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ABSTRACT

Fog manufacturing can greatly enhance traditional manufacturing systems through distributed Fog compu-
tation units, which are governed by predictive computational workload offloading methods under different
Industrial Internet architectures. It is known that the predictive offloading methods highly depend on
accurate prediction and uncertainty quantification of runtime performance metrics, containing multivariate
mixed-type responses (i.e., continuous, counting, binary). In this work, we propose a Bayesian sparse
regression for multivariate mixed responses to enhance the prediction of runtime performance metrics and
to enable the statistical inferences. The proposed method considers both group and individual variable
selection to jointly model the mixed types of runtime performance metrics. The conditional dependency
among multiple responses is described by a graphical model using the precision matrix, where a spike-and-
slab prior is used to enable the sparse estimation of the graph. The proposed method not only achieves
accurate prediction, but also makes the predictive model more interpretable with statistical inferences on
model parameters and prediction in the Fog manufacturing. A simulation study and a real case example in
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a Fog manufacturing are conducted to demonstrate the merits of the proposed model.

1. Introduction

Fog computing (also referred to as Edge computing) techniques
have served as an important role in Industrial Internet of things
(IIoT) for smart manufacturing systems. It provides local and
distributed computation capabilities. The concept of Fog man-
ufacturing is defined on integrating a Fog computing network
with interconnected manufacturing processes, facilitates, and
systems. With local computation units (i.e., Fog units) close
to the manufacturing processes, the Cloud-based centralized
computation architecture can be evolved to a Cloud-Fog col-
laborative computation to provide higher responsiveness and
significantly lower time latency (Wu et al. 2017; Zhang et al.
2019). There is a tradeoff between the local computing efficiency
on a Fog unit and the global collaborative efficiency of the
centralized Cloud. Specifically, the speciality of Fog units can
significantly speedup the local computations, but it can pose sig-
nificant challenges for the Cloud to assign the computation tasks
and supervise the heterogeneous Fog units. Besides, fluctuated
computation capability of the Fog units and intermittent com-
munication conditions among the Fog units and the Cloud make
it even harder for the collaboration (Zhang, Niyato, and Wang
2015). Therefore, computation offloading methods have been
widely investigated to enable efficient collaboration between the
Fog units and the Cloud with the consideration of constraints
on resources.

In Fog manufacturing, the runtime performance metrics are
often multivariate with mixed types (Chen et al. 2018). These
metrics include the CPU utilization (i.e., continuous response),
temperature of the CPU (i.e., continuous response), the number
of computation tasks executed within a certain time period
(i.e., counting response), and whether the memory utilization
exceeds certain thresholds (i.e., binary response). Prediction
and uncertainty quantification of these metrics are essential to
support the computation in the Fog manufacturing, advancing
analytics and optimization for high responsiveness and reliabil-
ity (Wu et al. 2017; Zhang et al. 2019). Based on the runtime
performance metrics of these Fog nodes, the Fog computing
can dynamically assign computation tasks to different Fog nodes
(Chen et al. 2018). The manufacturing must provide responsive
and reliable computation services by meeting all requirements
in runtime performance metrics. It is thus of great importance
to accurately predict runtime performance metrics of Fog nodes
and quantify the uncertainty of prediction in task assignment
and offloading problems.

As the runtime performance metrics are multivariate with
mixed types, a simple method is to model each individual met-
ric separately. Clearly, such an approach overlooks the depen-
dency relationship among the metrics, resulting in inaccurate
prediction associated with high uncertainty. For example, as
the increment in the executed number of computation tasks

CONTACT Xinwei Deng xdeng@vt.edu @ Department of Statistics, Virginia Tech, Blacksburg, VA 24061.

Xiaoyu Chen and Xiaoning Kang have contributed equally to this work.

@ Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/TECH.

© 2022 American Statistical Association and the American Society for Quality


https://doi.org/10.1080/00401706.2022.2134928
https://crossmark.crossref.org/dialog/?doi=10.1080/00401706.2022.2134928&domain=pdf&date_stamp=2023-04-21
https://orcid.org/0000-0002-1870-5290
https://orcid.org/0000-0003-0394-6240
https://orcid.org/0000-0002-1560-2405
mailto:xdeng@vt.edu
http://www.tandfonline.com/r/TECH

per minute (i.e., counting response), the CPU utilization and
temperature (i.e., continuous responses) will increase. Quanti-
fying such dependency among mixed responses is expected to
improve the prediction accuracy. Moreover, by only providing
point estimation of mixed responses, the model prediction may
not be trustworthy for those with high prediction variance.
Therefore, it calls for a joint model for the mixed responses
with uncertainty quantification. Toward predictive offloading,
the objective is to jointly fit the mixed runtime performance
metrics with the capability of statistical inferences to quantify
uncertainties of the predicted metrics in Fog manufacturing.

In this work, we propose a Bayesian sparse multivariate
regression for mixed responses (BS-MRMR) to achieve accurate
model prediction and, more importantly, to obtain proper statis-
tical inferences of the responses. The use of Bayesian estimation
naturally enables uncertainty quantification of model predic-
tion. Both group sparsity and individual sparsity are imposed
on regression coefficients via proper spike-and-slab priors. The
group structures often occur in the runtime performance met-
rics prediction problem when the metrics at the next time
instance are regressed on two groups of predictors: the features
extracted from the current and previous metrics (i.e., Group 1)
and the covariates of the computation tasks (i.e., Group 2).
On the other hand, not all predictors are important within
each group. Hence, the individual sparsity is also induced for
better estimation of model coeflicients. Moreover, the proposed
method considers the conditional dependency among multiple
responses by a graphical model using the precision matrix,
where a spike-and-slab prior is used to enable the sparse estima-
tion of the graph. A Gibbs sampling scheme is then developed
to efficiently conduct model estimation and inferences for the
proposed BS-MRMR method. The proposed BS-MRMR model
not only achieves accurate prediction, but also makes the predic-
tive model more interpretable in the Fog manufacturing. Note
that one can consider a two-step Bayesian method to model
the multivariate mixed responses Bradley (2022), where the first
step transforms the multivariate mixed-responses to continu-
ous responses, and the second step models the transformed
responses. However, the obtained model coefficients are less
interpretable since the transformation typically change the scale
of the original responses.

Different from the recent work of Kang et al. (2021) on
a penalized regression for multivariate mixed responses, the
proposed BS-MRMR is a Bayesian approach with the following
key novelty. First, Kang et al. (2021) only imposes individual
sparsity while the BS-MRMR model takes into account of both
the group and individual sparsity. Second, the model introduced
by Kang et al. (2021) cannot provide statistical inferences, such
as prediction intervals for the responses due to their complicated
parameter estimation procedure. In contrast, the proposed BS-
MRMR model is able to quantify the uncertainty of the esti-
mated parameters and predicted responses within the Bayesian
framework. It provides a comprehensive information of predic-
tion and uncertainty quantification to support the predictive
offloading in Fog manufacturing. Third, a careful investigation
of the posterior distribution makes the computation of the Gibbs
sampling efficient for model estimation and inference.

The remainder of this work is organized as follows. The
proposed BS-MRMR model and the Gibbs sampling scheme are
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detailed in Section 3. A simulation study is conducted to validate
the BS-MRMR model in Section 4. Section 5 describes a real case
study in Fog manufacturing. Section 6 concludes this work with
some discussions of future directions.

2. Literature Review

The joint modeling of mixed responses has attracted great
attention in the literature. Various existing studies focused on
the bivariate responses. For example, Fitzmaurice and Laird
(1995) considered a bivariate linear regression model with a
continuous and a binary response via joint likelihood estima-
tion. Yang et al. (2007) proposed to jointly fit a continuous
and a counting response, and evaluated the correlation between
the bivariate responses varying over time through a likelihood
ratio test. These methods usually factorize the joint distribution
of two responses as the product of a marginal and a condi-
tional distribution (Cox and Wermuth 1992), which cannot
be easily generalized for multivariate mixed responses in real
applications such as Fog manufacturing. Another direction of
handling the continuous and discrete variables is to consider
the underlying latent variables for the discrete responses, and
then assume a multivariate normal distribution for such latent
variables together with other continuous responses. For exam-
ple, Regan and Catalano (1999) introduced a latent variable with
a probit link function for a binary response and jointly modeled
the continuous response and the latent variable via a bivariate
normal distribution. More related works include McCulloch
(2008), Deng and Jin (2015), Wu, Deng, and Ramakrishnan
(2018), and Kang et al. (2021). The advantage of introducing
latent variables to characterize discrete responses lies mainly
in the well-defined correlation measures among multivariate
normal responses. Therefore, the hidden association between
mixed responses can be quantified by this correlation. However,
such models involving latent variables are often computationally
expensive, especially when the number of predictor variables is
large.

Modeling the mixed responses under the Bayesian frame-
work is also studied in the literature. For example, Fahrmeir
and Raach (2007) fitted ordinal and normal responses via a
Bayesian latent variable method, where covariate effects on
the latent variables were modeled through a semiparametric
Gaussian regression model. Yeung et al. (2015) studied a dose-
escalation procedure in clinical trials by a Bayesian approach,
where a logistic regression and a linear log-log relationship
were used, respectively, to model the binary and continuous
responses. Kang et al. (2018) proposed to fit the binary response
conditioned on the continuous response, where proper priors
were used for enhancing model interpretation. However, few
Bayesian works have been conducted for the multivariate mixed
responses. Li, Pan, and Belcher (2016) introduced a Bayesian
conditional joint random-effects model for fitting longitudinal
data with normal, binary and ordinal responses by using latent
variables for each response. More Bayesian methods can be
found in Dunson (2000), Zhou et al. (2006), Stamey, Natanegara,
and Seaman Jr (2013), Hwang and Pennell (2014), DeYoreo and
Kottas (2018), among others.

There are few works of theoretical investigation on models
of mixed responses under the framework of either conditional
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models or latent variables. In the simple case where there
are only one binary and one continuous responses, Kiiriim
et al. (2016) adopted latent variable to characterize the binary
response and studied the asymptotic normality of their estima-
tor. Recently, Kang et al. (2022) developed a generative model
framework in which the continuous response is fitted based on
the multivariate normal property, and the multi-class response
is modeled and predicted via the linear discriminant analysis.
They established the asymptotic properties of their estima-
tor in terms of both the classification accuracy for the multi-
class response and the prediction accuracy for the continuous
response under some regularity conditions.

In addition, the proper regularization on model parameters
is often used in the joint modeling of mixed responses for high-
dimensional data to improve the model interpretation. Kang
et al. (2021) proposed to fit data with multiple mixed responses
by imposing L; penalties on the negative log-likelihood func-
tion and conducted the parameter estimation based on the EM
algorithm. Under the Bayesian framework, the spike-and-slab
prior is commonly used for inducing the sparsity in regression
models (Wagner and Tiichler 2010). In our application of run-
time performance metrics prediction problem, particularly, the
group variable selection is necessary since predictor variables
are naturally grouped by different components (e.g., CPU, RAM,
etc.) of Fog units. Hence, the model coefficients may not be
properly estimated across different subsets of samples if only
the individual sparsity is imposed on the model. In this regard,
applying a group sparsity on predictor variables is important,
especially when the multivariate responses are presented.

3. The Proposed Bayesian Sparse MRMR

For the proposed BS-MRMR model, we make the following
assumptions. First, assume the predictor variables are catego-
rized into multiple groups and that a predictor is significant
requires its variable group is significant. Second, assume that
the distributions of response variables are from the exponential
family. Third, assume that the hidden associations among mixed
response variables can be represented in the precision matrix of
latent Gaussian distributed variables. Now we present the details
of the proposed BS-MRMR model.

Suppose that the predictor variables are x = (X, ... ,XP)T
and the multivariate mixed responses are Y = (UT, ZT, wWT)T,
Here U = (UD, U@, ..., UMT are the I-dimensional
continuous responses, Z = (Z1,z® ., zM)T are
the m-dimensional counting responses, and W =
WD W@,  w*)T  are  the k-dimensional binary
responses. To model the relationship between the predictor
vector x and the response vector Y, we consider a generalized
linear model (GLM) for each individual response under
appropriate link functions, while their link functions of the
mean parameters form a multivariate linear model with respect
to x. Specifically,

UD |, 69 ~ N(,Lq),ng) J=1,...1
7919 ~ Poisson (W) J=1...,m,

W@y @ ~ Bernoulli ()/(j)> J=1,...,k (1)

and
; )/(1)
£=@uY, .., 1P 1logr®,. . logr™, log——no,. ..,
1— y(l)
log Lk))T ~ N;(BTx, @71
1 — y(k) 9
where B = (Bij)pxq is a p x q coefficient matrix with g =

I + m + k. Here N, represents a g-dimensional multivariate
normal distribution, and € is the precision matrix of the error
term & by defining § = BTx + e. It is seen that the & is a
latent vector connecting the multivariate mixed responses and
predictor variables. The implication of € is to characterize the
conditional dependency relationship among the multivariate
mixed responses U, Z, and W. Denote the observed data as
(xi,¥;),i = 1,...,n. Without loss of generality, we write §; =
BTx; + &; with &; ~ q(BTxi,SZ_l). Hence, the likelihood
function can be expressed in a proper manner. To conduct the
parameter estimation from a Bayesian perspective, we need to
specify the priors for parameter matrices B and $2, respectively.

3.1. Priors for Group and Individual Sparsity

Since the latent vector & follows the normal distribution, one can
consider a conjugate prior of normal distribution for parameters
vec(B), where vec(-) is the vectorization operator. When fitting
data with multivariate mixed responses, one would expect that
only certain subgroups of predictor variables are related to the
multivariate responses. Therefore, we would like to impose an
appropriate prior for matrix B to enable variable selection in
the sense that only a few groups of predictor variables are
selected and a few coefficients are nonzeros within each selected
group. Here we assume that the grouping of predictor variables
is known. In particular, we propose to adopt a spike-and-slab
prior (Liquet et al. 2017; Ning, Jeong, and Ghosal 2020) on the
parameter matrix B for sparse estimation of parameters at both
the group and individual levels.

Denote the data matrixby X = (x1,x2,. . ., x,) L. To facilitate
the presentation, let the predictor vector x = (X], X1,... X5)T
to be composed of G groups with X, containing p, predictor
variables for g = 1,2,...,G. Correspondingly, write X =
X, X, ..., Xg)T and the coefficient matrix B is partitioned as
B = (BI,BI,...,BD)T, where Bg is a p, x q matrix for the gth
group of predictor variables. In order to enable variable selection
for both group and individual levels, we re-parameterize the
coefficients matrix in each group as By = Vng, where Vo =
diag{zg1,..., rg,pg} with 7g; > 0 forj=1,... ,Pg- The role of
7, in diagonal matrix V/ is to control the sparsity of individual
predictor variable within a group. That is, 7, ; = 0 corresponds
to the jth predictor variable in the gth group being excluded
from the regression model. Based on the above consideration,
we employ the multivariate spike-and-slab prior for Bg as

vec(By |2, 711) ~ (1 = 1) Npq(0,Ip, ® 27
+mdo(vec(By)), g=1,....G )
Tgjlm2, 02 ~ (1 — m)NT(0,07)
+md0(tgj), §=L....Gj=1,...
w1 ~ Beta(ay, ay), m, ~ Beta(as, ay),
o ~1G(1,d),

> Pg (3)



where I, denotes the a x a identity matrix, the notation ®
stands for the Kronecker product, the symbol 8¢(-) is the Dirac
measure that denotes the point mass at 0, the symbol V" (0, 0:2)
represents a normal distribution A/(0, o2) truncated below at 0,
and IG(q, ) is the inverse Gamma distribution with its density
function f(x) = b*x~ @D exp(—b/x)/ I'(a). The prior of Bin
(2) enables the variable selection at the group level, with our
prior belief of the entire group B, excluding from the model
by the probability parameter ;. Similarly, the prior of 7g; in
(3) performs the variable selection at the individual level, with
our prior belief of the jth row of B, excluding from the model
by the probability parameter 7. Here we consider a Beta prior
for m; to accommodate the potential domain-knowledge on
the sparsity of the model. When there is no pre-knowledge on
which group of predictor variables are related with responses,
one could consider a simple uniform prior Unif(0,1) by setting
a; = az = 1. In this work, we adopt the suggestion in Scheipl,
Fahrmeir, and Kneib (2012) to use an informative Beta prior
Beta(20, 40), which is suitable for the high-dimensional data.
Similarly, we adopt Beta(20, 40) as the prior of 77, on the sparsity
of individual predictor variable within each group. In addition,
the parameter o2 in the prior distribution of 74 in (3) controls
the shrinkage for the jth predictor variable in the gth group.
A large value of 02 may diffuse the coefficient for the corre-
sponding predictor variable, and a small value may produce
a biased estimated coefficient toward to zero. We thus use a
conjugate inverse gamma prior IG(1, d) for o2 to determine its
value from data, and adopt the “adaptive” idea for parameter
d by estimating it with the Monte Carlo EM algorithm, which
is proposed by Liquet et al. (2017). Specifically, in the kth EM
iteration of estimating d, we update d© = E(;(,Ll) (1/02|rest),
where the posterior expectation of o2 is replaced by the Monte
Carlo sample average of o generated in the Gibbs samples
based on d*— 1,

Next, we consider the prior of € for inferring the conditional
dependency relationship among responses. The conventional
Bayesian methods for imposing sparsity on £ are implemented
by the priors over the space of positive definite matrices con-
strained by fixed zeros. However, such priors often result in
the daunting computational burdens for the large dimension of
response variables. To address this challenge, we adopt the prior
of & = (wjj)gxq in (4), which is a spike-and-slab prior similar
as Wang et al. (2015) for efficient computation.

Q73,0507 h ~ 1_[ {1 = m3)N (i 0,07)

i<j

A
73N (350,02} H e(wii; (R € §)

1

73 ~ Beta(as, ag), (4)

where I(-) is the indicator function, ST stands for the cone of
symmetric positive definite matrices, e(-) denotes the exponen-
tial distribution, and N (x; 4, b) represents the density function
of N (a, b) evaluated at point x. The term (1—73) N (w;j; 0, 63) +
N (@530, 0'12) controls the sparsity on the oft-diagonal ele-
ments w;j, and the term e(w;;A/2) shrinkages the diagonal
elements w;;. The prior of £ in (4) is computationally efficient
since it can facilitate a fast block Gibbs sampler that updates
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the precision matrix 2 one column at a time. While the con-
ventional Bayesian methods update € in a one-element-at-a-
time manner. In practice, the value of 0§ is set to be small,
expressing our prior belief that the corresponding w;j is 0. On
the other hand, the value of o is set to be large such that the
estimated w;; would be very different from 0. Wang et al. (2015)
demonstrated that when oy > 0.01 and o7/0¢p < 1000, the
MCMC will converge quickly and mix quite well. Throughout
this article in the numerical study, oy and o are set to be 0.1
and 3, respectively. Here we consider an informative Beta prior
for w3 to encourage the sparsity in €2 by setting as = q and
as = q(q—1)/2, given the prior belief that 773 should be close to
0 to enhance the sparsity of 2. We further consider to set hyper-
parameter A = ¢ based on the observation from empirical
studies that the structures of € are insensitive to a range of A.
Note that Wang et al. (2015) also suggested to fix A to 5 or 10 if
the predictor variables are standardized.

3.2. Posterior and Inference

From Formula (1), we have the latent vector &; = BTx; + ¢
with &; ~ ./\/ZI(BTx,-,SZ_l). Let 2 = (£,,€,,...,&,)" bean
n x q matrix. Based on the priors above, the full-conditional
distribution of unknown parameters conditional on the latent
variable & and data is

p(ﬁ’ Q, T, 711, 72, 73, 012|'§)
oxp(a2)p(m1)p(m2)p(m3)p(BIR, m1)p(T |2, 07)
p(®R1ms) [ [ p(&:1X, B, 2, 7).
i=1

See the full expression in supplementary materials A.1. As a
result, the full-conditional distribution of Bg is

vec(By [rest) ~ (1 — 75 )Npq(vec(MD), ¥,, ® X)
+ g d0(vec(By) ()

forg = 1,...,G, where ¥, = (Ip, + VngXng)_l, M., —
= G =
Wy, VX (B — Yok Xk ViBy), and
T

- - .
71+ (1= 7)) ¥y, | exp {%tr(SZMgT\IIPglMg }

B, =

Detailed derivation of 7B, is provided in supplementary materi-
als A.2. Denote by E'g,- the jth row of Eg, and X; the jth column of
Xg. Let B_g; represent the matrix B without the jth row of group
& and X_; be the corresponding X without the jth column of
group g. The full-conditional distribution of 7 ; is

tgjlrest ~ (1 — g )N (igi, 0g) + 7gy0(zg),  (6)

15T ~ _
where ogzj [tr(Z lngXgTngngj) + 1/0217h ng =

agzitr[E_l(E r_ Bzgszgj)xgjﬁgi], and similarly we have
p(zg,; = Orest)

g = i = O|rest i # O|rest
P(Tg, [rest) + p(zg, 7# O|rest)
T

—_ >

m k20 - my@tapten |13 o ()

@N|@N
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where @ (-) is the cumulative distribution function for the stan-
dard normal variable.
The full-conditional distributions for 71, 72, 73, and orz are

G G
my|rest ~ Beta | a; + ZI(Eg =0),a, + ZI(Bg #* 0)) R (7)
g=1 g=1
G Pg G Pg
75 |rest ~ Beta | a3 + ZZI(IH =0),a4 + ZZI(T@ #* O)) s
g=1j=1 g=1 j=1
(8)
malrest ~ Beta | as + » _ I(wyj # 0),a6 + »_ I(w;j = 0)) , 9)
i<j i<j
1 G Pg 1 G Pg
o2lrest ~1G [ 1+ 3 33 K £ 0),d+ B STkl o
g=1 j=1 g=1 j=1

Next we examine the posterior distribution of . To facilitate
the expression, we introduce latent variables z;; and re-write the
prior (4) as

p
A
p@)] o [ [N @y O,GZZU) [ [ e >

i<j i
Zij ..
p(zij) = m3" (1 — m3)!' T,

where zj=0orl according to whether wjj = 0 or not. Hence,
the variable z;; follows Bernoulli distribution with parameter 73.
Now the full-conditional distribution of € is

p(R|rest) o |L2[4/? exp{—%tr(ﬂ@)}

W )2 A
[T {orc | oo ().

i<j Zij

(11)

N(a)y, 0, V%) 3
N(a)ij;O, v%) 3 +N(wij;0, vé) 1 —m3)

p(zij = l|rest) =

wherea = n+ 30| pI(By # 0)and © = (E — XB)T(E —

XB) + B'B. Sampling € from its posterior (11) adopts the
procedures described here:

Let H = (Uzzij)pxp be a symmetric matrix with zeros as
its diagonal entries and (ozzl_j)kj as its upper diagonal entries.
Partition 2, ® and H as

i1, ¢ 011, 012
Q= , ©= R d
|: 0 o» 0,, 6n an
| Hu, hi2
H_[ e }

Consider a variable transform: (@15, 922) — (1 = @5,{ =
022 — 91,27 @1,). Then the conditional distributions of § and
¢ are

nlrest ~ N(—X,012,X,), and
022 + A
2

C|rest ~ Gamma(% +1, ),

where T, = (0 + »)27}! + diag(h12)~) "

To construct matrix & = (£,,£,,...,&,)! in the posteriors,

we sample §; according to

1 1
f& |y,B, %) o |R|% exp ( (&, — B x; 1" Q[&, — BTxi])

2
ﬁ—l exp (4 =107,
L Vame0 T 008

m ) ; k
(A& exp (=1 0)) ) )
I - JTo" a -y, a2)
=1 z;! j=1

where a noninformative prior 1G(1/2,1/2) is assumed for the

2 . .
parameter o), such that it can be sampled from the condi-
tional distribution

n
Dprest ~1G [ £ 41, 2 1+ 25w _ g
o7 |rest ~ IG (2 +n, 5 + 5 ;(”i &), (13)

where & l.(]) is the jth element of &;. See a derivation of Equa-
tion (12) in supplementary materials A.3. Therefore, the Gibbs
sampling for the proposed BS-MRMR model is summarized in
Algorithm 1.

Algorithm 1 Gibbs sampling for BS-MRMR model

repeat
Sample &; by f(§; | y;, B, X) from (12) and (13).
Sample Bg from (5).
Sample 7, ; from (6), and compute Bg.
Sample 7y, 2, 73 and af from (7) to (10).
Sample € from (11).

until Convergence

4. Numerical Study

In this section, we evaluate the performance of the proposed
model, denoted as BS-MRMR, by comparison with separate
models (a) BS-GLM, (b) FS-GLM, and (c) a hierarchical gen-
eralized transformation (HGT) model (Bradley 2022). The BS-
GLM method separately fits each response using the Bayesian
generalized linear model, with its variable selection conducted
according to the 95% credible intervals. The implementation
of the BS-GLM method is conducted by bayesglm(-) function
in the R software. The FS-GLM method separately fits each
response on all the predictor variables via generalized linear
model using the Lasso regularization. Precisely, the continuous,
counting and binary responses are fitted through linear, Poisson
and logistic regressions with Lasso penalties, respectively. This is
implemented by glmnet(-) function in the R software. The third
benchmark HGT model was recently developed to transform
mixed responses into continuous responses (Bradley 2022). The
HGT is a two-step model, where the first step samples latent
continuous variables for the mixed responses, and the second
step estimates a Bayesian multivariate regression model for each
sample. The original article suggested to use a Bayesian mixed
effects model as the second step estimator. However, such a
model does not consider group and individual sparsity. For
fair comparison, a sparse multivariate regression model called
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MBSGSSS (Liquet et al. 2017) was selected to be the second step
model here. In the rest of this manuscript, we denote the HGT-
MBSGSSS model as HGT for short.

Regarding the dependency among multiple responses, we
consider the following matrix structures of £ = (wjj) gxg-

e Scenario 1 2,
0.1);—j=3-

o Scenario 2 R, is generated by randomly permuting rows and
corresponding columns of ;.

* Scenario 3 23 : wj; = 0.5/l

o Scenario 4 4: randomly and evenly divide the indices
1,2,...,qinto M groups. Let wj; = 1. Set wjx = 0.4 forj # k
if j and k belong to the same group and 0 otherwise.

. CS(.5) o0

o Scenario5 5 = ( 0 I

a4 x 4 compound structure matrix with diagonal elements

1 and others 0.5. 0 indicates a matrix with all elements 0.

pwij = =i + 0.5i—j=1 + 0.3)i—j]=2 +

>, where CS(0.5) represents

Scenario 1 is a banded matrix representing each response
is only correlated with its several nearest responses. Scenario 2
disrupts such sparse structure but maintaining the same sparse
extent. Scenario 3 is an autoregressive model with its elements
decaying as one moves away from the diagonal. Scenario 4 is
a random sparse matrix. Scenario 5 represents that the first
4 responses are correlated but independent from others. We
generate n = 100 training data to estimate the model and 100
testing data to examine the model performance, both of which
are from the multivariate normal distribution /\/p(O, oxI) with
@p =20l=m=%k=2and(b)p = 80, = m =
k = 5. Here we choose n = 100 as the training sample size to
stress the proposed model with a large number of parameters in
comparison with the sample size. For example, p = 20,/ = m =
k = 2resultsin (p+1)(I4+m—+k) = 126 linear model coefficients
to be estimated including the intercepts; and p = 80, = m =
k = 5resultsin (p+1) (I+m-+k) = 1215linear model coefficient
parameters. We also we consider a simulation setting with n =
50, p = 80 to further evaluate the proposed model. The results
are summarized in the supplementary materials (Tables 5-7).

When p = 20, we take M = 3 for Scenario 4, and the
coefficient matrix is divided into four groups with each group
having five variables as BIT = (%% 00% 05 x% 00% 05) and B2T =
(05 3 00 *x 00 0s), where * represents that the correspond-
ing columns are not zeros generating from uniform distribution
Unif(Ig, ug), 0 represents that the corresponding columns are
zeros, and 0, represents that the corresponding a columns are
zeros. When p = 80, the value of M is set to be 5 in Scenario
4. We consider 6 groups of predictor variables and divide coef-
ficient matrix Bg = ((0s,%5) 029 (*5,05) 019 (%#5,015) 019)
as well as BZ = (0 (0s,%5) (%5,05) (%5,015) 019 O19). The
observations of the response variables are then generated based
on Formula (1). The data generation parameters o, Ip and ug
are tuned to make sure that the counting observations in the
response matrix for each setting are within a reasonable range.
We generate 10,000 MCMC samples with the first 2000 draws as
burn-in period. The median values of the rest 8000 samples are
taken as the parameter estimates for the proposed model.

To evaluate the accuracy of model estimation, we consider
the loss measures
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P q n 2
~ i= i—1(Bij — Bjj)
L(B) = Lic ZJ_; ’ "~ and
q
A 70 (@ — ;)2
L@ = | === :
\ q

where B and  denote the estimates of matrices B and €. For
gauging the performance of variable selection in B and sparsity
imposed in €2, we also consider FSL = false positive (FP) +
false negative (FN). Figures 1 and 2 summarize via boxplots
the results of two selected scenarios of these loss measures for
each method over 50 replicates. Note that parameter estimation
errors of the HGT method are not reported in Figure 1 since the
HGT method transforms responses into different scales, making
it noncomparable with other methods. Please refer to Tables 1
and 2 in supplementary materials for the full comparison results.

Itis clear to see that the proposed BS-MRMR model generally
outperforms other compared methods for all the settings with
respect to loss measures L(B), L(), FSL(B), and FSL(Q). The
proposed model produces the lowest values of losses and corre-
sponding standard errors, because it takes advantage of the asso-
ciation between responses and model them jointly. Similar con-
clusion can be readily drawn by comparing the HGT model with
two separate GLM benchmark models. The main reason is that
the BS-GLM and FS-GLM methods fit data separately, losing
the potential information of the response variables’ relationship.
Specifically, when the number of predictor variables p = 20, the
BS-GLM method sometimes performs better than the FS-GLM
for the loss L(B), but other times it is worse, depending on the
structures of £ and coefficient matrices B. When p increases to
80, the FS-GLM method appears to be better regarding the loss
L(B). Nevertheless, they are all inferior to the proposed model.
For the loss L(fl), note that the separate modeling FS-GLM can-
not provide the correlation among responses. And the metric
FSL(fZ) for HGT is not accessible since the function “MBSGSSS”
provided by Liquet et al. (2017) does not return samples for 2.
In addition, regarding the loss FSL(B), the proposed BS-MRMR
model is substantially superior over the compared methods,
implying that it is able to accurately identify the group sparsity
and individual sparsity within each group. We also observe that
the BS-GLM method performs better than the FS-GLM with
respect to FSL(E). It is also interesting to observe that the HGT
model can have a comparable performance with the proposed
BS-MRMR model in terms of FSL(B). Note that, in the current
implementation of the HGT method, we adopted the default
settings of hyperparameters in the supplemented programming
code in Bradley (2022). When comparing the loss FSL(£2), the
proposed BS-MRMR model does not consistently outperform
the BS-GLM, especially when the number of responses increases
from 6 to 15. The reason is that the BS-GLM only provides
estimates for diagonal elements in ©, hence, the loss FSL(fZ)
tends to be smaller as the underlying £ becomes sparser.

To further investigate the prediction performance of
the proposed model, the root-mean-square error (RMSE)

\/ S 1%y — 1)2/100 is computed for the continuous and

i=

counting responses via the testing data, denoted by RMSE(N)
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and RMSE(P), where y; stands for the corresponding fitted
value. Naturally, we use the misclassification error rate (ME)
2}2‘} I(y; # 7:)/100 to compare the model performance on

the binary response. The cutoff point for the binary response
estimates is 0.5. Figure 3 reports the prediction results of the
selected scenarios for the methods in comparison. Please see the
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(Tables 3 and 4).

full comparison results in the Tables 3 and 4 in supplementary
materials. We observe that the proposed BS-MRMR model
provides more accurate predictions on continuous, counting
and binary responses for all the settings. Specifically, it is
slightly better than the compared methods with respect to
RMSE(N), and substantially better in terms of RMSE(P)
and ME. When the number of predictor variables increases
from 20 to 80, the proposed model performs consistently well
with the lowest loss values and standard errors. Such results
demonstrate that incorporating the association of responses
in the proposed model will obviously improve its prediction
performance. In addition, we also observe that the FS-GLM
and BS-GLM methods occasionally have convergence issue
when fitting the counting responses, yielding high values of
RMSE(P) especially for larger p = 80. This is possibly due to
some very large values of counting responses in the datasets,
which remarkably increases the difficulty of modeling and
hence causes convergence issue. In contrast, the relatively
lower values of RMSE(P) produced by the proposed method

demonstrate that the BS-MRMR model is more robust than
the compared approaches for the underlying multivariate
datasets.

Figure 4 shows the trace plots of randomly selected param-
eters in the precision matrix € and coeflicient matrix B from
one replicate for Scenario 1 and Bz when p = 80. It is seen that
the traces of the parameters fluctuate around the means with
relatively stable variation, indicating that the MCMC chains
converge. Figure 5 displays the corresponding autocorrelation
functions of those parameters. The quick decrease of ACF in
these plots implies the fast convergence of the Gibbs sampling
iterations. The rest of the parameters present the similar pat-
terns, and hence their plots are omitted. We further compare
the computation time for each method for the simulation study
(p = 20,By, R). The average time for model estimation and
prediction are summarized in Table 1. We note that the long
computation time of HGT could be due to the current imple-
mentation of the two-step estimation procedure. Specifically, the
implementation of HGT method first samples latent continuous
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Figure 5. ACF plots for selected parameters from one replicate for Scenario 1 and B3 when p = 80.

variables for the mixed responses, then estimates a Bayesian Table 1. The averages and standard errors (in parenthesis) of computation time for
P . the numerical study with p = 20, Bq, .
multivariate regression model for each sample. Consequently,

the estimation time of HGT is linearly related to the number of Estimation time (sec) Prediction time (sec)
samples obtained from the first step. It is worth to remarking fsgim 334.9 (5.854) 0.158 (0.004)
that there could be a computationally more efficient implemen-  BS-GLM 0.035 (0.000) 0.001 (0.000)

i i : ; HGT 67652 (108.5) 4.414 (0.041)
tation by combining the Gibbs sampler of HGT with the second BS. MRVR 0.059 (0.007) 0.002 (0.000)

step sampler (Bradley 2022).
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Figure 6. Fog manufacturing testbed and recommended computation pipelines. Redrawn from Zhang et al. (2019) with authors’ permission.

Table 2. Design of experiments for the analysis of runtime performance metrics
(summarized from Zhang et al. (2019) with authors’ permission).

Design factors Level 1 Level 2

Task selection strategy Random selection Recommendation

(Chen and Jin 2020)
Number of pipelines 5 10
Data storage strategy One copy on each Fog Three copies randomly
node stored on three Fog
nodes
Offloading strategy Random offloading Time-balanced
offloading

5. Case Study in Fog Manufacturing

This section investigates a real case study in a Fog manufac-
turing testbed for evaluating the proposed BS-MRMR model.
The three-layer architecture of this testbed is presented in the
left panel of Figure 6. In the top layer, a central computation
unit (CPU: i7-6700Kk) serves as the orchestrator to master the
offloading of computation tasks and collect the results from each
Fog unit. In the middle layer, 10 Raspberry Pi 3 devices are
deployed as Fog nodes with different computation capabilities
and communication bandwidths. In the bottom layer, seven
manufacturing machines are connected to each Fog nodes, such
that the manufacturing process data from any machine can be
collected by each of 10 Fog nodes. All the runtime performance
signals (i.e., CPU and memory utilizations, temperature of the
Fog nodes, etc.) during the execution are stored locally in each
Fog nodes based on a Python program. For the computation
tasks to be offloaded, the right panel of Figure 6 presents the
computation pipelines with four sub-steps and multiple method
options in each sub-step following the definition described in
Chen and Jin (2020). Here, each option from one sub-step is
treated as a computation task, and one sequence from sub-step
1 to sub-step 4 represents a computation pipeline. The pre-
dictive offloading methods aim at dynamically assigning these
computation tasks into different Fog nodes considering the
responsiveness and reliability as detailed in Chen et al. (2018).
The offloading decisions are made based on the prediction of
the runtime performance metrics extracted from the runtime
performance signals.

To generate the runtime performance signals for analysis, an
experiment of four factors with two levels was conducted by
the full factorial design in Table 2. There are 32 runs in total

executed with two replicates for each treatment. The workflow
of this Fog manufacturing testbed in this experiment follows
three steps: first, the computation pipelines to be offloaded in
sub-steps are selected following two task selection strategies,
namely, (a) random selection from all candidate pipelines, and
(b) recommendation-based selection to choose the Top-ranked
pipelines suggested by a recommender system (see Chen and
Jin 2020 for details). Second, the orchestrator then provides the
offloading decisions (randomly or following a time-balanced
offloading strategy) to assign sub-steps of the selected compu-
tation pipelines to different Fog nodes for execution. Finally,
Fog nodes check whether the dataset to support the assigned
sub-steps exists in their local storage according to the data
storage strategy. A Fog unit will download the necessary dataset
from other Fog nodes or the orchestrator, then will execute the
assigned sub-step with runtime performance metrics recorded.

In this case study, the observational data are {xtf, th}, where
fr=1,...,n7is defined as the tfth sub-step that is assigned to
the fth Fog unit, f = 1,...,10. The x,0) € R* is the predictor

vector that contains two groups of features (i.e., Group 1: 11
summary statistics of each of the three runtime performance
signals; and Group 2: 17 dummy variables as the embedding
of the assigned sub-step) from a previous time instance. The

Yo € IR? is the response vector which contains five runtime
f
performance metrics in mixed types when executing the #¢th

sub-step, that is, continuous metrics: averaged CPU utilization
Y}, averaged temperature Y5; counting metric: number of sub-
steps that can be executed within 5sec Y3; and binary met-
rics: whether temperature exceeds a certain threshold Y4, and
whether memory utilization exceeds a certain threshold Ys. In
total, 3407 samples were obtained from the total 10 Fog nodes.
Each Fog unit has around 340 samples ordered by timestamps
when the samples are collected. The training data consists of
the first 200 samples from each Fog unit, and the testing data
consists of the remaining samples from each Fog unit.

We compare the proposed BS-MRMR model with the FS-
GLM, BS-GLM, and HGT model. For the BS-MRMR, the values
of hyperparameters of priors are the same as those in Sec-
tion 4 to encourage both group and individual sparsity for
predictor variables. In addition, 10,000 MCMC samples from
the proposed model are drawn with the first 2000 as burn-in
period. For the HGT method, we adopted the default settings
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Table 3. The averages and standard errors (in parenthesis) of loss measures for the
real case study in Fog manufacturing.

RMSE(N) RMSE(P) ME
FS-GLM 1.345(0.054) 102.9(45.57) 0.058(0.024)
BS-GLM 6.074(1.344) 338.0(52.65) 0.240(0.055)
HGT 3.186(0.366) 20.79(5.723) 0.263(0.023)
BS-MRMR 0.521(0.044) 10.24(0.434) 0.039(0.012)

of hyperparameters in the supplemented programming code in
Bradley (2022). For this real data of Fog manufacturing, there
can be 12 hyperparameters in the HGT method. It would be very
challenging to carefully adjust hyperparameters to avoid the bias
issue introduced by transformation. One possibility may specify
hyperparameters for the HGT methods using certain Bayesian
optimization techniques when the number of hyperparameters
is large.

The averages and standard errors of loss measures RMSE(N),
RMSE(P), and ME over all 10 Fog nodes are summarized in
Table 3. It can be readily observed that the proposed BS-MRMR
model consistently outperforms the frequentist and Bayesian
separate models, and HGT model for all types of responses.
The BS-MRMR performs significantly the best in the predic-
tion of counting runtime performance metric, which may be
attributed to the shared information from other correlated met-
rics. We then further investigate the estimated precision matrix
€ and the corresponding correlation matrix. In Figure 7(a), the
median values of € and the estimated 95% credible intervals
are visualized in matrix bar plots with error bars. Note that the
median values of € are standardized in the range of [—1,1]
with diagonal elements to be all ones. Figure 7(b) plots the
median values of correlation matrix with 95% credible intervals,
which are converted from the estimated precision matrix. This
correlation matrix well aligns with the generation of the runtime
performance metrics. For example, the counting metric Y3 is
correlated with the continuous metric Y; (i.e., corr(&1,&3) =
0.218), since the number of sub-steps that can be executed in 5
sec highly depends on the CPU utilization. As another example,
Y, is highly correlated with Yy (i.e., corr(£;,€4) = 0.637),
since Y} is generated by comparing Y, with a certain threshold.
Besides, Figure 7 presents the sparsity of the estimated precision
matrix € with narrow credible intervals, which demonstrates
the effectiveness of the slack-and-slab prior imposed in the
precision matrix 2.

Moreover, we also investigate statistical inferences for the
uncertainty quantification of the predicted mixed metrics.
Figure 8(a) reports the median of the predicted latent responses
&1,...,&5 by the BS-MRMR and the associated 95% credible
intervals on the testing data. In Figure 8, 95% credible intervals
are presented by the shaded region, the median values of the
predicted latent variables are plotted in black solid lines, and
the true responses are plotted in blue dotted lines. Figure 8(b)
and (c) report the prediction and the associated 95% credible
intervals on the testing data from the BS-GLM and HGT meth-
ods, respectively. It is noted that the true responses are mainly
contained by the 95% credible intervals from the proposed BS-
MRMR model, while the 95% credible intervals of the BS-GLM
and HGT do not perform well to cover the true responses.
The narrow credible intervals of the BS-MRMR model can
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Figure 7. Estimated dependency (i.e., precision matrix) of the latent responses (i.e.,
&1,...,&s) from the BS-MRMR method, where the shadow bars present the median
values, and 95% credible intervals are presented in the form of error bars and labels
on subplots.

Table 4. Settings for sensitivity study with five factors and two levels at each factor.

Factors Level 1 Level 2
(a1,a3) amn (2,2)
(a3,a4) (2p,p) p.p)
(as, ap) (g,9(a—1)/2) 4.9
(o, 1) q/2,9) q,9)
(00,01) (0.1,3) 0.2,2)

be attributed to the joint modeling of mixed responses and
the quantification of hidden associations among these mixed
responses. Note that the narrow credible intervals indicate
low uncertainty in predicting runtime performance metrics. In
addition, it is seen that the BS-GLM with Poisson response
provides unstable prediction, which leads to extremely large
credible intervals (see exp (§3) in Figure 8(b)). Besides, FS-GLM
cannot provide uncertainty quantification, hence, its intervals
are not available.

In addition, we also conduct the sensitivity analysis on the
choice of priors with respect to hyper-parameters in the pro-
posed BS-MRMR model. Specifically, we set a full factorial
design for five pairs of hyperparameters as five factors with two
levels for each factor. The five factors and levels are listed in
Table 4. The 10-fold cross-validations are used to check the
prediction performance of the proposed method under 2°(=
32) setting of hyper-parameters. Detailed settings for 32 designs
are summarized in Table 8 of the supplementary materials.
From the results (Table 5), one can see there is not significant
differences under different setting of prior hyper-parameters,
indicating that the proposed BS-MRMR method is not sensitive
to the choice of priors.

To support predictive offloading in Fog manufacturing, the
offloading method should determine both the offloading strate-
gies (e.g., randomly offloading, closest distance-based offload-
ing, etc.) and the offloading decisions by considering not only
the predicted runtime performance metrics, but also the uncer-
tainty associated with the predictions. For example, it is con-
fident for the predictive offloading strategy to optimize the
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Figure 8. The median of the predicted latent responses &1, . . .

(c) the HGT.

Table 5. Sensitivity study results to explore different combinations of priors.

, &5 and the associated 95% credible intervals on the testing data: (a) the proposed BS-MRMR, (b) the BS-GLM,

DOE RMSE Normal RMSE Poisson ME DOE RMSE Normal RMSE Poisson ME
1 0.515(0.043) 10.281(0.417) 0.051(0.010) 17 0.517(0.044) 10.248(0.459) 0.053(0.011)
2 0.516(0.044) 10.141(0.418) 0.055(0.011) 18 0.510(0.043) 10.234(0.418) 0.054(0.011)
3 0.520(0.044) 10.325(0.487) 0.055(0.011) 19 0.521(0.044) 10.385(0.447) 0.051(0.010)
4 0.519(0.044) 10.227(0.406) 0.056(0.011) 20 0.519(0.043) 10.490(0.494) 0.052(0.011)
5 0.514(0.044) 10.341(0.523) 0.050(0.010) 21 0.525(0.044) 10.239(0.437) 0.053(0.011)
6 0.515(0.044) 10.291(0.445) 0.051(0.010) 22 0.517(0.044) 10.224(0.442) 0.055(0.011)
7 0.522(0.045) 10.303(0.444) 0.055(0.010) 23 0.518(0.044) 10.406(0.441) 0.053(0.011)
8 0.524(0.044) 10.367(0.483) 0.055(0.012) 24 0.522(0.044) 10.170(0.447) 0.052(0.010)
9 0.517(0.044) 10.289(0.422) 0.054(0.010) 25 0.529(0.044) 10.318(0.424) 0.055(0.010)
10 0.515(0.044) 10.225(0.459) 0.053(0.011) 26 0.519(0.044) 10.185(0.434) 0.055(0.010)
1 0.517(0.044) 10.285(0.423) 0.054(0.010) 27 0.517(0.044) 10.225(0.418) 0.051(0.010)
12 0.515(0.044) 10.218(0.419) 0.051(0.010) 28 0.518(0.044) 10.366(0.419) 0.052(0.010)
13 0.518(0.044) 10.284(0.443) 0.053(0.011) 29 0.520(0.043) 10.310(0.424) 0.052(0.011)
14 0.513(0.043) 10.405(0.485) 0.053(0.011) 30 0.515(0.043) 10.386(0.483) 0.052(0.011)
15 0.525(0.044) 10.521(0.485) 0.051(0.010) 31 0.515(0.044) 10.285(0.489) 0.053(0.011)
16 0.521(0.045) 10.193(0.418) 0.054(0.012) 32 0.515(0.044) 10.359(0.406) 0.056(0.013)

NOTE: See detailed settings of each run in Table 8 of the supplementary materials.

offloading decision based on the accurate prediction with low
prediction uncertainty. Thus, the offloading decisions can be
optimized via the algorithm in Chen et al. (2018) or Zhang et al.
(2017) based on the predicted runtime performance metrics.

While the high prediction uncertainty will prevent the adoption
of the predictive oftloading strategy, which highly depends on
the accuracy of the predictions. Hence, other offloading strate-
gies are preferred under this circumstance.
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6. Discussion

This work develops a Bayesian regression for jointly model-
ing mixed multi-responses to achieve accurate prediction and
uncertainty quantification with meaningful model interpreta-
tion. The proposed BS-MRMR method can quantify the hidden
associations among mixed responses to improve the prediction
performance. As evidenced in the case study of Fog manufac-
turing, the superior prediction performance of the BS-MRMR
model with the capability of uncertainty quantification demon-
strates its merits to support predictive offloading in Fog comput-
ing network. Not restricted to Fog manufacturing, the proposed
method can also be applied in other areas such as health care
and material science.

There are several directions for future researches. One direc-
tion is to investigate how to incorporate the quantified predicted
uncertainty in the predictive offloading method by formulat-
ing the offloading problem as a chance-constrained optimiza-
tion problem. Then the optimized offloading decisions can be
more trustworthy to the performance of the predictive models.
Besides predictive offloading, the proposed BS-MRMR model
also facilitates the optimization of the Fog computing archi-
tecture by evaluating different designs based on the predicted
performance metrics. Another direction is to extend the pro-
posed BS-MRMR model to other types of responses such as cen-
sored outcomes and functional responses (Sun et al. 2017). For
example, one may consider the proposed method for functional
mixed responses, which considers runtime performance metrics
as time series, hence, providing more informative prediction.
Moreover, when the data are functional with no predictors avail-
able, several statistical techniques such as spline and wavelet
can be applied to create a set of predictors. Then the proposed
BS-MRMR method could accommodate such situations where
the priors for group and individual sparsity need to be modi-
fied accordingly. Finally, we note that there are few theoretical
results for the model of mixed multivariate responses due to
the complex structure in the responses. For the case of single
binary response and single continuous response, Kiiriim et al.
(2016) characterized the binary response using the latent vari-
able and established the asymptotic normality of their estimator.
It will be an interesting to borrow their ideas to investigate
the posterior consistency for the proposed BS-MRMR, which
is a Bayesian approach of using latent variables. Note that the
proposed method adopt the spike-and-slab priors to enable
variable selection, additional techniques such as Bayes factor are
needed to investigate the estimation and selection consistency.

Supplementary Materials

The supplementary materials for this article contain the following: (a)
detailed derivation of full-conditional distributions; (b) detailed perfor-
mance comparison in numerical study; (c) detailed full factorial design for
sensitivity study of prior settings; and (d) data and R implementation of the
proposed BS-MRMR method for numerical study.

Acknowledgments

The authors would like to sincerely thank the editor, associate editor, and
two referees for their insightful and constructive comments for helping
improve the article.

Disclosure Statement

The authors report that there are no competing interests to declare.

Funding

Deng’s research was supported by the National Science Foundation CISE
Expedition (CCF-1918770) and Virginia Tech Data Science Faculty Fellow-
ship. Kang’s research was supported by the Natural Science Foundation of
Liaoning Province (2022-MS-179).

ORCID

Xiaoyu Chen 2 https://orcid.org/0000-0002-1870-5290
Xiaoning Kang © https://orcid.org/0000-0003-0394-6240
Xinwei Deng & https://orcid.org/0000-0002-1560-2405

References

Bradley, J. R. (2022), “Joint Bayesian Analysis of Multiple Response-Types
Using the Hierarchical Generalized Transformation Model,” Bayesian
Analysis, 17,127-164. [207,210,211,214,216]

Chen, X., and Jin, R. (2020), “Adapipe: A Recommender System for Aadap-
tive Computation Pipelines in Cyber-Manufacturing Computation Ser-
vices,” IEEE Transactions on Industrial Informatics, 17, 6221-6229.
[215]

Chen, X., Wang, L., Wang, C,, and Jin, R. (2018), “Predictive Offload-
ing in Mobile-Fog-Cloud Enabled Cyber-Manufacturing Systems,” in
2018 IEEE Industrial Cyber-Physical Systems (ICPS), pp. 167-172. IEEE.
[206,215,217]

Cox, D. R., and Wermuth, N. (1992), “Response Models for Mixed Binary
and Quantitative Variables,” Biometrika, 79, 441-461. [207]

Deng, X., and Jin, R. (2015), “Qq Models: Joint Modeling for Quantitative
and Qualitative Quality Responses in Manufacturing Systems,” Techno-
metrics, 57, 320-331. [207]

DeYoreo, M., and Kottas, A. (2018), “Bayesian Nonparametric Modeling for
Multivariate Ordinal Regression,” Journal of Computational and Graph-
ical Statistics, 27, 71-84. [207]

Dunson, D. B. (2000), “Bayesian Latent Variable Models for Clustered
Mixed Outcomes,” Journal of the Royal Statistical Society, Series B, 62,
355-366. [207]

Fahrmeir, L., and Raach, A. (2007), “A Bayesian Semiparametric Latent
Variable Model for Mixed Responses,” Psychometrika, 72, 327-346. [207]

Fitzmaurice, G. M., and Laird, N. M. (1995), “Regression Models for a
Bivariate Discrete and Continuous Outcome with Clustering,” Journal
of the American statistical Association, 90, 845-852. [207]

Hwang, B. S., and Pennell, M. L. (2014), “Semiparametric Bayesian Joint
Modeling of a Binary and Continuous Outcome with Applications in
Toxicological Risk Assessment,” Statistics in Medicine, 33, 1162-1175.
[207]

Kang, L., Kang, X., Deng, X., and Jin, R. (2018), “A Bayesian Hierarchical
Model for Quantitative and Qualitative Responses,” Journal of Quality
Technology, 50, 290-308. [207]

Kang, X., Chen, X,, Jin, R,, Wu, H,, and Deng, X. (2021), “Multivariate
Regression of Mixed Responses for Evaluation of Visualization Designs,”
IISE Transactions, 53, 313-325. [207,208]

Kang, X., Kang, L., Chen, W., and Deng, X. (2022), “A Generative Approach
to Modeling Data with Quantitative and Qualitative Responses,” Journal
of Multivariate Analysis, 190, 104952. [208]

Kiiriim, E., Li, R., Shiffman, S., and Yao, W. (2016), “Time-Varying Coef-
ficient Models for Joint Modeling Binary and Continuous Outcomes in
Longitudinal Data,” Statistica Sinica, 26, 979-1000. [208,218]

Li, Q, Pan, ., and Belcher, J. (2016), “Bayesian Inference for Joint Modelling
of Longitudinal Continuous, Binary and Ordinal Events,” Statistical
Methods in Medical Research, 25, 2521-2540. [207]

Liquet, B., Mengersen, K., Pettitt, A., and Sutton, M. (2017), “Bayesian Vari-
able Selection Regression of Multivariate Responses for Group Data,”
Bayesian Analysis, 12, 1039-1067. [208,209,211]


https://orcid.org/0000-0002-1870-5290
https://orcid.org/0000-0003-0394-6240
https://orcid.org/0000-0002-1560-2405

McCulloch, C. (2008), “Joint Modelling of Mixed Outcome Types Using
Latent Variables,” Statistical Methods in Medical Research, 17, 53-73.
[207]

Ning, B., Jeong, S., and Ghosal, S. (2020), “Bayesian Linear Regression for
Multivariate Responses under Group Sparsity;” Bernoulli, 26,2353-2382.
[208]

Regan, M. M., and Catalano, P. J. (1999), “Likelihood Models for Clustered
Binary and Continuous Out Comes: Application to Developmental Tox-
icology,” Biometrics, 55, 760-768. [207]

Scheipl, E, Fahrmeir, L., and Kneib, T. (2012), “Spike-and-Slab Priors for
Function Selection in Structured Additive Regression Models,” Journal
of the American Statistical Association, 107, 1518-1532. [209]

Stamey, J. D., Natanegara, E, and Seaman Jr, J. W. (2013), “Bayesian Sample
Size Determination for a Clinical Trial with Correlated Continuous and
Binary Outcomes,” Journal of Biopharmaceutical Statistics, 23, 790-803.
[207]

Sun, H,, Rao, P. K,, Kong, Z. ], Deng, X., and Jin, R. (2017), “Functional
Quantitative and Qualitative Models for Quality Modeling in a Fused
Deposition Modeling Process,” IEEE Transactions on Automation Science
and Engineering, 15, 393-403. [218]

Wagner, H., and Tichler, R. (2010), “Bayesian Estimation of Random
Effects Models for Multivariate Responses of Mixed Data,” Computa-
tional Statistics & Data Analysis, 54, 1206-1218. [208]

Wang, H. (2015), “Scaling it Up: Stochastic Search Structure Learning in
Graphical Models,” Bayesian Analysis, 10, 351-377. [209]

Wu, D, Liu, S., Zhang, L., Terpenny, J., Gao, R. X., Kurfess, T., and
Guzzo, ]. A. (2017), “A Fog Computing-Based Framework for Process

TECHNOMETRICS (&) 219

Monitoring and Prognosis in Cyber-Manufacturing,” Journal of Manu-
facturing Systems, 43, 25-34. [206]

Wu, H., Deng, X., and Ramakrishnan, N. (2018), “Sparse Estimation of
Multivariate Poisson Log-Normal Models from Count Data,” Statistical
Analysis and Data Mining: The ASA Data Science Journal, 11, 66-77.
[207]

Yang, Y., Kang, J., Mao, K., and Zhang, J. (2007), “Regression Models
for Mixed Poisson and Continuous Longitudinal Data,” Statistics in
Medicine, 26, 3782-3800. [207]

Yeung, W. Y., Whitehead, J., Reigner, B., Beyer, U,, Diack, C., and Jaki,
T. (2015), “Bayesian Adaptive Dose-Escalation Procedures for Binary
and Continuous Responses Utilizing a Gain Function,” Pharmaceutical
Statistics, 14, 479-487. [207]

Zhang, K., Mao, Y,, Leng, S., He, Y., and Zhang, Y. (2017), “Mobile-Edge
Computing for Vehicular Networks: A Promising Network Paradigm
with Predictive Off-Loading,” IEEE Vehicular Technology Magazine, 12,
36-44. [217]

Zhang, Y., Niyato, D., and Wang, P. (2015), “Offloading in Mobile Cloudlet
Systems with Intermittent Connectivity, IEEE Transactions on Mobile
Computing, 14, 2516-2529. [206]

Zhang, Y., Wang, L., Chen, X, and Jin, R. (2019), “Fog Computing for
Distributed Family Learning in Cyber-Manufacturing Modeling,” in
2019 IEEE International Conference on Industrial Cyber Physical Systems
(ICPS), pp. 88-93. IEEE. [206,215]

Zhou, Y., Whitehead, J., Bonvini, E., and Stevens, J. W. (2006), “Bayesian
Decision Procedures for Binary and Continuous Bivariate Dose-
Escalation Studies,” Pharmaceutical Statistics, 5, 125-133. [207]



	Abstract
	1.  Introduction
	2.  Literature Review
	3.  The Proposed Bayesian Sparse MRMR
	3.1.  Priors for Group and Individual Sparsity
	3.2.  Posterior and Inference

	4.  Numerical Study
	5.  Case Study in Fog Manufacturing
	6.  Discussion
	Supplementary Materials
	Acknowledgments
	Disclosure Statement
	Funding
	ORCID
	References


