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ABSTRACT 
Bootstrapping is a popular method for inference and uncertainty quantifications. The key 
element of bootstrapping analysis is computing distributions of statistical estimators by 
resampling, with replacement, of a given data set. However, in practice, data often have 
some inherent data structure reflecting the data-generation process. The point in this article 
is that the corresponding bootstrap analysis needs to incorporate such information to 
enhance the quality of inference and uncertainty quantification. We propose applying a 
befitting bootstrap analysis (BBA) method reflecting the data generation structure. The pro
posed befitting bootstrap analysis method generalizes findings to a population frame with 
similar data generation processes. It is a follow up to the befitting cross validation (BCV) 
method proposed earlier by the same authors. A case study is used to elaborate the merits 
of the befitting bootstrap analysis method, in comparison with several conventional boot
strapping methods. The Python code used in the analysis is available in an openly available 
Github repository.

KEYWORDS 
bootstrapping; befitting 
bootstrap analysis (BBA); 
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1. Introduction

Bootstrapping is a statistical procedure that resamples 
a single dataset to create many simulated samples. 
This process allows the user to calculate properties of 
statistical estimators such as standard errors, construct 
confidence intervals, and perform hypothesis testing. 
Bootstrap methods are model free alternatives to tra
ditional hypothesis testing, notable for being easier to 
understand and requiring minimal assumptions, with 
the key assumption being that the sample data is rep
resentative of the population from which it was 
drawn. Bootstrapping can be used to analyze designed 
experiments. This needs to be considered with care. 
Designed experiments, typically, consist of balanced 
arrays of experimental runs that allow for efficient 
estimation of factor effects and their interactions. 
However, in running designed experiments one often 
meets unanticipated problems. Some of such issues 
can be dealt with in the design phase. For example, 
the impact of raw material batch or shifts can be 
accounted for by running experiments in separate 
blocks. Practical constraints may dictate that some 
factors are ‘nested’ within others or that there are lim
itations on the run order. In other examples, some 

experimental points may turn out impossible to exe
cute because of logistics or technological require
ments. Unexpected problems may also arise when 
experiments are carried out (Kenett, Rahav, and 
Steinberg 2006). Other examples, where there is a 
structure generating the data, include students in 
schools where one needs to account for classes, teach
ers, schools and distrcts. In industry, products are 
often manufactured in batches affected by the produc
tion process, maintenance schedule or work shifts. 
The befitting bootstrap analysis (BBA) we introduce 
here provides a working approach to statistical infer
ence accounting for the data generation structure in 
designed experiments or observable studies.

The original bootstrap methodology was introduced 
by Efron (1979) as a method of statistical inference, 
without the need for extensive assumptions and intri
cate theory. Generally, bootstrapping analysis (BA) is 
based on resampling with replacement. It was origin
ally motivated as a general tool for uncertainty quanti
fication (Efron and Hastie 2016).

There are several bootstrapping techniques. 
Generally, these can be classified as parametric or 
nonparametric methods. The parametric bootstrap 
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generates new values of the responses from probability 
distributions characterized by the observed data. In 
contrast, the nonparametric bootstrap methods apply 
resampling with replacement to the observed data. 
With the generated bootstrapped datasets, one can 
conduct uncertainty quantification and model infer
ence. See Kenett and Zacks (2021) and Kenett, Zacks, 
and Gedeck (2022b, 2023) for the implementation of 
bootstrap techniques using JMP, R and Python pro
gramming languages.

In the practice of using bootstrap analysis techni
ques in real situations, the data often has an inherent 
structure. In industrial applications, data is collected 
from products, produced in batches or continuously 
using specific equipment that operates in shifts. In a 
hospital, treated patients have medical records reflect
ing their clinical condition and lab test results. Other 
records document the treating medical staff, adminis
tered drug products and conditions of equipment. It 
is important to combine domain knowledge with stat
istical sampling methods to derive empirical distribu
tions reflecting uncertainty in estimators. The befitting 
bootstrap analysis (BBA) approach introduced here 
enhances bootstrap techniques by matching the boot
strapping resampling techniques with the data struc
ture, as derived from domain knowledge. The BBA is 
an effective approach to both assess model goodness 
of fit and to demonstrate significance of effects. It 
provides uncertainty quantification for both basic and 
complex predictive models.

BBA is based on principles similar to befitting cross 
validation (BCV) presented in Kenett et al. (2022a). 
BCV focuses on assessment of model prediction, while 
BBA emphasizes model inference and uncertainty 
quantification. This parallels the distinction made by 
W. E. Deming between analytic and enumerative stud
ies (Deming 1953). The BBA strategy is a generaliza
tion of bootstrapping for designed experiment with 
replicated runs, as proposed in Kenett, Rahav, and 
Steinberg 2006. In designed experiments with repli
cates, BBA consists of resampling, separately, the rep
licates of individual experimental runs. The BBA 
approach extends this original method to more gen
eral conditions of observable data such as data stratifi
cation or hierarchical structures.

Throughout the article, we consider 1000 boot
strapped replicates by sampling with replacement. The 
remainder of this work is organized as follows. 
Section 2 covers methodological background and 
bootstrapping details. Section 2 provides details of the 
BBA method. Section 3 demonstrates the merits of 
BBA through a case study. A sensitivity analysis was 

conducted and is presented in Supplementary 
Material. The Python code is available in public link 
at the end of the article.

2. Background

The importance of the data-generating structure in 
statistical analysis can be traced back to Cornfield and 
Tukey (1956), where they consider the two-way classi
fication model under different data structure. Tukey’s 
(1958) jackknife method was based on the idea in 
Quenouille (1949) of using parts of a sample (i.e., 
sample with the ith observation omitted) to estimate 
bias and thus come up with an estimator with reduced 
bias. Efron (1979) introduced the “bootstrap” as a 
general method for estimating the sampling distribu
tion of a statistic based on the observed data. In 
Benjamini and Fuchs (1990), the researchers empha
size the importance of considering the level of condi
tioning in regression analysis, particularly in complex 
models. They also suggest using bootstrap methods to 
estimate variability under different conditioning 
assumptions, providing valuable insights for research
ers dealing with regression models. In this context 
resampling methods are used to estimate the variabil
ity of parameters, considering the level of condition
ing in the data.

Olatayo, Amahia, and Obilade (2010) consider the 
consider the application of a bootstrap method to a 
stochastic time series process with a non-parametric 
bootstrap method called a truncated geometric boot
strap method for stationary time series data. The pro
cedure attempts to mimic the original model by 
retaining the stationarity property of the original ser
ies in the resample pseudo-time series.

Ghosh, Hastie, and Owen (2022) map a set of gen
eral data structures including balanced data, nested 
rows and nested columns. They focus on large scale 
crossed random effects regressions that account for 
the data structure. In general, bootstrap techniques 
were adapted to match the structure of the data. This 
includes block bootstrap for time series data (Dudek 
et al. 2014), multilevel bootstrap for data with nested 
structure (Modugno and Giannerini 2015; Saravanan, 
Berman, and Sober 2020), and spatial bootstrap for 
spatial data (Dumanjug, Barrios, and Lansangan 
2010). Here, we emphasize the general importance of 
incorporating the information of data-generating 
structure to enhance bootstrap for inference and 
uncertainty quantification.
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3. Befitting bootstrap analysis

Befitting bootstrap analysis (BBA) is a self-supervised 
bootstrap analysis method. The main characteristic of 
BBA is that it explicitly embraces the data-generating 
structure. It is a follow up to the befitting cross valid
ation (BCV) proposal in Kenett et al. (2022a). 
Consider a data set D ¼ (X, y) where rows of X cor
respond to n observations of p predictor variables, 
and a response vector y, corresponds to the dependent 
variables. To enable uncertainty quantification in 
models of the observed data, one can use bootstrap
ping. The bootstrap method consists of a repeated 
sampling, with replacement, of the original data to 
generate a new dataset D�. The newly generated data
set, D�, is repeatedly used for model fitting and par
ameter estimation. To mirror the data-generating 
structure, BBA enforces the following properties 
for D�:

BBA Principle 1: The bootstrapped resampled 
dataset in BBA inherits the same data generation 
structure as the original dataset.

BBA Principle 2: The bootstrap resampling in 
BBA reflects the planned and unplanned constraints 
affecting the data collection.

BBA can be presented by a three-layer hierarchical 
structure of the data with variable Z1, Z2, and Z3, 
where Z1 has I levels, Z2 has J levels, and Z3 has K 
levels. For each data point, the structure is

dijkl ¼ xijkl, yijklð Þ for i 2 1, :::, If g,

j 2 1, :::, Jf g and k 2 1, :::, Kf g, 

where l 2 f1, … ., Lg represents the l-th replications. 
For notational convenience, we define Di … to be the 
subset of data consisting of all data points correspond
ing to Z1 ¼ i. That is,

Di::: ¼fdijkl : for j ¼ 1, :::, J;

k ¼ 1, :::, K, and l ¼ 1, :::, Lg:

Similarly, we define D.j.. to be the subset of data 
consisting of data points with corresponding Z2 ¼ j 
and D.k.. to be the subset of data consisting all data 
points with corresponding Z3 ¼ k. Furthermore, we 
define Dij.. to be the subset of data points consisting 
of all data points with Z1 ¼ i and Z2 ¼ j. That is,

Dij:: ¼ dijkl ¼ xijkl, yijklð Þ : for k ¼ 1, :::, K, and
�

l ¼ 1, :::, Lg:

Similarly, we define Di.k. to be the subset of data 
points consisting of all data points with Z1 ¼ i and Z3 ¼

k, and D.jk. to be the subset consisting of all data points 
with the corresponding Z2 ¼ j and Z3 ¼ k.

Define Dijk. to be the subset of L data points (i.e., 
replications) with the corresponding Z1 ¼ i, Z2 ¼ j, 
and Z3 ¼ k. That is,

Dijk: ¼ fdijkl ¼ xijkl, yijklð Þ : l ¼ 1, :::, Lg:

For BBA of data with a hierarchical structure, we 
first perform the sampling with replacement to the 
existing levels of Z1. This consists of resampling with 
replacement L sub-data sets, (X1 … , y1 … ), … , (XI … , 
yI … ). Then, for each selected level of Z1, we perform 
sampling with replacement for the existing level of Z2. 
Specifically, given a selected level i of Z1, its corre
sponding sub-data set (Xi … , yi … ) contains subsets of 
data (Xi1., yi1.), … , (XiJ., yiJ.). Thus, we conduct 
resampling with replacement for K sub-data sets. We 
continue such a procedure until the sampling with 
replacement covers all the existing levels of Z3.

The impact of BBA relates to the structure of the 
data generation process. For data affected by a struc
ture with significant effects, BBA will counteract the 
possible bias of ignoring this structure in 
bootstrapping.

Based on the data generation structure, and the 
planned or unplanned constraints in data collection, 
one can conduct resampling with replacement at dif
ferent levels or different level combinations. For 
example, we may consider sampling with replacement 
for a subset Xij., i¼ 1, … , I, and j¼ 1, … , J. In 
another example, one can consider sampling with 
replacement for data points in each subset Xijk such 
as in analyzing designed experiments with replicates, 
as presented in Kenett, Rahav, and Steinberg (2006).

BBA is not restricted to nonparametric bootstrap. 
It can also be applied in parametric befitting bootstrap 
analysis (pBBA). In pBBA, a parametric model is used 
to fit the whole data as

yijkl ¼ f xijkl, b
� �

þ eijkl , 

where b represents the model parameters and eijkl is 
the error term with zero mean. The key idea in pBBA 
is to conduct resampling based on means and stand
ard deviations of replicates. In its simplest form, 
pBBA replaces the observed response with random 
numbers from a normal distribution fitting the repli
cates. Other distributions can also be considered. A 
case study with BA and BBA will be presented in the 
next section. Parametric bootstrap analysis (pBA) and 
Wild Bootstrap Analysis (wBA) are also introduced 
and applied in the next section, for comparison.
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Comparing results of BBA and pBBA to pBA and 
wBA will show us the impact of BBA accounting for 
the data generation process.

4. A Case study

The case study is a piston operating in a combustion 
engine. The Piston Simulation function models the 
circular motion of a piston within a cylinder. It 
involves a chain of nonlinear functions. The perform
ance of the piston is measured by the cycle time of a 
full revolution, in seconds. Thus, we consider the 
response y to be the cycle time. The piston simulation 
function is expressed as

y ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M

kþ S2 P0V0
T0

Ta
V2

s

where V ¼ S
2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ 4k P0V0

T0
Ta

q
− A

� �

and A ¼ P0Sþ
19:62M − kV0

S :

Listed below are the seven factors used to control 
the piston. In bold, the factors used in the BBA case 
study:

1. m: piston weight (Low ¼ 30Kg, High ¼ 60Kg),
2. s: piston surface area (Low ¼ 0.005m2), High ¼

0.2m2),
3. v0: initial gas volume (Low ¼ 0.002m3, High ¼

0.01m3),
4. k: spring coefficient (Low ¼ 1,000N/m, High ¼

5,000N/m),
5. P0: atmospheric pressure (Low ¼ 90,000 N/m2, 

High ¼ 110,000N/m2),
6. t: ambient temperature (Low ¼ 2900K, High ¼

2960K)
7. t0: gas temperature (Low ¼ 3400K, High ¼

3600K).

The levels of these factors, shown in parentheses, 
represent extremes on the operating range that cannot 
be exceeded without affecting the smooth operation of 
the engine. The data is derived from simulator running 
at specific factor level combinations with uncertainty in 
the factors. The piston simulator code is available in R 
and JMP, Kenett and Zacks (2021), in Python, Kenett, 
Zacks, and Gedeck (2022b, 2023) and in Matlab, see 
Simon Fraser Virtual Lab (2023). Figure 1 presents a 
distribution of the piston running at nominal (center) 
level of all 7 factors. The average of 50 cycle time is 
0.77 s and the standard deviation is 0.006 s.

To map a response surface enabling improvement 
and optimization, we run a Central Composite Design 
(CCD), with the 4 factors listed in Table 1. This 

consists of 32 experimental points with 5 replicates 
each. Table 1 provides a partial listing of the 
experimental runs. In group 1 all factors are at level 
Low¼−1. In group 32 all factors are at level Nominal 
¼ 0. The first column represents the piston cycle time 
for these conditions. For details on experimental 
designs see Kenett, Zacks, and Gedeck (2023). To fit a 
model, we use ordinary least squares regression 
(OLS). Our goal here is to demonstrate the application 
of BBA, In Table 2, we show the OLS fit to a model 
with only main effects. It indicates x4 as non- 
significant. In Table 3, we fit a model without x4, but 
with all two-way interactions and quadratic effects of 
factors x1, x2, x3.

To compare the proposed method (BBA) with 
other existing methods of bootstrap (BA, pBBA, pBA, 
wBA) we consider the methods defined below:

Figure 1. Distribution of cycle times for piston operating at 
nominal values (JMP 17.2 output).

Table 1. Central Composite Design on 4 factors of the piston 
simulator with 5 replicates (partial listing) and distribution of 
replicates (groups), the four factors are: x1 (piston surface 
area), x2 (initial gas volume), x3 (spring coefficient) and x4 
(filling gas temperature).
Cycle time [ms] Group x1 x2 x3 x4

60.226485 1 −1.0 −1.0 −1.0 −1.0
65.020360 1 −1.0 −1.0 −1.0 −1.0
57.302374 1 −1.0 −1.0 −1.0 −1.0
50.978262 1 −1.0 −1.0 −1.0 −1.0
56.526159 1 −1.0 −1.0 −1.0 −1.0
… … … … … …
68.963006 32 0.0 0.0 0.0 0.0
51.328098 32 0.0 0.0 0.0 0.0
51.372896 32 0.0 0.0 0.0 0.0
59.049678 32 0.0 0.0 0.0 0.0
67.187754 32 0.0 0.0 0.0 0.0

Table 2. Main effect OLS model with 4 factors of the piston 
simulator.

Coeff std err t P>jtj [0.025 0.975]

Intercept 63.6518 0.823 77.302 0.000 62.025 65.278
x1 −15.5256 0.951 −16.329 0.000 −17.404 −13.647
x2 13.0152 0.951 13.689 0.000 11.137 14.893
x3 4.7356 0.951 4.981 0.000 2.857 6.614
x4 0.3212 0.951 0.338 0.736 −1.557 2.199

The .025 and .975 columns represent limits of a 95% confidence interval 
(from python available in open access link).

4 R. S. KENETT ET AL.



(M1) Befitting Bootstrap analysis (BBA). In BBA, 
bootstrapping is applied with replicate sets only or 
following the data generation process structure.
(M2) Bootstrap analysis (BA). In BA, bootstrapping 
is applied to the whole data set.
(M3) Parametric Befitting Bootstrap analysis 
(pBBA). This is a parametric befitting bootstrap 
resampling based on means and standard deviations 
of replicates. In its simplest form, pBBA replaces 
the observed response with random numbers from 
a normal distribution fitting the replicates. Other 
distributions can also be considered but we do not 
show this here.
(M4) Parametric bootstrap analysis (pBA) is based 
on bootstrapping residuals from a model fit to the 
data. This is model-dependent, as opposed to 
pBBA, which is model-independent and only and 
only assumes a normal distribution of the 
replicates.
(M5) Wild Bootstrap Analysis (wBA) fits a model 
using the full original dataset. For each resampling 
set, one multiplies the residuals by a random value 
sampled from a normal distribution N(0, 1) and 
adds it to the fitted values from the original model. 
wBA, like pBA, is also model-dependent (Mammen 
1993).

These five approaches provide different forms of 
uncertainty in statistical estimators. They can be used 
to check the goodness-of-fit of a model by comparing 
the bootstrapped empirical variability of estimators 
and their theoretical variability. Discrepancies between 
these two values indicates lack of fit (Kenett, Rahav, 
and Steinberg 2006). To evaluate the model fitting, we 
focus on the standard errors of the effects. We then 
apply BA and BBA and compare the bootstrap stand
ard errors of the effects to the regression OLS stand
ard error and to each other. To facilitate this 
comparison, we define a relative measure of 

comparison, denoted as D ðDeltaÞ:

D ¼
SEðMÞ − SEðOLSÞ

SEðOLSÞ
100% [1] 

where SEðMÞ is the bootstrap standard error for the 
method in comparison, and SEðOLSÞ is the OLS 
standard error. Table 3 shows the results for BBA. 
Table 5 shows the results for BA. Comparing Table 3
and 5 shows that BBA is providing a sharp differenti
ation between the main effect and the full model, in 
comparison to BA. In this analysis we use delta in an 
exploratory sense without providing cutoff values like 
in tests of significance with a preset p-value.

From Table 4 and Table 2, one can see that the 
OLS main effect standard errors are 0.9508. The BBA 
standard errors are smaller. Specifically, for BBA, 
delta¼ −20.0%, −28.4%, −30.6%, −31.7% for x1, x2, 
x3 and x4, respectively. The empirical bootstrap 95% 
confidence interval for x4 contains 0, corroborating 
the non-significant effect of x4 found in the OLS fit. 
Consequently, we drop x4 and fit a full model to x1, 
x2, x3 with all two-way interactions and quadratic 
effects. With this full model we get, with BBA, delta¼
þ1.7%, −15.8%, −14.0% for x1, x2, and x3, respect
ively. This represents a clear drop in deltas from the 
reduced main effect model listed in the previous para
graph, indicating higher consistency between OLS 
standard errors and bootstrap standard errors.

One can see than there are large differences in 
standard errors between the regression and the boot
strap estimates. Such a qualitative observation serves 
as a diagnostic tool for model goodness of fit assess
ment. Large values of D indicates inadequate assump
tions of the regression model. Here, a reduced model 
with only main effects is shown to imply a problem
atic assumption. Note that we provide only a qualita
tive assessment of this difference, in a similar spirit of 
the coefficient of determination R2. It is possible to 
consider a more elaborate study of this difference 

Table 3. Main effect, two-way interactions, and quadratic 
effect OLS model with 3 factors of the piston simulator.

Coeff std err t P>jtj [0.025 0.975]

Intercept 63.3069 1.197 50.397 0.000 57.942 62.671
x1 −15.5256 0.788 −19.709 0.000 −17.082 −13.969
x2 13.0152 0.788 16.523 0.000 11.459 14.572
x3 4.7356 0.788 6.012 0.000 3.179 6.292
x1:x2 −4.9101 0.965 −5.089 0.000 −6.816 −3.004
x1:x3 −2.2820 0.965 −2.365 0.019 −4.188 −0.376
x2:x3 1.6966 0.965 1.759 0.081 −0.210 3.603
I(x1 �� 2) 4.5094 0.708 6.370 0.000 3.111 5.908
I(x2 �� 2) 0.2682 0.708 0.379 0.705 −1.131 1.667
I(x3 �� 2) −0.3178 0.708 −0.449 0.654 −1.717 1.081

The .025 and .975 columns represent limits of a 95% confidence interval 
(from python available in open access link).

Table 4. Standard errors of effects from OLS model and BBA.
Main Full

Regr. BBA Delta Regr. BBA Delta

Intercept 0.82342 0.60483 −26.5 1.19664 1.03030 −13.9

x1 0.95080 0.76040 −20.0 0.78772 0.80110 1.7
x2 0.95080 0.68112 −28.4 0.78772 0.66288 −15.8
x3 0.95080 0.65951 −30.6 0.78772 0.67731 −14.0
x4 0.95080 0.63040 −33.7
x1:x2 0.96476 0.92408 −4.2
x1:x3 0.96476 0.88620 −8.1
x2:x3 0.96476 0.91043 −5.6
I(x1 �� 2) 0.70794 0.73775 4.2
I(x2 �� 2) 0.70794 0.51710 −27.0
I(x3 �� 2) 0.70794 0.50657 −28.4

Main effect model on the left, full model on the right (from python avail
able in open access link).
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based on simulations of technical boundaries for 
interpretation of these gaps.

In Table 5, using BA, we get standard errors larger 
than OLS and an inconsistent picture. For example, 
with BA, the standard error of x3, is lower than OLS 
by 4% in both the reduced and full model. With x1, 
on the other hand, the standard error relative to OLS 
is 25.1% and 11.1% for the reduced and full model 
respectively. For x2 the values of delta are −0.2% and 
10.6% for the reduced and full model, respectively. 
These are confusing results due to the random pro
cedure not being in synch with the data structure.

In summary, with the piston example, we see that 
BBA-derived standard errors are more consistent esti
mators than the ones derived from BA. This is 
because BBA respects the structure in the original 
data. Tables 6–8 show these results for pBBA, pBA 
and wBA.

We proceed with a comprehensive analysis that 
compares BBA, BA, pBBA, pBA and wBA. In Figure 
2, the bootstrap distributions of the coefficients are 
presented as boxplots. The first two boxplots corres
pond to BBA and BA. The remaining three are for 
pBBA, pBA and wBA, respectively. The effect of x4 is 

judged nonsignificant by all methods. In all panels we 
observe that the spread of coefficients in BBA and 
pBBA is smaller.

Figure 3 is similar to Figure 2, for the full model. If 
we focus on interquartile range to assess significance, 
we notice that the interaction effect x2�x3 is judged 
significant by BBA, and not significant by the other 
methods. In the piston simulation function one can 
see that x2 (initial gas volume V0) and x3 (spring 
coefficient k) often appear in a multiplicity in the 
function. This implies that the effects of x2 (initial gas 
volume) and x3 (spring coefficient) interact through 
the nonlinear equation for cycle time. Thus, changes 
in x3 can alter how x2 influences the response. The 
proposed BBA method, because of embracing the data 
structure to conduct uncertainty quantification, pro
vides more appropriate inference on the significance 
of the interaction effect x2x3. Moreover, throughout 
the panels for main effects and interactions, we 
observe that the spread of coefficients in BBA and 
pBBA is not smaller. It is smaller for the quadratic 
effects.

In summary, the case study offers several key 
insights.

Table 5. Standard errors of effects from OLS model and BA.
Main Full

Regr. BA Delta Regr. BA Delta

Intercept 0.82342 0.80394 −2.4 1.19664 1.03789 −13.3

x1 0.95080 1.18924 25.1 0.78772 0.87550 11.1
x2 0.95080 0.94900 −0.2 0.78772 0.87109 10.6
x3 0.95080 0.93570 −1.6 0.78772 0.76117 −3.4
x4 0.95080 0.85582 −10.0
x1:x2 0.96476 1.03973 7.8
x1:x3 0.96476 1.00755 4.4
x2:x3 0.96476 1.00718 4.4
I(x1 �� 2) 0.70794 0.78125 10.4
I(x2 �� 2) 0.70794 0.74039 4.6
I(x3 �� 2) 0.70794 0.56505 −20.2

Main effect model on the left, full model on the right (from python avail
able in open access link).

Table 6. Standard errors of effects from OLS model and 
pBBA.

0 Main Full

Regr. pBBA Delta Regr. pBBA Delta

Intercept 0.82342 0.60831 −26.1 1.19664 1.04301 −12.8

x1 0.95080 0.77756 −18.2 0.78772 0.77756 −1.3
x2 0.95080 0.66149 −30.4 0.78772 0.66149 −16.0
x3 0.95080 0.66926 −29.6 0.78772 0.66926 −15.0
x4 0.95080 0.64859 −31.8
x1:x2 0.96476 0.89139 −7.6
x1:x3 0.96476 0.92286 −4.3
x2:x3 0.96476 0.92514 −4.1
I(x1 �� 2) 0.70794 0.69214 −2.2
I(x2 �� 2) 0.70794 0.54135 −23.5
I(x3 �� 2) 0.70794 0.50015 −29.4

Main effect model on the left, full model on the right (Python).

Table 7. Standard errors of effects from OLS model and pBA.
Main Full

Regr. pBA Delta Regr. pBA Delta

Intercept 0.82342 0.77803 −5.5 1.19664 1.11645 −6.7

x1 0.95080 0.93016 −2.2 0.78772 0.73997 −6.1
x2 0.95080 0.94416 −0.7 0.78772 0.75939 −3.6
x3 0.95080 0.92727 −2.5 0.78772 0.77580 −1.5
x4 0.95080 0.93728 −1.4
x1:x2 0.96476 0.95261 −1.3
x1:x3 0.96476 0.92190 −4.4
x2:x3 0.96476 0.89047 −7.7
I(x1 �� 2) 0.70794 0.69731 −1.5
I(x2 �� 2) 0.70794 0.69909 −1.2
I(x3 �� 2) 0.70794 0.70454 −0.5

Main effect model on the left, full model on the right (from python avail
able in open access link).

Table 8. Standard errors of effects from OLS model and wBA.
Main Full

Regr. wBA Delta Regr. wBA Delta

Intercept 0.82342 0.82554 0.3 1.19664 1.04128 −13.0

x1 0.95080 1.17701 23.8 0.78772 0.85080 8.0
x2 0.95080 0.91483 −3.8 0.78772 0.80444 2.1
x3 0.95080 0.86632 −8.9 0.78772 0.74086 −5.9
x4 0.95080 0.85109 −10.5
x1:x2 0.96476 0.98511 2.1
x1:x3 0.96476 0.97772 1.3
x2:x3 0.96476 0.97938 1.5
I(x1 �� 2) 0.70794 0.77889 10.0
I(x2 �� 2) 0.70794 0.69552 −1.8
I(x3 �� 2) 0.70794 0.53633 −24.2

Main effect model on the left, full model on the right (from python avail
able in open access link).
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First, if standard errors of coefficients from BBA 
are smaller than ordinary least squares (OLS), fit 
another model.

Here we first expand a model with only main 
effects to incorporate main effects, interactions and 
quadratic effects, as made possible by the central com
posite design (CCD).

Secondly, the BBA spread of effects will be consist
ently smaller than bootstrap analysis (BA), providing 
more power to BBA-based inference.

Thirdly, in the case study, BBA is applied to handle 
data structure set at the design stage. The example is 
a CCD design with 5 replicates at each run. This can 
be generalized to other designs with replicated runs 
and account for conditions where the number of rep
lications is not balanced or if the actual experiment 

deviated from the original design. This is demon
strated in Supplementary Material.

5. Discussion

In this work, we introduce a befitting bootstrap ana
lysis (BBA) approach to account for the inherent 
structure of the data. Compared to other bootstrap
ping methods, the key advantage of BBA is to take 
advantage of the data generation structure for more 
adequate uncertainty quantification and inference.

A case study based on a designed set of experi
ments with a piston simulator is used in comparing 
BBA with BA, pBBA, pBA and wBA.

The article presents an application of a BBA to 
data from a designed experiment, but the 

Figure 2. Distribution of main effects coefficient estimates for the piston simulation. Blue: ols estimate ± std.dev. For each boot
strap approach, boxplot: distribution, red: interquartile range, green: mean ± std.dev. Blue horizontal line is positioned at 0 (from 
python available in open access link).

Figure 3. Distribution of main effects, interactions, and quadratic coefficient estimates for the piston simulation. Blue: ols estima
te ± std.dev. For each bootstrap approach, boxplot: distribution, red: interquartile range, green: mean ± std.dev. Blue horizontal line 
is positioned at 0 (from python available in open access link).
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methodology is applicable to data in general, gathered 
through a designed experiments or simply observed.

In some cases, the data generation structure is not 
understood. In these situations, a sensitivity analysis 
of BBA to various possible data generation structures 
can be carried out, and clustering can be considered 
for exploring the data generation structure (Li et al. 
2022).

The BBA in bootstrapping, like BCV in cross valid
ation, accounts for the data generation structure. It 
provides generalizability properties of computer- 
generated uncertainties in estimates.

With unbalanced data, BBA can be also applied 
when the number of replicates in designed experi
ments is uneven or when a characterized subset of the 
data contains very few observations. After introducing 
and demonstrating BBA, BA, pBA, pBBA and wBA, 
we focus on BBA and show how it can be used to val
idate a model fit to data. Further studies are needed 
for inference on the measure D in (1) enabling formal 
hypothesis testing. It will be also interesting to extend 
the proposed method to enhance the uncertain quan
tification in other applications, such as additive manu
facturing (Chen et al. 2023; Kang et al. 2023; Wang 
et al. 2020), computer experiments with complex 
inputs (Xiao et al. 2021, 2024), and computational 
social experiments (Hu et al. 2024; Liu et al. 2023). A 
github repository with the Python code used to gener
ate the results presented in the article is available in 
https://github.com/gedeck/bba-case-study.
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