected variables are
exactly those related to the response, where the probability is with respect
to the joint distribution of (yi,xi)’s. As Fan and Lv (2008) commented in
the end of their stimulating paper, however, no selection-consistency result
is available for deterministic xi’s and many applications, such as biomedical
imaging and signal processing, involve deterministic design points. Another
example in which xi can be treated as deterministic is an analysis conditional
on the observed covariates.

Let X be the matrix whose ith row is x′
i, i= 1, . . . , n. For simplicity, we

call X the design matrix although xi’s are not necessarily designed points.
When p > n, a key difference between a randomX and a deterministic design
matrix is the identifiability of the regression parameter β in (1), caused by
the fact that the probabilities under consideration are different. For random
xi’s that are independent and identically distributed and independent of εi’s,
β = [cov(xi)]

−1 cov(xi, yi). Hence, even when p > n, components of β can be
estimated, and nonzero components of β can be identified consistently with
respect to the joint probability distribution of (yi,xi)’s, under some condi-
tions on cov(xi) and cov(xi, yi). On the other hand, when the design matrix
is deterministic or an analysis conditional on X is considered, the underlying
probability is the probability distribution of (y1, . . . , yn) conditional on X,
and β is identifiable if and only if it lies in a set having a one-to-one cor-
respondence with R(X), the linear space spanned by rows of X. Since the
dimension of R(X) is at most n, when p > n, β is generally not identifiable
with respect to the probability distribution of (y1, . . . , yn) conditional on X.
Consequently, with deterministic X and p > n, it is not realistic to derive
consistent estimators of β or consistent variable selection procedures.

Without selection-consistency [as previously described; see definition (7)
in Section 4.1], we may still derive consistent estimators of some useful func-
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tions of β under the p-dimensional linear model given by (1) with determin-
istic X and p > n. This is the main focus of the current paper. Although β

is generally not identifiable when p > n, we argue in Section 2 that we may
not need to estimate the entire vector β. For statistical analysis, θ, the pro-
jection of β onto R(X), is what we are able to estimate, and perhaps the
estimation of θ is sufficient for valid statistical inference.

To estimate θ, we first consider the ridge regression estimator in Section 3.
For any linear combination of the ridge regression estimator, we establish
the asymptotic convergence rate of its mean squared error. We also obtain
the convergence rate of the expected L2-norm error for the ridge regression
estimator of Xθ. This expected L2-norm error divided by n is equal to the
average prediction mean squared error minus σ2.

When θ is sparse in the sense that many of its components are small,
we consider in Section 4 a sparse estimator of θ obtained by thresholding
the ridge regression estimator of θ. We show that, with probability tend-
ing to 1 at a fast rate, we can eliminate small components of θ and keep
large components of θ, that is, thresholding the ridge regression estimator
provides a variable selection procedure, that is, consistent in some sense.
This method is computationally much simpler than methods such as the
LASSO [Tibshirani (1996)], SCAD [Fan and Li (2001)] and the ENET [Zou
and Hastie (2005)], since no numerical minimization is required as the pro-
posed estimator has an explicit form. We show that the convergence rate of
the expected L2-norm error or average prediction mean squared error of the
thresholded ridge regression estimator is much faster than that of the ridge
regression estimator when θ is sparse. In particular, the thresholded ridge
regression estimator is estimation-consistent (defined in Section 4), but the
ridge regression estimator may not be.

Thresholding the ridge regression estimator is closely related to the SIS as
shown in Fan and Lv (2008). However, its asymptotic behavior for determin-
istic X is different from that for random X, and its consistency also requires
very different conditions. For deterministic X and p > n, there does not exist
any result on the consistency of the LASSO, SCAD or ENET. When p < n,
Zhang and Huang (2008) showed that the LASSO is estimation-consistent,
but the required conditions are more stringent and complicated than those
required for the consistency of the thresholded ridge regression estimator.

Some simulation results are presented in Section 5 to study the estimation
and prediction performance of the proposed method, the ridge regression,
the LASSO and the ENET. All technical proofs are given in Section 6.

2. Identifiability and projection. We consider model (1) with determin-
istic design matrix X= (x1, . . . ,xn)

′, where the dimension of xi, p, is larger
than n. Let r = rn be the rank of X. From the singular value decomposition,

X=PDQ′,(2)
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where P is an n×r matrix satisfying P′P= Ir, Q is a p×r matrix satisfying
Q′Q= Ir, Ia denotes the identity matrix of order a andD is an r×r diagonal
matrix of full rank. Let Q⊥ be a p× (p− r) matrix such that Q′Q⊥ = 0 (the
matrix of 0’s with an appropriate order) and Q′

⊥Q⊥ = Ip−r. Throughout, we
denote the q-dimensional Euclidean space by Rq for any positive integer q
and the subspace of Rp generated by the rows of X by R(X).

We say that β in (1) is identifiable if β1 ∈B, β2 ∈ B and Xβ1 =Xβ2

imply β1 = β2, where B is the parameter space of β. The following lemma
gives a sufficient and necessary condition for the identifiability of β.

Lemma 1. Under model (1) with p > r, β is identifiable if and only if
there exists a known function φ from Rr to Rp−r such that

B= {β :β =Qξ+Q⊥φ(ξ),ξ ∈Rr}.(3)

Lemma 1 reveals that identifiable β’s must be in a set having a one-to-one
correspondence with R(X) = {β :β =Qξ,ξ ∈ Rr}. Since the dimension of
the set on the right-hand side of (3) is r ≤ n∧ p (the minimum of n and p),
β is typically not identifiable when p > n and, hence, we are not able to
obtain a component-wise consistent estimator of β. However, we may not
need to estimate the entire vector β, that is, if Xβ1 = Xβ2, we can still
estimate parameters related toXβ1 =Xβ2 and make valid inference without
trying to distinguish β1 and β2. Therefore, we consider the projection of β
onto R(X), which is what we are able to identify in view of Lemma 1. Define

(XX′)− =PD−2P′,

which is (XX′)−1 if r = n. The projection of β onto R(X) is

θ =X′(XX′)−Xβ =QQ′β.(4)

Note that θ ∈R(X) and θ = β if and only if β ∈R(X). Furthermore, Xθ =
Xβ and model (1) can be written as

yi = x′
iθ+ εi, i= 1, . . . , n.(5)

Thus, estimating θ is enough for inference about parameters Xβ =Xθ and
prediction.

The dimension of θ is still p. When β has many zero components, θ may
not have any zero component. However, θ may have many small components.
This can be seen from the L2-norms of β and θ. Since θ =QQ′β and QQ′

is a projection matrix, we obtain that ‖θ‖ ≤ ‖β‖, where ‖ · ‖ denotes the
L2-norm. This implies that if β has many zero components so that the
order of ‖β‖ is much smaller than O(p), then the order of ‖θ‖ is also much
smaller than O(p). Hence, if components of θ are nonzero, then many of them
must be negligible, and θ can be viewed as a sparse vector. More precise
descriptions of this sparsity can be found in conditions (C2) in Section 3
and (C4) in Section 4.
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3. The ridge regression estimator of the projection. Since the dimension
of θ in (4) is p > n, we consider the ridge regression estimator of θ [Hoerl
and Kennard (1970)] under model (5).

θ̂ = (X′X+ hnIp)
−1X′y,

where y= (y1, . . . , yn)
′ and hn > 0 is an appropriately chosen regularization

parameter. The computation of θ̂ involves only inverting an n× n matrix.
This is because (2) implies that

(X′X+ hnIp)
−1X′ =X′(XX′ + hnIn)

−1,(6)

which also implies that the ridge regression estimator θ̂ is always inR(X). In

fact, if β̂ is the ridge regression estimator of β constructed under model (1),

then θ̂ = X′(XX′)−Xβ̂ = β̂. But θ̂ = β̂ estimates θ, not the nonidentifi-
able β when p > n.

We now study the bias and variance of θ̂ as an estimator of θ, which is
essential for establishing asymptotic properties of θ̂. For the matrix Q given
in the singular value decomposition (2), Γ= (QQ⊥) is orthogonal, that is,
Γ′Γ= ΓΓ′ = Ip. Then

bias(θ̂) = E(θ̂)− θ

= (X′X+ hnIp)
−1X′Xθ− θ

=−(h−1
n X′X+ Ip)

−1θ

=−Γ(h−1
n Γ′X′XΓ+ Ip)

−1Γ′QQ′θ

=− (Q Q⊥ )

(
(h−1

n D2 + Ir)
−1 0

0 Ip−r

)(
Q′

Q′
⊥

)
QQ′θ

=− (Q(h−1
n D2 + Ir)

−1 Q⊥ )

(
Q′θ

0

)

=−Q(h−1
n D2 + Ir)

−1Q′θ,

where the fourth equality follows from the fact that Γ is orthogonal and
θ =QQ′β =QQ′θ. The covariance matrix of θ̂ is given by

var(θ̂) = σ2(X′X+ hnIp)
−1X′X(X′X+ hnIp)

−1

≤ σ2(X′X+ hnIp)
−1

≤ σ2h−1
n Ip,

where A ≤B for nonnegative definite matrices A and B means B−A is
nonnegative definite.

To study the asymptotic properties of θ̂, we consider n→∞ and p= pn,
a function of n. Quantities such as β, y, xi, etc., form triangular arrays, but
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the subscript n is omitted for simplicity. We assume that λ1n, the smallest
positive eigenvalue of X′X, satisfies

λ−1
1n =O(n−η), η ≤ 1 and η does not depend on n.(C1)

We also need a sparsity condition on θ. From the discussion in the end
of Section 2, we conclude that, in terms of the L2-norm, the sparsity of β
implies the sparsity of θ. We assume that

‖θ‖=O(nτ ), τ < η and τ does not depend on n.(C2)

If the number of nonzero components of β is O(n2τ ), and all absolute
values of nonzero components of β are bounded by a constant M , then (C2)
holds since ‖θ‖ ≤ ‖β‖ ≤Mnτ .

Theorem 1. Assume model (1) and conditions (C1) and (C2).

(i) As n→∞, E(l′θ̂ − l′θ)2 = O(h−1
n ) +O(h2nn

−2(η−τ)) uniformly over
p-dimensional deterministic vector l with ‖l‖= 1.

(ii) n−1E‖Xθ̂ −Xθ‖2 =O(rnn
−1) +O(h2nn

−(1+η−2τ)).

Note that these results hold without any condition on the dimension p.
Theorem 1(i) shows that the mean squared error of l′θ̂ converges to 0 uni-
formly in l if hn → ∞ and hnn

−(η−τ) → 0. Theorem 1(ii) gives the con-

vergence rate of the expected L2-norm error E‖Xθ̂ −Xθ‖2 for estimating

E(y) =Xθ. Since the dimension of Xθ is n, we say that an estimator ϑ̂ of θ

is L2-consistent if n−1E‖Xϑ̂−Xθ‖2 → 0 as n→∞. Typically, rn/n does

not converge to 0 and, hence, Xθ̂ may not be L2-consistent.
To elaborate the motivation of using the expected L2-norm error E‖Xϑ̂−

Xθ‖2 as a performance measure for an estimator ϑ̂ of θ, we consider the
problem of predicting future y-values on deterministic X. Let y∗ be inde-
pendent of y but with the same distribution as y. For deterministic X, it
is typical to assess the accuracy of the prediction Xϑ̂ using the average
prediction mean squared error n−1E‖y∗ −Xϑ̂‖2. It turns out that

n−1E‖y∗ −Xϑ̂‖2 = σ2 + n−1E‖Xϑ̂−Xθ‖2.
Hence, having a small expected L2-norm error is equivalent to having a small
average prediction mean squared error.

4. The thresholded ridge regression estimator. The discussion in the
previous section indicates that, although the ridge regression estimator θ̂ is
consistent for the estimation of any linear combination of θ, it may not be
L2-consistent, that is, n

−1E‖Xθ̂−Xθ‖2 may not converge to 0. To achieve
L2-consistency (and good prediction property) under some sparsity condi-
tions on θ, we propose to improve the ridge regression estimator by thresh-
olding.
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4.1. Variable selection. Let Mβ,0 be the set of indices of nonzero com-

ponents of β, and let M̂ be the set of indices of components of β selected

using a variable selection method. The variable selection method or M̂ is
said to be selection-consistent if and only if

lim
n→∞

P (M̂=Mβ,0) = 1.(7)

Unlike the case of random X, for deterministic X with p > n, the selection-
consistency defined by (7) is generally not achievable because β is not identi-
fiable. Some selection-consistency results for the case of p > n and determin-
istic X published in the literature are based on very strong and sometimes
unrealistic conditions on the design matrix X to ensure the identifiability
of β. In fact, when β is not identifiable, it is not appropriate to use β to de-
scribe usefulness of components of xi, since two different β may result in the
same responses under model (1). Although components of xi corresponding
to zero components of β are not related to yi, due to the fact that β is
unknown and not identifiable, these components of xi may still be useful in
statistical analysis since we have to use model (5) instead of model (1), that
is, θ instead of β.

The previous discussion leads to variable selection in terms of the pro-
jection vector θ, since any linear combination l′β is estimable if and only
if l′β = l′θ. However, when β contains many zero components, θ may not
have any zero component, although many components of θ may be close to
zero. Small but not exactly zero components of θ do not contribute much in
estimation but add variability. Thus, we would like to carry out variable se-
lection in a more general sense as defined by Zhang and Huang (2008), that
is, we try to eliminate small components of θ. Condition (C4) stated later
may be used to define whether a component of θ can be treated as small.

We propose to threshold the ridge regression estimator θ̂. Let θ̂j be the jth

components of θ̂, j = 1, . . . , p. The thresholded ridge regression estimator is
defined as θ̃ whose jth component θ̃j = θ̂j if |θ̂j |> an and θ̃j = 0 if |θ̂j| ≤ an,
j = 1, . . . , p, where

an =C1n
−α, 0<α≤ 1/2,C1 > 0,(8)

is the thresholding value with α and C1 not depending on n. The computa-
tion of θ̃ is easy since it has an explicit form. Thresholding can be viewed
as a variable selection procedure; that is, we select components of θ with
indices in M

θ̂,an
, the set of indices of nonzero components of θ̃. We now

study the asymptotic behavior of M
θ̂,an

under some conditions and appro-

priate choices of an and hn. A condition on the divergence rate of p= pn as
n→∞ is

p=O(en
ν

), 0< ν < 1 and ν does not depend on n.(C3)

If p= en
ν

, it is referred to as the ultra-high dimension [Fan and Lv (2010)].
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Theorem 2. Assume model (1) with normally distributed εi and con-
ditions (C1)–(C3). Let an be given by (8) with α < (η − ν − τ)/3, un =
1+(log logn)−1 and hn =C2a

−2
n (log logn)3 log(n∨p), where C2 > 0 is a con-

stant and n∨ p is the maximum of n and p. Then, for any constant t > 0,

P (Mθ,anun
⊂M

θ̂,an
⊂Mθ,an/un

) = 1−O((n ∨ p)−t),(9)

where Mξ,cn denotes the set of indices of components of ξ whose absolute
values are larger than cn.

Result (9) shows that, by thresholding θ̂, we can eliminate all components
of θ with absolute values less than an/un, but keep all components of θ with
absolute values larger than anun, with probability tending to 1 at the rate
of O((n ∨ p)−t) for any t > 0. This rate is at least O(n−t) for any t > 0 and
it is O(e−tnν

) for any t > 0 if log p has exactly the order nν .
Let qn− and qn+ be the numbers of elements in Mθ,anun

and Mθ,an/un
,

respectively. Then qn− ≤ qn+. Since un → 1, it is often true that qn+−qn− →
0 as n→∞. Then, result (9) implies that

P (M
θ̂,an

=Mθ,an) = 1−O((n∨ p)−t),(10)

which will be referred to as the consistency of M
θ̂,an

. This consistency is

weaker than the selection-consistency given by (7), but the latter may not
be achieved.

We now consider nonnormal εi under model (1), that is, the normality
assumption on εi is replaced by

E(εki )<∞ for an even integer k not depending on n,(M)

and condition (C3) is replaced by

p=O(nl), 1≤ l < k/6 and l does not depend on n,(C3′)

while the other conditions, (C1) and (C2), remain the same. When the nor-
mality condition is relaxed to the moment condition (M), we cannot handle
a dimension at the divergence rate given by (C3), although the polynomial-
type divergence rate given by (C3′) can still be much larger than n. The inte-
ger k in condition (M) has to be sufficiently large so that 3l(t+1)/k < η− τ ,
where t > 0 is in the convergence rate of M

θ̂,an
.

Theorem 2A. Assume model (1) and conditions (M), (C1), (C2)
and (C3′). For any t > 0, let an be given by (8) with α≤ (η−ξ−τ)/3 and ξ =
3l(t+1)/k, and un = 1+(log logn)−1. If hn =C2a

−2
n (log logn)2(n∨p)2ξ/(3l),

where C2 > 0 is a constant, then result (9) holds.

4.2. L2-consistency. The following result shows that, after the variable
selection, the thresholded estimator θ̃ has asymptotically smaller expected
L2-norm error than θ̂, and it is in fact L2-consistent, under the following
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sparsity condition on θ:

qn+ − qn− → 0, qn/rn → 0 and anvn → 0,(C4)

where

vn =
∑

j : |θj |≤an

|θj |,

θj is the jth component of θ, rn is the rank of X, an is given by (8),
and qn, qn− and qn+ are, respectively, the numbers of elements in sets Mθ,an ,
Mθ,anun

and Mθ,an/un
given by (9).

The last two conditions in (C4) are very similar to condition (2.4) in
Zhang and Huang (2008); that is, there exist qn “large” components of θ
with qn much smaller than the rank of X, and vn, the L1 norm of the “small”
components of θ, may diverges to ∞, but at a rate slower than a−1

n .

Theorem 3. Assume the conditions in Theorem 2 or 2A. Assume fur-
ther that (C4) holds and the maximum eigenvalue of X′X is O(n). Then

n−1E‖Xθ̃ −Xθ‖2 =O(qnn
−1) +O(vnan) +O(h2nn

−(1+η−2τ)).(11)

Result (11) shows the gain of variable selection by thresholding. The ex-

pected L2-norm error n−1E‖Xθ̃ −Xθ‖2 is smaller than n−1E‖Xθ̂−Xθ‖2
for sufficiently large n. The former converges to 0 at a certain rate and
hence θ̃ is L2-consistent, whereas the latter may not converge to 0 when
rn/n does not converge to 0.

If qn/n→ 0, result (11) can also be established with the vector of nonzero
components of θ̃ replaced by the ordinary least squares estimator of the
sub-vector of θ indexed by the set M

θ̂,an
.

4.3. Tuning parameters. To apply thresholding, we need to choose the
constants C1 in the thresholding value an given by (8) and C2 in the regu-
larization parameter hn given in Theorem 2 or 2A. Similar to many other
problems, C1 and C2 can be viewed as tuning parameters, and there is no
optimal way to find their values. Some discussions can be found, for exam-
ple, in Fan and Lv (2008). It is possible to use a data-driven method to
find values of tuning parameters by minimizing the average prediction mean
squared error n−1E‖y∗ −Xθ̃‖2 = σ2 + n−1E‖Xθ̃ −Xθ‖2.

Let ψ(C) be the average prediction mean squared error when C = (C1,C2)
is used in an and hn. Since ψ(C) is unknown, we minimize the cross-
validation estimator

ψ̂(C) =
1

n

n∑

i=1

(yi − x′
iθ̃

(C)
−i )

2,



10 J. SHAO AND X. DENG

where θ̃
(C)
−i is the thresholded ridge regression estimator of θ based on the

data set with (yi,xi) removed, i= 1, . . . , n. To avoid repeated computation

of θ̃
(C)
−i , we may use an equivalent formula for ψ̂(C),

ψ̂(C) =
1

n

n∑

i=1

(
yi − x′

iθ̃
(C)

1−wi(C)

)2

,(12)

where wi(C) = x′
i(X

′X+hnIp)
−1xi and θ̃

(C)
is the thresholded ridge regres-

sion estimator based on the whole data set. This method is applied in the
simulation study presented in the next section.

5. Simulation results. With deterministic X and p > n, we examined
the L2-norm errors and the expected L2-norm errors of the ridge regres-
sion estimator, the thresholded ridge regression estimator, and the popular
LASSO estimator and ENET estimator (for comparison purpose) in four
simulation studies. In the first two simulation studies, the design matrix X

was generated from a multivariate normal distribution but fixed throughout
the simulation, which corresponds to analysis conditional on X. In the last
two simulation studies, X is a nearly orthogonal Latin hypercube design or
a Latin hypercube design.

5.1. Simulation study I. We considered linear model (1) with normally
distributed εi and σ = 10. Three sets of sample and variable sizes were con-
sidered, (n,p) = (30,100), (100,500) and (200,2000), with increasing ratio
p/n. A set of x1, . . . ,xn were independently generated with xi ∼ N(0,Σ),
where the diagonal elements of Σ are all equal to 1 and off-diagonal elements
of Σ are all equal to 0.75. This set of X was fixed throughout the simula-
tion. The first 20 components of β are 1+0.1j for j = 1, . . . ,20, and the rest
of the components of β are all equal to 0. The L2 cumulative proportion
plot of the projection vector θ, that is,

∑k
j=1 θ

2
(j)/‖θ‖2, k = 1, . . . , p, is given

in Figure 1, where θ2(j) is the jth ordered value of θ21, . . . , θ
2
p. Although β

has many zero components, θ does not have any zero component but many
components of θ are small.

For the thresholded ridge regression estimator, we selected the tuning
parameter C = (C1,C2) by minimizing ψ̂(C) given by (12). For the ridge
regression, LASSO, and ENET estimators, the tuning parameters were se-
lected by a 5-fold cross-validation.

Let ϑ̂ denote the thresholded ridge regression estimator θ̃, the ridge re-
gression estimator θ̂, the LASSO estimator or the ENET estimator. We in-
dependently generated 100 values of y and obtained 100 values of n−1‖Xβ−
Xϑ̂‖2, the L2-norm error (divided by the sample size). Box plots of 100 val-

ues of n−1‖Xβ −Xϑ̂‖2 for four estimation methods are given in Figure 1.



ESTIMATION IN HIGH-DIMENSIONAL LINEAR MODELS 11

Fig. 1. Study I: L2 cumulative proportion plot of θ and box plots of L2-norm error for

the thresholded ridge regression, LASSO, ENET and ridge regression.

The average of 100 values of n−1‖Xβ −Xϑ̂‖2, a simulation approximation

to the expected L2-norm error n−1E‖Xβ −Xϑ̂‖2, is listed in Table 1 for
each of the four methods.

5.2. Simulation study II. The setting in this study is the same as that
in simulation study I except that the values of xi’s were generated with a Σ

whose (k, l)th element is equal to (0.5)|k−l| when |k − l| ≤ 10 and 0 when
|k− l|> 10. The L2 cumulative proportion plot of θ and box plots of values of
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Table 1

Simulation approximation to the expected L2-norm error

Method

Study n p Thres. Ridge LASSO ENET Ridge

I 30 100 27.34 48.46 44.56 51.48
100 500 24.72 32.01 28.46 44.32
200 2000 21.86 25.37 24.17 49.37

II 30 100 56.50 69.05 70.70 76.05
100 500 59.35 68.33 64.43 94.06
200 2000 74.59 85.14 82.35 100.75

III 49 96 61.58 78.40 76.83 85.46
64 192 54.79 81.54 79.78 78.34

IV 30 100 43.44 55.35 49.29 59.72
100 500 46.49 56.60 52.83 65.85
200 2000 48.53 51.78 56.26 71.21

n−1‖Xβ−Xϑ̂‖2 based on 100 simulation runs for four estimation methods

are given in Figure 2. The simulation approximations to n−1E‖Xβ−Xϑ̂‖2
are included in Table 1.

5.3. Simulation study III. Let NOLH(n,p) denote a nearly orthogonal
Latin hypercube design with n rows (runs) and p columns (variables). We
considered two sets of n and p. In the first case, n= 49, p= 96 and X is an
NOLH(49,96) constructed by using the orthogonal array-based method in
Lin, Mukerjee and Tang (2009). In the second case, n= 64, p= 192 and X

is an NOLH(64,192). In both cases, the first 15 components of β are equal
to 0.2,0.4, . . . ,2.8,3.0, and the rest components of β are equal to 0. The
standard deviation of εi is 8. The rest of the simulation setting is the same
as that in simulation study I. The L2 cumulative proportion plot of θ and
box plots of values of n−1‖Xβ−Xϑ̂‖2 based on 100 simulation runs for four
estimation methods are given in Figure 3. The simulation approximations
to n−1E‖Xβ −Xϑ̂‖2 are included in Table 1.

5.4. Simulation study IV. The setting in this study is the same as that
in simulation study I except that X is a deterministic Latin hypercube de-
sign [McKay, Beckman and Conover (1979)]: each column of X is a random
permutation of n points 6(i/n)− 3, i= 1, . . . , n, and all columns are gener-
ated independently. The L2 cumulative proportion plot of θ and box plots
of values of n−1‖Xβ −Xϑ̂‖2 based on 100 simulation runs for four esti-
mation methods are given in Figure 4. The simulation approximations to
n−1E‖Xβ −Xϑ̂‖2 are included in Table 1.

5.5. Conclusions based on simulation studies. From Table 1 and Fig-
ures 1–4, we conclude that the thresholded ridge regression estimator is
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Fig. 2. Study II: L2 cumulative proportion plot of θ and box plots of L2-norm error for

the thresholded ridge regression, LASSO, ENET and ridge regression.

much better than the ridge regression estimator in terms of the L2-norm
error or the expected L2-norm error, which supports our asymptotic theory,
that is, the thresholded ridge regression estimator is L2-consistent whereas
the ridge regression estimator is not. Because the expected L2-norm error
is linearly related to the average prediction mean squared error (Section 3),
these results show that thresholding ridge regression has better prediction
performance. Except for study III, the LASSO performs worse than the
ENET and thresholded ridge regression, but better than the ridge regres-
sion, and the ENET performs worse than the thresholded ridge regression,
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Fig. 3. Study III: L2 cumulative proportion plot of θ and box plots of L2-norm error for

the thresholded ridge regression, LASSO, ENET and ridge regression.

although the difference is small in some cases. Since the ENET uses a com-
bination of L1- and L2-penalty, it is not surprising that its performance is
between the LASSO and thresholded ridge regression. However, both LASSO
and ENET have large variability in simulation study III. It is well known
that the LASSO requires more stringent conditions on the design matrix X

[e.g., Zhao and Yu (2006)]. The nearly orthogonal Latin hypercube design
in simulation study III may not satisfy these conditions, which results in
the poor performance of the LASSO. This also applies to the ENET, since
it uses L1-penalty. Furthermore, no result for the L2-consistency of LASSO
or ENET is available in the situation of deterministic X and p > n.

In terms of the computation, the thresholded ridge regression is much
simpler than the LASSO or ENET, especially when p is very large. Because
of the identity (6), the computation complexity of the thersholded ridge
regression estimator does not increase as p increases.

6. Proofs.

Proof of Lemma 1. Suppose that (3) holds. Let βj ∈B, j = 1,2. Then
there are ξj ∈ Rr such that βj =Qξj +Q⊥φ(ξj), j = 1,2. If Xβ1 =Xβ2,
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Fig. 4. Study IV: L2 cumulative proportion plot of θ and box plots of L2-norm error for

the thresholded ridge regression, LASSO, ENET and ridge regression.

then, by (2), PDξ1 =PDξ2 and, thus, ξ1 = ξ2, which implies β1 = β2. This
shows that the parameter β in (1) is identifiable.

Suppose now that B is not of the form (3). Then, there exist ξ ∈ Rr,
ζj ∈ Rp−r, j = 1,2, ζ1 6= ζ2 and βj =Qξ +Q⊥ζj ∈B. Then β1 6= β2, but
Xβ1 =PDξ =Xβ2. This shows that β in (1) is not identifiable. �

Proof of Theorem 1.

(i) From Section 3, bias(θ̂) = −Q(h−1
n D2 + Ir)

−1Q′θ. From the facts
that Q′Q = Ir, D2 contains positive eigenvalues of X′X, and (h−1

n D2 +
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Ir)
−1 ≤ hn/λ1n

1+hn/λ1n
Ir, we obtain that ‖bias(θ̂)‖ ≤ ‖θ‖(hn/λ1n). Hence, by (C1)

and (C2), [l′ bias(θ̂)]2 ≤ ‖bias(θ̂)‖2 =O(h2nn
−2(η−τ)) uniformly over l with

‖l‖= 1. Also, from Section 3, var(θ̂)≤ σ2h−1
n Ip. Hence, l

′ var(θ̂)l=O(h−1
n )

uniformly over l with ‖l‖= 1. Then, the result follows from E(l′θ̂− l′θ)2 =
l′ var(θ)l+ [l′ bias(θ)]2.

(ii) Note that E‖Xθ̂ −Xθ‖2 = trace[Xvar(θ̂)X′] + ‖Xbias(θ̂)‖2. From
the proof of (i),

Xvar(θ̂)X′ ≤ σ2X(X′X+ hnIp)
−1X′

= σ2PD(D2 + hnIr)
−1DP′

≤ σ2PP′,

since D(D2 + hnIr)
−1D is a diagonal matrix whose diagonal elements are

bounded by 1. Hence, trace[Xvar(θ̂)X′]≤ σ2 trace(PP′) = σ2rn. Also,

‖Xbias(θ̂)‖2 = θ′Q(h−1
n D2 + Ir)

−1D2(h−1
n D2 + Ir)

−1Q′θ ≤ h2nλ
−1
1n ‖θ‖2,

which is O(h2nn
−(η−2τ)) by (C1) and (C2). This completes the proof. �

Proof of Theorem 2. From the proof of Theorem 1,

bias(θ̂j) =O(‖θ‖hn/λ1n) =O(hn/n
η−τ )

uniformly in j = 1, . . . , p. For sufficiently large n, log logn > 0. With hn =
C2a

−2
n (log logn)3 log(n ∨ p) and condition (C3),

hn
nη−τ (un − 1)an

=
C2(log logn)

4 log(n ∨ p)
nη−τa3n

≤ c1(log logn)
4

nη−ν−τ−3α

for some constant c1 > 0 and, hence, |bias(θ̂j)|/[(un − 1)an]→ 0 uniformly

in j when α < (η − ν − τ)/3. Since var(θ̂j) = O(h−1
n ), there is a constant

c0 > 0 such that

|bias(θ̂j)| − (un − 1)an

[var(θ̂j)]1/2
≤−

√
2c0

√
hnan/(log logn).

Let Φ be the standard normal distribution function. From (1) with normally
distributed εi,

P (|θ̂j − θj|> (un − 1)an)≤ 2Φ

( |bias(θ̂j)| − (un − 1)an

[var(θ̂j)]1/2

)

≤ 2Φ(−
√
2c0

√
hnan/(log logn))

≤ exp{−c20hna2n/(log logn)2},
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for sufficiently large n, where the last inequality follows from 2Φ(−x) ≤
e−x2/2 for x≥ 2 and the fact that hna

2
n/(log logn)

2 =C2 log logn log(n∨p)→
∞. Using the same argument, we also obtain that

P (|θ̂j − θj|> (1− u−1
n )an)≤ exp{−c20hna2n/(log logn)2}

for sufficiently large n. Let t > 0 be given. For sufficiently large n, c20C2 log logn−
1> t and, hence,

P (Mθ,anun
⊂M

θ̂,an
)≥ 1− P

( ⋃

j : |θj |>unan

{|θ̂j | ≤ an}
)

≥ 1− P

( ⋃

j : |θj |>unan

{|θ̂j − θj|> (un − 1)an}
)

≥ 1−
p∑

j=1

P (|θ̂j − θj |> (un − 1)an)

≥ 1− p exp{−c20hna2n/(log logn)2}
≥ 1− (n∨ p)−t.

Similarly, for any t > 0,

P (M
θ̂,an

⊂Mθ,an/un
)≥ P

( ⋂

j : |θj |≤an/un

{|θ̂j | ≤ an}
)

≥ 1−P

( ⋃

j : |θj |≤an/un

{|θ̂j − θj |> (1− u−1
n )an}

)

≥ 1− p exp{−c20hna2n/(log logn)2}
≥ 1− (n ∨ p)−t

for sufficiently large n. This completes the proof. �

Proof of Theorem 2A. From the proof of Theorem 1, we still have
bias(θ̂j) = O(hn/n

η−τ ) uniformly in j = 1, . . . , p. Let ζj be the jth compo-
nent of (X′X+ hnIp)

−1
∑n

i=1 xi(yi − x′
iθ). Then, for un = 1+ (log logn)−1,

P (|θ̂j − θj|> (un − 1)an)≤
E(θ̂j − θj)

k

[(un − 1)an]k

=O

( |bias(θ̂j)|k +E(ζkj )

[(un − 1)an]k

)

=O

(
hkn(log logn)

k

nk(η−τ)akn

)
+O

(
(log logn)k

h
k/2
n akn

)
,
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where the last equality follows from E(ζkj ) =O(h
−k/2
n ) [Whittle (1960), The-

orem 2]. Similarly,

P (|θ̂j − θj|> (1− u−1
n )an) =O

(
hkn(log logn)

k

nk(η−τ)akn

)
+O

(
(log logn)k

h
k/2
n akn

)
.

Using hn =C2a
−2
n (log logn)2(n ∨ p)2ξ/(3l), we obtain that

P (M
θ̂,an

⊂Mθ,an/un
)≥ 1−

p∑

j=1

P (|θ̂j − θj |> (1− u−1
n )an)

= 1−O

(
phkn(log logn)

k

nk(η−τ)akn

)
−O

(
p(log logn)k

h
k/2
n akn

)

= 1−O

(
p(n ∨ p)2kξ/(3l)(log logn)3k

nk(η−τ)a3kn

)

−O

(
p

(n ∨ p)ξk/(3l)
)

= 1−O

(
p(n ∨ p)kξ/l(log logn)3k
(n∨ p)(t+1)nk(η−3α−τ)

)

−O

(
p

(n ∨ p)(t+1)

)

= 1−O

(
nkξ(log logn)3k

(n ∨ p)tnk(η−3α−τ)

)
−O

(
1

(n ∨ p)t
)

= 1− o((n ∨ p)−t)−O((n ∨ p)−t)

= 1−O((n∨ p)−t),

since kξ/(3l) = t+1 and α≤ (η − ξ − τ)/3. Similarly,

P (Mθ,anun
⊂M

θ̂,an
)≥ 1−O((n∨ p)−t).

Hence, result (9) follows. �

Proof of Theorem 3. Let An = {M
θ̂,an

= Mθ,an} and Ac
n be its

complement. On the set An, the number of nonzero components of θ̃ is the
same as qn. Let θ1 be θ with its components smaller than an in absolute value
set to 0. Under condition (C4) and the condition that X′X has a maximum
eigenvalue bounded by cn for a constant c,

n−1‖Xθ1 −Xθ‖2 ≤ c‖θ1 − θ‖2

= c
∑

j : |θj |≤an

θ2j
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≤ can
∑

j : |θj |≤an

|θj |

=O(vnan).

Hence,

n−1E‖Xθ̃−Xθ‖2 ≤ 2n−1(E‖Xθ̃−Xθ1‖2 + ‖Xθ1 −Xθ‖2)
= 2n−1E‖Xθ̃−Xθ1‖2 +O(vnan).

Then, it remains to show that

n−1E‖Xθ̃ −Xθ1‖2 =O(qnn
−1) +O(vnan) +O(h2nn

−(1+η−2τ)).(13)

Following the proof of Theorem 1 we obtain that

n−1E[‖Xθ̃ −Xθ1‖2IAn
] =O(qnn

−1) +O(h2nn
−(1+η−2τ)),

where IA is the indicator of the set A. From

‖Xθ̃−Xθ1‖2IAc
n
≤ 2‖Xθ̃−Xθ̂‖2IAc

n
+2‖Xθ̂ −Xθ1‖2IAc

n

and Theorem 1, result (13) follows if we can show that

n−1E‖Xθ̃ −Xθ̂‖2IAc
n
= o(qnn

−1 ∨ h2nn−(1+η−2τ)).

Since

‖Xθ̃−Xθ̂‖2 = (θ̃− θ̂)′X′X(θ̃− θ̂)≤O(n)‖θ̃− θ̂‖2 ≤O(a2npn),

the result follows from P (Ac
n) = O((n ∨ p)−t) for any t > 0 according to

Theorem 2 or 2A. This completes the proof. �
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