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Abstract. Continual learning (CL) focuses on enabling machine learning al-
gorithms to learn from a series of tasks without forgetting previously acquired
knowledge. The use of continual learning has not been widely explored in cyberse-
curity and network safety applications, partially due to the lack of proper datasets.
Besides, the benchmark datasets used in CL methods are often relatively restrictive
in terms of data distribution shift among the tasks. In this work, we present a CL
benchmark framework to construct datasets for CL in cybersecurity applications.
For the cybersecurity applications, the proposed framework can generate datasets
for CL under distribution shifts in data inputs (e.g., features of internet traffic
flow), distribution shifts in data output (e.g., intrusion types), and distribution
shifts in both data inputs and outputs, respectively. Moreover, we propose several
distance-based and model-based metrics to meticulously quantify the magnitude
of distribution shift between datasets of the tasks. We elaborate the construction
of benchmark datasets and evaluate the quality of the constructed datasets by
applying several existing CL methods and investigating their performance.

Keywords: Cybersecurity · Continual learning · Distribution shift · Network
safety.

1 Introduction

1.1 Background and Motivation

Conventional Machine Learning (ML) methods generally perform well on an individual
task for which they were trained on the associated dataset. However, when a new task
is introduced, the model often needs to be retrained to learn from the new associated
dataset. This retraining process often leads to the unintended forgetting of previously
learned knowledge, referred to as ‘catastrophic forgetting,’ a concept derived from
human cognition studies [10]. To prevent or mitigate ‘catastrophic’ forgetting, the so-
called continual learning (CL) [7] was developed to learn from a series of tasks without
forgetting previously acquired knowledge. CL methods have been extensively developed
in a wide range of applications, such as image instances and semantic segmentation,
document analysis, and sentiment analysis [14, 16, 19, 24, 35].



2 Lian. et al.

However, CL methods have not been widely used in the cybersecurity and network
safety applications, partially due to lacking proper benchmark datasets. In the era of data
science and AI, cybersecurity has emerged as a vital concern for public safety. Over the
past decade, there has been a rise in social engineering attacks [33] including phishing
and spear-phishing, in addition to malware and ransomware [3]. To more efficiently
address these safety threats, practitioners started to notice the power of AI algorithms
and apply them to detect cyber intrusion [1, 26]. However, these efforts still remain on
training AI model on a specific task (i.e., dataset) instead of updating the AI model to
adapt to a series of dissimilar tasks. Only several early-stage methodologies, such as
fine-tuning, learning without forgetting [24], and direct data replay, have been employed
for cybersecurity CL tasks [28].

For the typical CL, the benchmark datasets involve data distribution shift among the
tasks. Here we denote X to be the input and Y to be the output for a dataset. Existing
works commonly construct the benchmark by gathering a set of classes from contextually
similar datasets and assigning these classes and their samples to the tasks. However, such
a conventional procedure only considers (X ,Y ) distribution shifts in the datasets of tasks,
overlooking other possibilities of distribution shifts. It is also not clear on the magnitude
of distribution shift among the tasks, which is crucial in assessing performance of CL
methods with respect to the data quality of the benchmark. Therefore, the conventional
procedure of benchmark construction lacks completeness and comprehensiveness in
validating CL algorithms.

1.2 Challenges and Contributions

In the cybersecurity and network safety applications, the distribution shift among the
intrusion detection tasks often presents greater complexity. Several intrusion types may
undergo updates that significantly alter their input patterns, reflecting the distribution shift
on X |Y , while new intrusions with distinct patterns can signify the occurrence of (X ,Y )
distribution shifts. It implies that both distribution shifts on X |Y and (X ,Y ) are common
in datasets for cyber intrusion detection tasks. But most publicly available network
intrusion datasets are derived from simulated experiments. The real-world cyber practices
are much more complex than the scenarios from the simulation datasets [2, 17, 32].
Therefore, it is necessary to develop a systematic framework for constructing benchmark
datasets for CL, with the aim of thoroughly investigating the potential of CL methods in
cybersecurity applications.

The proposed framework of constructing benchmark datasets for CL methods in
cybersecurity applications has the following contributions. First, since the real-world
cyber intrusion datasets are typically unavailable due to security or privacy concerns, the
proposed framework aims to construct the benchmark datasets for CL such that they can
bridge the gap between simulated cyber intrusion data and real-world cyber intrusion data.
Second, the proposed framework is capable of generating distribution shifts that closely
mirror the cyber intrusion activities in practice, as well as any specifically designed
distribution shifts. Specifically, we employ clustering techniques to establish a series of
X |Y distributions for a given class. Next, we define the marginal distribution of response
Y as a multinomial distribution. By manipulating the proportions of response labels, the
marginal distribution shift on Y can also be constructed. Consequently, we can construct
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the benchmark datasets with a wide range of distribution shifts on X |Y , Y , and (X ,Y ). It
can greatly enrich the scenarios encompassed by simulated cyber intrusions. Moreover,
with the knowledge of cybersecurity professionals, we can generate benchmark settings
that more accurately reflect real-world cyber intrusion activities. Third, the proposed
framework also develops several metrics to quantify the magnitude of distribution shifts
among the tasks, which is important for accurate evaluation of the performance of CL
methods. We develop both distance-based and model-based metrics to measure the
distribution shift discrepancy between datasets in different tasks of CL. In our numerical
experiments, we use the Communications Security Establishment and the Canadian
Institute for Cybersecurity Intrusion Detection System (CSE-CIC-IDS) 2018 cyber
intrusion data [31] as the source to construct several CL benchmark datasets, each is
designed to have a specific scenario of distribution shift. The proposed framework can
be also applied to other novel Cybersecurity datasets, such as the dataset of advancing
DDoS and spoofing attack in IoV CAN bus (CICIoV2024) [27] and DDoS attack
dataset (CICEV2023) against EV authentication in charging infrastructure [18]. The
effectiveness of the proposed framework of constructing benchmark datasets for CL is
evaluated by investigating four widely-used CL models.

2 The Proposed Benchmark Construction

We first denote several notations. Let X be the input features and Y be the output response.
The X |Y denotes the input vector conditioning on the output response. Suppose the source
dataset (or Datasets) Ds contains L types of attacks in total, with Cs = {c1,c2, . . . ,cL}
representing the attack label set. Consider a benchmark setting with N tasks constructed
from Ds, let D1,D2, . . . ,DN denote the datasets for the corresponding tasks T1,T2, . . . ,TN ,
where Di = (X i, ỹi), i = 1,2, . . . ,N, X i = (x̃(i)1 , x̃(i)2 , . . . , x̃(i)n )T is a n× p covariate matrix,
and ỹi is n-dimensional response vector. Here, n is the number of observations (assuming
the sizes of the datasets are consistent), p is the number of covariates, and x̃(i)k is the
kth sample in Di, k = 1,2, . . . ,n. Additionally, let X1,X2, . . . ,XN be the input feature
populations corresponding to D1,D2, . . . ,DN .

2.1 CL Benchmark Datasets Generation

This subsection focuses on constructing benchmark datasets with X |Y and (X ,Y ) dis-
tribution shifts for CL, as these two types of distribution shifts are prevalent in cyber
intrusion activities. The key idea of the proposed construction method is to generate the
X |Y distribution shifts and then incorporate the marginal distribution shift on Y with the
X |Y distribution shifts.

Specifically, we adopt the K-means clustering [25] to group the input X given a
specific Y , which produces X |Y distributions to construct X |Y distribution shifts. To
maximize the distribution shifts among the clustered groups, we consider employing
three goodness of clustering scores. Specifically, we analyze the changing patterns of
the Silhouette score [29], Calinski Harabasz score [4], and Davies Bouldin score [6]
with respect to the number of clusters to determine the optimal number of clusters
for a given attack label Y . The optimal number of clusters is typically indicated by
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the maximum of the first two scores and the minimum of the Davies Bouldin score.
However, practitioners can select a number of clusters to align with their desired scenario
or magnitude of distribution shift. Let Ñc = (N(c)

1 ,N(c)
2 , . . . ,N(c)

L )T indicate the optimal
numbers of clusters for the L attack labels. Given Y = cl , l = 1,2, ...,L, there will be N(c)

l
different X |Y distributions, (X = X∗

1 |Y = cl),(X = X∗
2 |Y = cl), . . . ,(X = X∗

N(c)
l

|Y = cl),

where X∗
t , t = 1,2, . . . ,N(c)

l denotes the different input feature populations for Y = cl .
X |Y distribution shifts naturally exist among these clusters.

It is important to note that the definition of Y distribution shift in current CL research
is not well established. Differences in the label set across tasks are only considered
evidence of distribution shifts for the entire (X ,Y ) distribution. In this work, we define
the marginal Y distribution as a multinomial distribution, which takes the labels as its
values and is parameterized by the labels’ corresponding probabilities. The support set is
assumed to contain the possible labels. The marginal Y distribution shift is defined as the
change in probabilities for the labels. As the number of attack types L is fixed for Ds, the
marginal Y distribution shift can be achieved by adjusting the percentages of the labels
in the tasks. Let ω̃i = (ωi,1,ωi,2, . . . ,ωi,L)

T represent the vector of the percentages of the
attack types for dataset Di, where i = 1,2, . . . ,N. The condition 0 ≤ ∑

L
l=1 ωi,l ≤ 1 holds,

with the percentage of normal (i.e., benign) samples being 1−∑
L
l=1 ωi,l . A marginal

Y distribution shift between Ti,Tj, i ̸= j is considered when ω̃i ̸= ω̃ j. According to the
Bayes’ rule f (X ,Y ) = f (X |Y )× f (Y ), the (X ,Y ) distribution shift generation can be
controlled by simultaneously managing the X |Y and Y distribution shift generations.

To construct a benchmark setting with X |Y distribution shift, the percentages of
attacks for D1,D2, . . . ,DN are kept constant while the generated clusters for a given
attack label are distributed into different tasks. The X |Y distribution shift can also be
realized by varying the percentages of clusters across tasks. For example, suppose the set
of attacks for a benchmark setting contains only c1. For c1, there are N(c)

1 = 4 generated
X |Y distributions (clusters). Let ω̃1 = ω̃2 = (30%,0,0, . . . ,0) to fix the percentages of
the attack types. Then, to generate the X |Y distribution shift between D1 and D2, one
can assign the samples of the first and second clusters to T1 while putting the samples
of the third and fourth clusters to T2. To achieve X |Y distribution shift, we can also
generate (40%,20%,30%,10%)× 30%× n samples from the four clusters for T1 and
(5%,5%,30%,60%)×30%×n samples from the four clusters for T2. To more explicitly
construct (X ,Y ) distribution shift, the benchmark construction can begin with creating
X |Y distribution shifts among tasks, then adjust the percentages of labels for tasks, ω̃i’s,
to develop various (X ,Y ) distribution shift scenarios.

2.2 Metrics for Evaluation of Distribution Shift

This section proposes several approaches for assessing the magnitude of distribution
shift: Cosine Similarity [22], which represents the overall point-wise linear relationship
for input X between two different datasets while correlation coefficient evaluates the
linear relationship between populations; Wasserstein Distance [30], which measures the
distribution discrepancy for input X between two datasets; and two measures depending
on a variational autoencoder (VAE)-based distribution (i.e., sampler) emulator [15],
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which evaluate input X and Y |X distribution shifts, respectively. The inclusion of the
measurement for Y |X distribution shift is for two reasons. Firstly, when developing a
model to predict Y based on X , the primary concern is how to build a model to estimate
E(Y |X). Secondly, combining the measurements for input X distribution shift and Y |X
distribution shift can provide a more comprehensive perspective for investigating (X ,Y )
distribution shift.

The Cosine Similarity dcs
i, j for the inputs X i and X j is formulated as

dcs
i, j =

Coss(X i,X j)√
Coss(X i,X i)Coss(X j,X j)

,

where Coss(X i,X j)=
1
n2 ∑

x̃(i)k ·x̃( j)
k′

∥x̃(i)k ∥∥x̃( j)
k′ ∥

, Coss(X i,X i)=
1

n(n−1) ∑all k ̸=k′
x̃(i)k ·x̃(i)

k′

∥x̃(i)k ∥∥x̃(i)
k′ ∥

, and k,k′ ∈

{1,2, . . . ,n}.
Suppose µ ∈ P and ν ∈ Q are distribution measures, where P is a set of distribution

measurements for Xi and Q is a set of distribution measurements for X j. Define π ∈
J(P,Q) as a joint distribution measure, where J(P,Q) is the set of joint distribution
measurements for (P,Q). Wasserstein Distance dwd

i, j for the populations Xi and X j is
formulated as

dwd
i, j =

[
In f

π∈J(P,Q)

∫
∥xi − x j∥γ dπ(xi,x j)

]1/γ

,

where xi ∈ Xi, x j ∈ X j, and γ > 1. It is difficult to directly calculate the Wasserstein
distance between the populations as their true marginal distributions are unknown. Thus,
the Wasserstein Distances is estimated based on the datasets for the two populations, X i
and X j:

d̂wd
i, j = wass(X i,X j) =

[
1
n ∑∥x̃(i)k − x̃( j)

k′ ∥
γ
π
∗(x̃(i)k , x̃( j)

k′ )

]1/γ

,

where π∗(·) is the optimal transportation plan with the overall smallest cost to transfer
all the points of X i to all the points of X j, ∥x̃(i)k − x̃( j)

k′ ∥ is the cost for moving the point

x̃(i)k to the point x̃( j)
k′ .

As depicted in Figure 1, the Encoder takes an input X and produces two layers: one
that serves as the mean vector µ̃ and the other as the standard deviation vector σ̃ . These
are used to sample the latent vector z, which follows a multivariate distribution with
mean µ̃ and a covariance function Diag(σ̃), a diagonal matrix with σ̃ as its diagonal
elements. The latent vector is then input to both the Decoder to generate Xrecon and the
Classifier to obtain the predicted response ypred as well as the predicted probabilities
for the possible labels. The expected output of a standard VAE is a reconstructed input
Xrecon that closely resembles the original input X . In this model, we also require the
distribution of Xrecon to be close to that of X , suggesting that we can sample through
the VAE structure using Xrecon as Xe. In addition, the Classifier is expected to predict
the label of X as accurately as possible. To fulfill these proposed functionalities, we
design a total loss function Ltotal comprising a Cross Entropy loss for the classifier Lcl , a
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Fig. 1: The structure of the model for emulating the true distribution of a dataset. The
part in the dash line is the VAE part. The latent vector z produced by the Encoder is used
for the classification purpose as well as the reconstruction for input X .

reconstruction loss Lrecon, a Kullback-Leibler (KL) divergence loss, and a distribution
discrepancy loss Ldd for the VAE:

Ltotal =λ1Lcl(ypred ,y)+λ2Lrecon(X ,Xrecon)

+λ3KL(N(µ̃,Diag(σ̃))||N(0̃, I))+λ4Ldd(X ,Xrecon),

where the reconstruction loss is the mean square error between X and Xrecon. The KL
divergence loss quantifies the distribution divergence between the posterior distribution
(N(µ̃,Diag(σ̃))) and prior distribution (N(0̃, I)) for latent vector z, where I represents
the identity matrix. It assists in shaping the latent space distribution to be more like a
standard multivariate normal distribution. We use the Wasserstein Distance to calculate
Ldd , a loss aiming to gauge the distribution discrepancy between the distributions of X
and Xrecon. To evaluate distribution discrepancy between Ti and Tj, we train two separate
models M∗

i and M∗
j on Di and D j, respectively, with the proposed structure. Assume

that the training process is ideal to yield true data samplers for both Ti and Tj. Then
one can generate emulated samples, (Xe,i, ỹe,i) = M∗

i (X j) and (Xe, j, ỹe, j) = M∗
j (X i), that

are capable of simulating the true samples of Ti and Tj, respectively. The proposed
model-based Wasserstein Distance dwd∗

i, j for input X between the distributions of Di and
D j is constructed as follows:

dwd∗
i, j =

1
2
(wass(Xe,i,X j)+wass(Xe, j,X i)).

Similarly, the Y |X discrepancy dce
i, j between Di and D j is evaluated by

dce
i, j =

1
2
(Lcl(ỹe,i, ỹ j)+Lcl(ỹe, j, ỹi)).

Once we have collected the mutual distribution divergences for the dataset pairs in the
benchmark setting, we can create a task-by-task discrepancy map.
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3 Experiments

In this section, we get into details of how to use the developed framework to construct
benchmark settings according to specific evaluation purposes. Three CL benchmark
scenarios are established to present various levels of magnitude in distribution shift.
Particularly, one of the scenarios is built for investigating the impact of X |Y distribution
shift while the rest are developed for examining the impact of (X ,Y ) distribution shift.
Next, four CL methods, Joint Learning (JL) [34], Fine-tuning (FT) [28], Elastic Weight
Consolidation (EWC) [19], and Learning without Forgetting (LWF) [24], are evaluated
through the CL scenarios constructed.

3.1 Constructed Benchmark Settings

In this study, we utilize the CSE-CIC-IDS2018 dataset [31] as our primary source to
illustrate the construction of CL benchmark settings using publicly available cyber
intrusion datasets. Excluding ‘Benign’ samples, the response variable Y encompasses
14 types of attacks, whereas the input features X are statistics of internet traffic flow,
derived from a traffic flow generator and analyzer, CICFlowMeter [23]. The attack labels
and their corresponding optimal numbers of clusters are presented in Table 1.

Table 1: A summary of the attack labels with their corresponding optimal number of
clusters. N(c) is referred to as the optimal number of clusters.

Attack Label N(c)

Botnet 4

Brute-Force Website 5

Brute-Force Cross-Site Scripting (XSS) 5

Brute-Force File Transfer Protocol (FTP) 5

Brute-Force Secure Shell (SSH) 2

DoS Slow Hypertext Transfer Protocol (SlowHttp) 8

DoS HTTP Unbearable Load King (Hulk) 6

DoS Low Orbit Ion Cannon Http (LoicHttp) 4

DoS GoldenEye 5

DoS SlowLoris 6

DoS High Orbit Ion Cannon (Hoic) 2

DoS Low Orbit Ion Cannon User Datagram Protocol (LoicUdp) 2

Infiltration 8

Structured Query Language (SQL) Injection 6



8 Lian. et al.

Once the optimal number of clusters has been determined, the tasks within a bench-
mark setting can be developed by deliberately choosing the attack labels, their corre-
sponding clusters and proportions, as well as the appropriate proportions for the clusters.
For real-world cyber events, typically, victims of cyber intrusions fall into two categories:
target objects and non-target objects. Non-target objects are randomly attacked, while
target objects are intentionally attacked, often with greater effort by hackers. This implies
that non-target objects, being less frequently attacked, offer less evidence and patterns
of cyber intrusion. Conversely, target objects are attacked more often during intrusion
activities. A non-target object may be subjected to various types of attacks, while hackers
tend to employ a specific attack or a set of similar attacks for a single attack event, rather
than utilizing a wide range of attack types as well. This paper focuses on the scenarios
showing attack patterns for target objects.

We construct three benchmark settings for target systems to illustrate the framework.
Each task contains 30% attack samples while with the remainder being benign samples.
Besides, attack types are randomly distributed among each task.

S1: The first benchmark setting (named as Infil-8-Target) simulates a sequence of
eight Infiltration attack events of a target system. This setting is designed to exclusively
present distribution shifts in X |Y . The attack samples for each task are drawn solely from
one cluster out of the eight clusters identified for Infiltration attacks.

S2: The second benchmark setting (named as DoS-10-Target) simulates a series of 10
attack events that solely involve four types of DoS attacks for a target system. These four
DoS attack types are DoS SlowHttp, DoS Hulk, DoS GoldenEye, and DoS SlowLoris,
which are similar to each other. Each task contains two DoS attacks, meanwhile, for
each attack, approximately one-third to half of the clusters are selected. The percentages
assigned to the attacks and clusters are arbitrary.

S3: The third benchmark setting (named as All-20-Target) is explicitly designed for
CL studies, aiming to analyze the performance of CL methods when several attack types
reappear in later tasks, yet the techniques employed for these attacks significantly differ
among the tasks. The setting is designed to include 20 distinct attack events, involving
various types of attacks. Each task is specific to a single type of attack.

3.2 Experiment Results

For DoS-10-Target, although the overall level of two versions of Wasserstein Distance
are considerably high, the values of Cosine Similarity are greater than 0.9 and there is no
cell having the cross entropy greater than 10. It indicates that linear relationship between
the similar types of attacks are quite concrete even the corresponding distributions are
distinct. The distribution discrepancy are also being reduced by resampling the clusters
into the later tasks as what we planned. For example, as T9 shares the second and fourth
clusters of DoS SlowHttp with T4 and T6, the cross entropy measures are only 1 and
0.59 for the pairs of (T4, T9) and (T6, T9), respectively. For All-20-Target, as designed,
the setting contains sufficient input X distribution discrepancy as the average of Cosine
Similarity is greater than the corresponding average in the distribution discrepancy maps
of DoS-10-Target. Conversely, the averages of Wasserstein Distance and distribution
emulator based Wasserstein Distance are smaller than their respective averages in the
distribution discrepancy maps of DoS-10-Target. It also has substantial Y |X distribution
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(a) (b)

(c) (d)

Fig. 2: Distribution discrepancy maps for Infil-8-Target: (a) Cosine Similarity, (b)
Wasserstein Distance, (c) Distribution Emulator based Wasserstein Distance, and (d)
Distribution Emulator based Cross Entropy. y-axis presents the current tasks while x-axis
presents the available tasks respectively.

shifts as the approximately 80% cells of the cross entropy is greater than 6. Although
the clusters are not repeatedly used, it involves several similar types of attacks, which
reduces the distribution discrepancy. It can be demonstrated by that the percentage of
cells with the cross entropy less than 6 is higher for All-20-Target (about 20%) than for
Infil-8-Target (about 9%).

The performances of four CL benchmark methods, JL, FT, EWC, and LWF, are
displayed in Figures 5, 6, and 7 for Infil-8-Target, DoS-10-Target, and All 20 Target,
respectively. It can be seen that FT and EWC do not have capacity of CL as they can
only perform well on the current tasks for Infil-8-Target. However, the two algorithms
do show some ability of CL for DoS-10-Target and All-20-Target. It indicates that
these two algorithms do not work when the distribution discrepancy is significant among
the tasks. Besides, there is evidence that EWC tends to remain in the optimal parameter
space of T1 although it is able to handle the distribution discrepancy to some extent.
However, it has hindered the performance of later tasks, especially when the number of
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(a) (b)

(c) (d)

Fig. 3: Distribution discrepancy maps for DoS-10-Target.

tasks N is high. The performance of JL on the earlier tasks are likely to deplete as there
are less and less samples for these tasks in the training dataset Dtrain,k. This degradation
can be mitigated by reviewing the previous knowledge. For instance, the performance
of JL on T3 is improved from 0.89 to 0.92 when T7 is available and M7 is trained for
Infil-8-Target. It is due to that T7 are close to T3 in terms of input space X as dcs

3,7 = 0.94,
d̂wd

3,7 = 1.7, and dwd∗
3,7 = 1.7. LWF can only work for the tasks within a certain period

from the current tasks for DoS-10-Target. However, when dealing with Infil-8-Target,
it appears that the knowledge of T1 seems to be difficult to transfer by LWF. The overall
performance for All-20-Target is subpar (the average accuracy is only about 0.7), but
the All-20-Target’s overall input X and Y |X distribution discrepancy is smaller than
Infil-8-Target.
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(a) (b)

(c) (d)

Fig. 4: Distribution discrepancy maps for All-20-Target.

3.3 Summary of Findings

Our investigation of the distribution discrepancy maps produced several significant
findings. We found that clustering is capable of generating substantial shifts in the X |Y
distribution. Distributing similar attack types across various tasks can decrease the Y |X
distribution discrepancy and improve the linear similarity among tasks. Furthermore,
resampling clusters to different datasets can lead to further reduction in distribution
discrepancies among tasks within a Continual Learning (CL) benchmark scenario. Addi-
tionally, we unearthed intriguing insights, by investigating and analyzing the distribution
discrepancy maps and the model-by-task performance maps together. Specifically, we
found that EWC and FT models struggle to retain previous knowledge when facing
significant distribution shifts, while JL is effective if the sample size for each task in
Dtrain,k is sufficient. LWF model shows a peculiar behavior, necessitating further experi-
mentation to understand the underlying causes. These results collectively demonstrate
that merging a distribution discrepancy map with a model-by-task performance map
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(a) (b)

(c) (d)

Fig. 5: Prediction Accuracy of four CL method on Infil-8-Target: (a) Joint Learning,
(b) Fine-tuning, (c) EWC, and (d) LWF. y-axis presents the current tasks while x-axis
presents the series of built CL models.

offers valuable insights into the functionality of CL methods, enabling a more thorough
evaluation of these approaches.

4 Related Work

There are various efforts for constructing CL benchmark settings. For instance, [9]
introduced two CL benchmark scenarios using Modified National Institute of Standards
and Technology database (MNIST) [8], distributing either five or two labels into a
task, resulting in two and five tasks, respectively. Similarly, [13] manipulated permuted
MNIST pixels in different ways to develop and examine the catastrophic forgetting
phenomenon of neural networks in old and new tasks. Moreover, [36] employed the
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(a) (b)

(c) (d)

Fig. 6: Prediction accuracy maps of four CL method on DoS-10-Target: (a) Joint Learn-
ing, (b) Fine-tuning, (c) EWC, and (d) LWF. y-axis presents the current tasks while
x-axis presents the series of built CL models.

Canadian Institute For Advanced Research (CIFAR) image collection datasets, CIFAR-
10 and CIFAR-100 [20], to construct CL benchmark settings.

For distribution discrepancy quantification, commonly, the Kullback-Leibler (KL)
Divergence and Jensen-Shannon Divergence (JSD) are used to measure divergence
between two probability distributions, particularly the parametric distributions [11, 21].
Bhattacharyya Distance is used as a training metric for machine learning algorithms [5].
We would like to remark that several metrics for machine learning modeling are measures
indicating distribution discrepancy, such as the metrics used in this literature, Cross
Entropy [12] and Wasserstein Distance [30].
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(a) (b)

(c) (d)

Fig. 7: Prediction accuracy maps of four CL method on All-20-Target: (a) Joint Learning,
(b) Fine-tuning, (c) EWC, and (d) LWF. y-axis presents the current tasks while x-axis
presents the series of built CL models.

5 Conclusion and Discussion

In this work, we have developed a systematic framework to generate scenarios of datasets
for CL in cybersecurity applications. The framework focuses on how to identify X |Y
distributions through clustering methods and then how to design CL scenarios more
explicitly with the identified X |Y distributions and the percentages of Y labels, which are
capable of generating a wide range of distribution shifts on X |Y , Y and (X ,Y ). In addition,
we have established several metrics to track task-by-task distribution discrepancy to
evaluate the magnitude and details of distribution shift in CL scenarios of datasets, which
can provide practitioners a clearer understanding of the challenges presented by the CL
setting.
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In future work, one can consider the estimate of the overall magnitude of distribution
shift through a surrogate model (e.g., Gaussian process) with the number of labels for
Y , the corresponding generated number of X |Y distributions, the amount of distribution
discrepancy between the labels and X |Y distributions, and the number of tasks N as inputs.
In addition, the variance of metrics for X distribution can be improved by extracting
feature importance to remove the redundant features, as the redundant features are likely
to provide less information and variance.
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