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ABSTRACT
Smoothing spline is a popular method in non-parametric function estimation. For the analysis
of data from real applications, specific shapes on the estimated function are often required to
ensure the estimated function undeviating from the domain knowledge. In this work, we focus
on constructing the exact shape constrained smoothing spline with efficient estimation. The
‘exact’ here is referred as to impose the shape constraint on an infinite set such as an interval in
one-dimensional case. Thus the estimation becomes a so-called semi-infinite optimisation prob-
lemwith an infinite number of constraints. The proposedmethod is able to establish a sufficient
and necessary condition for transforming the exact shape constraints to a finite number of con-
straints, leading to efficient estimation of the shape constrained functions. The performance of
the proposed methods is evaluated by both simulation and real case studies.
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1. Introduction

In recent years, non-parametric smoothing methods
have gained popularity in various science and engi-
neering areas such as economics, biology, smart man-
ufacturing, etc. One advantage of these methods is
that they do not assume strong parametric structure
for the underlying model. While in the analysis of
data from real applications, researchers often demand
a specific shape on the estimated function to ensure
the estimated function undeviating from their domain
knowledge. For example, shape with monotonicity are
often required in the estimation of dose-response func-
tion (Kelly & Rice, 1990) in medicine. The degradation
curve of scaffolds in engineered scaffold fabrication
often requires to be monotonic and concave (Zeng,
Deng, & Yang, 2016). The estimation of human growth
curve (Ducharme & Fontez, 2004) in biometrics and
estimation of utility function (Matzkin, 1991) in eco-
nomics often needs the concavity in shape.

Among various non-parametric smoothers, spline
smoothing and kernel smoothing are quite popular.
Theoretical and numerical properties of these tech-
niques have been well studied. See Wahba (1990) and
Green and Silverman (1993) for thorough discussions
of the spline smoothing problem, and Fan and Gij-
bels (1996) and Wand and Jones (1995) for the kernel
smoothing problem. Unlike its unconstrained counter-
part, shape constrained smoother has not received large
attentions in the statistics literature. As pointed inDele-
croix and Thomas-Agnan (2000), most of the isotonic
estimates are based on splines rather than on kernels

since enforcing the restrictions at theminimisation step
appears to be a natural solution.

There are various splines to enable the shape con-
straints. For example, B-spline is a popular approach
because of its special properties: non-decreasing coeffi-
cients imply non-decreasing resulting function (Brezger
& Steiner, 2003; Dierckx, 1980; He & Shi, 1998; Kelly
& Rice, 1990). There are also I-spline methods (Curry
& Schoenberg, 1966; Ramsay, 1988) to integrate over
non-negative M-splines for constructing monotone
smoothers. Meyer (2008) defined the C-splines that
at each observation to impose the shape constraint.
Combinations of monotonicity and convexity can be
imposed by the regression splines. Meyer (2012) also
developed penalised splines under shape constraints.
(Liao & Meyer, 2017) proposed estimators of change-
point based on constrained splines. Meyer (2018) pro-
posed the constrained generalised additivemodel using
iteratively reweighted cone projection algorithm. The
smoothing spline is another popular approach, ofwhich
the most notable works include (Wang & Li, 2008)’s
second order cone programming to create monotone
smoothing spline and (Turlach, 2005)’s approach of
adaptively adding constraints to create shape con-
strained smoothing spline.

In this work, we consider the smoothing spline to
study the exact shape constraints. Here the meaning of
‘exact’ is referred as to impose the shape constraint on
an infinite set such as an interval in one-dimensional
case. It leads to a so-called semi-infinite optimisa-
tion problem with an infinite number of constraints.
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Suppose that the observational data are (xi, yi) for i =
1, . . . , n, and we assume L ≤ x1 < · · · < xn ≤ U. The
exact shape constrained smoothing spline is defined as
the solution of the following optimisation problem:

minimise
f

n∑
i=1

(yi − f (xi))2 + λ

∫ b

a
[f (2)(t)]2 dt,

(1a)

subject to f (r)(x) ≥ 0 for x ∈ [L,U], (1b)

where f (r)(x) is the rth derivative of f (x) and λ ≥ 0 is a
tuning parameter. The formulation in (1a) without con-
straint is the well-known smoothing spline problem,
the solution of which is known as the cubic smooth-
ing spline over the class of twice differential functions.
The framework for r = 1 and r = 2 corresponds to
the monotone non-decreasing and convex shape con-
straint, respectively. The monotone decreasing or con-
cave constraint can be easily obtained by reversing the
inequality sign in (1b). One can pursue either one of
the constraints or some of them under this framework.
For example, non-global constraint, such as convex for
x ≤ 0 and concave for x>0 is possible. A mixed con-
straint, such as combination of concave and monotone
increasing, can also be applied.

The challenges for the estimation in (1) is the con-
straints are defined on an infinite set, which implies an
infinite number of constraints. By taking advantage of
the close connection between the natural cubic spline
and the smoothing spline, the proposedmethod utilises
a good representation of smoothing spline to establish
a sufficient and necessary condition for transforming
the exact shape constraints in (1b) to a finite num-
ber of constraints. The resultant solution to the case
of r = 2 is straightforward, and the challenge arises
when r = 1. To the best of our knowledge, an exact
solution for r = 1 has yet to be found in the literature.
To facilitate the computation of parameter estimation,
we also develop efficient algorithm based on matrix
approximation for the large data.

The remaining paper is organised as follows.
Section 2 revisits the connection between the natu-
ral cubic splines and smoothing splines. The proposed
exact shape-constraint smoothing spline is detailed
in Section 3. An efficient computation algorithm for
parameter estimation are developed in Section 4. Sec-
tions 5 and 6 evaluate the performance of the proposed
method from a simulation study and an application
to real life data. We conclude this work with some
discussion in Section 7.

2. Revisit of natural cubic spline and
smoothing spline

The natural cubic spline (NCS) plays an essential role
for the smoothing spline. Suppose that the observed

data are (x1, y1), . . . , (xn, yn) with x1 < · · · < xn. An
NCS function f (x) with knots at x1, . . . , xn is a piece-
wise polynomial of degree up to three with breakpoints
at x1, . . . , xn. In addition, f (x) is twice continuously dif-
ferentiable at the knots and linear beyond the boundary.

Let f (x) be a NCS with knots at x1, . . . , xn. By
definition, f (x) can be expressed as

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f0(x) = c0x + d0, x < x1,
fi(x) = aix3

+bix2 + cix + di, xi ≤ x < xi+1

for i = 1, . . . , n − 1,
fn(x) = cnx + dn, x ≥ xn,

(2a)

with restrictions

fi(xi+1) = fi+1(xi+1), f ′i (xi+1) = f ′i+1(xi+1), f ′′i (xi+1)

= f ′′i+1(xi+1) for i = 0, . . . , n − 1. (2b)

The derivatives of f (x) can be obtained by taking
derivative on each polynomial and maintaining the rel-
evant constraints. Please refer to Appendix 1 for explicit
expressions. This piecewise polynomial representation of
an NCS in (2) is a key for formulating the shape con-
straints in Section 3. For estimation of f (x), however,
there exists another presentation for computational
purpose. Specifically, we first estimate f (x1), . . . , f (xn)
by writing them as a linear combination of specific
basis functions and estimate the corresponding coeffi-
cients. Then we can utilise the value-second derivative
representation (Green& Silverman, 1993) to recover the
entire function f (x). As a result, the problem in (1a) can
be converted into a ridge regression-like problem that
can be efficiently solved.

Let 1n be length-n vector of ones, x = (x1, . . . , xn)T
and g = (f (x1), . . . , f (xn))T . Without loss of general-
ity, we assume x is centred with zero mean. We can
construct the banded matrices Q and R according to
Equations (A1) and (A2) in Appendix A.2. The linear
mixed model representation described in Appendix A.3
allows us to rewrite the NCS formulation in (2) as

g = 1nθ0 + xθ1 + Aβ , (3)

here A = Q(QTQ)−1R1/2 ∈ R
n×(n−2). The θ1, θ2 and

β = (β1, . . . ,βn−2)
′ are parameters. By construction,

matrix A has full rank. It is easy to check that 1Tnx = 0,
1TnA = 0 and xTA = 0. Hence {1n, x,A} form a basis of
the n-dimensional euclidean space. Furthermore, if we
define matrix K = QR−1QT ∈ R

n×n, then we get:∫
[f ′′(t)]2dt = gTKg = βTβ . (4)

It is worth to pointing out that the underlying model
for the smoothing spline can be considered as a nat-
ural cubic spline with knots at x1, . . . , xn and at most
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k = 2[n/2] + 2 additional knots of which the locations
are unknown (Utreras, 1985). Here we made a mild
assumption that f (x) is a natural cubic spline with knots
at x1, . . . , xn. Combining this assumption with results
in (3) and (4), the smoothing spline expressed in (1a) is
equivalent to the problem of

minimise
(θ0,θ1,β)

n∑
i=1

(yi − θ0 − xiθ1 − Aiβ)2 + λ1β
Tβ ,

(5a)
where Ai is the ith row of matrix A. This is simply a
ridge regression problem with response vector y and
covariates matrix (1n, x,A) without penalising θ0 and
θ1.

When one obtain the estimate of θ = (θ0, θ1, b)T , the
entire estimated function can be constructed by follow-
ing the procedure in Appendix A.3. one can actually
obtain the piecewise polynomial representation of the
estimated function by following the steps in Appendix
A.4. That is, the piecewise polynomial representation is
fully specified when (θ1, θ2,β) are known.

3. Exact shape-constrained smoothing spline

To have the exact shape constraint, one major difficulty
is that the inequality constraint in (1b) cannot be guar-
anteed by simply enforcing constraints at x1, . . . , xn.
Due to these challenges, many computable ‘solutions’
to the shape constrained smoothing spline problem
described in ((1a) and (1b)) are approximations of
some kind. Some approximate by assuming the result-
ing function being a natural cubic spline with knots
at all data points (Turlach, 2005; Wang & Li, 2008),
others approximate by discretisation of infinite con-
straint (1b) to a finite number of constraints (Mammen
& Thomas-Agnan, 1999; Nagahara & Martin, 2013;
Villalobos &Wahba, 1987).

It is known that the solution to the exact shape-
constraint smoothing spline in (1a) and (1b) is a natural
cubic spline with knots at x1, . . . , xn and at most k =
2[n/2] + 2 additional knots of which the locations are
unknown as proved in Theorem 3.3 in (Utreras, 1985).
Unfortunately, it does not provide much practical use
because of the unknown locations of those additional
knots. However, it sheds some lights that a natural
cubic spline with knots at all data points is an ade-
quate approximation to the theoretically correct model
proved by Utreras (1985). Therefore, we develop our
proposed method under the consideration that the esti-
mated model is a natural cubic spline with knots at
all data points. Specifically, we propose a representa-
tion only using n−1 constraints that is equivalent to
the infinite constraint (1b) for r = 1or2. Compared
to Turlach (2005) who took an adaptive approach to
adding constraints and thus changing the underly-
ing quadratic program for parameter estimation, the

proposed method optimises over a larger underly-
ing model space yet it maintains the exactness of the
shape constraint. Different from Wang Li (2008) who
only works on monotonicity constraint (r = 1), our
proposed method also works on convexity constraint
(r = 2) and can easily be extended to mixed and non-
global constraint.

The key idea of our proposed method is to utilise
the piecewise polynomial representation ofNCS to pro-
vide a sufficient and necessary condition in converting
constraint (1b) for r = 2 and r = 1 to the form of
c(θ ; x) � 0, where we define notation � as element-
wise greater than or equal to. Then we can express the
shape constrained smoothing spline problem as

minimise
(θ0,θ1,β)

n∑
i=1

(yi − θ0 − xiθ1 − Aiβ)2 + λ1β
Tβ ,

(5a)

subject to c(θ ; x) � 0. (5b)

The formulation above can be optimised by many stan-
dard optimisation methods that take non-linear con-
straints.

The shape constraint (1b) for r = 1 (monotonicity)
and r = 2 (convexity) are presented below as Theo-
rems 3.1 and 3.2, respectively. The mixed constraints
can be achieved by combining the corresponding con-
straints.

Theorem 3.1: For the smoothing spline, the monotone
non-decreasing constraint, defined as f ′(x) ≥ 0, holds if
and only if constraint (5b) with

c(θ ; x) = (c1(θ ; x), . . . , cn−1(θ ; x))T ,

where

ci(θ ; x) =

⎧⎪⎪⎨
⎪⎪⎩
min

(
f ′(xi), f ′(xi+1), f ′

(−bi
3ai

))
,

if −bi
3ai ∈ (xi, xi+1) and ai > 0

min(f ′(xi), f ′(xi+1)), otherwise

(6)

holds.

Proof: Based on the polynomial representation of
NCS, it is easy to get the first derivative f ′(x) as

f ′(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f ′0(x) = c0, x < x1,
f ′i (x) = 3aix2

+2bix + ci, xi ≤ x < xi+1 for
i = 1, . . . , n − 1,

f ′n(x) = cn, x ≥ xn,

with restrictions f ′i (xi+1) = f ′i+1(xi+1), f ′′i (xi+1)

= f ′′i+1(xi+1), for i = 0, . . . , n − 1. (7)

Clearly, f ′(x) is a continuous piecewise polynomial of
at most second order on each interval [x1, x2), . . . ,
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[xn−1, xn), and constant on the boundary interval
(−∞, x1), and [xn,∞). For i = 1, . . . , n − 1, if ai =
0, f ′i (x) is a linear function on [xi, xi+1), so f ′(x) ≥
min(f ′(xi), f ′(xi+1)) on the interval. If ai �= 0, f ′i (x) is a
parabola on [xi, xi+1) with stationary point at −bi/3ai,
specifically

(1) if ai < 0, f ′i (x) is concave. So regardless of
the location of the stationary point, f ′(x) ≥
min(f ′(xi), f ′(xi+1)) on [xi, xi+1).

(2) if ai > 0, f ′i (x) is a convex parabola where the
stationary point may or may not lie on [xi, xi+1).
(a) If the stationary point is not on the inter-

val, f ′i (x) is monotone on [xi, xi+1), so f ′(x) ≥
min(f ′(xi), f ′(xi+1)) on the interval.

(b) If the stationary point is on the interval,
global minimum could be at either the
boundary or the stationary point, so f ′(x) ≥
min(f ′(xi), f ′(xi+1), f ′(−bi/3ai)) on the inter-
val.

Non-negativity on the boundary interval (−∞, x1)
and [xn,∞) hold if c0 ≥ 0 and cn ≥ 0. But no extra con-
straint is needed because by continuity of f ′(x), c0 =
f ′1(x1) and cn = f ′n−1(xn), non-negativitiy is already
ensured by c1(θ ; x) ≥ 0 and cn−1(θ ; x) ≥ 0.

If c(θ , x) � 0, then each piecewise polynomial, f ′i (x)
for i = 0, . . . , n, is non-negative, which in turn implies
that the whole function f ′(x) must be non-negative.
Therefore, validity of inequality (6b) implies the mono-
tone non-decreasing constraint.

The other direction is obvious by definition. �

Theorem 3.2: For the smoothing spline, the convex-
ity constraint, defined as f ′(x) ≥ 0, holds if and only if
constraint (5b) with

c(θ ; x) = (c1(θ ; x), . . . , cn−1(θ ; x))T ,

where

ci(θ ; x) = min(f ′′(xi), f ′′(xi+1)), (8)

holds.

Proof: Based on the polynomial representation of
NCS, it is easy to get the first derivative f ′′(x) as

f ′′(x)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f ′′0 (x) = 0, x < x1,
f ′′i (x) = 6aix + 2bi, xi ≤ x < xi+1 for

i = 1, . . . , n − 1,
f ′′n (x) = 0, x ≥ xn,

with restrictions f ′′i (xi+1) = f ′′i+1(xi+1),

for i = 0, . . . , n − 1. (9)

The f ′′(x) is a continuous piecewise linear polynomial
on each interval (−∞, x1), [x1, x2), . . . , [xn−1, xn) and

[xn,∞). Since f ′′(x) = 0 for any x ≤ x1 and x ≥ xn, we
only need to consider f ′′(x)when x ∈ (x1, xn). For any i,
linearity of f ′′i (x) implies f ′′(x) ≥ min(f ′′(xi), f ′′(xi+1))

on interval [xi, xi+1). If c(θ ; x) � 0, each piecewise
polynomial, f ′′i (x) for i = 0, . . . , n, is non-negative,
which in turn implies that the whole function f ′′(x) is
non-negative. Therefore, inequality (6b) implies con-
vexity constraint.

The other direction is obvious by definition. �

The above theorems are defined for global con-
straint, i.e. constraint that holds on the entire domain of
the function [L,U]. To extend the results to mixed con-
straint and non-global constraint, we can easily apply
Theorem 3.2 and Theorem 3.1 to different local inter-
vals [Lj,Uj], where L ≤ Lj ≤ Uj ≤ U. In addition, we
can impose up to second-order smooth constraint on
the boundary of local intervals. A general procedure is
described as follows:

Step 1. Let Li for i = 1, . . . ,M be the points where
monotonicity/convexity changes, and L0 = L
and LM+1 = U. Partition the domain of f (x)
into (L0, L1], . . . , (LM , LM+1). As a result, f (x)
on each interval only requires one shape con-
straint.

Step 2. For each interval, impose constraint according
to Theorem 3.2 and Theorem 3.1.

Step 3. For i = 1, . . . ,M, add f ′(Li) = 0 for monotone
constraint or f ′′(Li) = 0 for convexity con-
straint.

The importance of Step 3 is that it can prevent
the stationary/inflection point of the estimated func-
tion from floating between the knots immediately
smaller and larger than the point where monotonic-
ity/convexity changes.

4. Efficient algorithm for parameter
estimation

Note that the optimisation problem described in (6a)
and (6b) is a quadratic programming with non-
linear constraints. Using Python, our implementa-
tion algorithm is based on the ralg solver under the
OpenOPT platform. The ralg solver resembles the
quasi-Newton Method with adaptive space dilation
developed by Shor and Zhurbenko (1971). Two advan-
tages for this choice are that it accepts user-provided
first-derivative and allows large number of constraints.

4.1. Computation of large data

When the number of observation n is large, the grow-
ing dimension of the n × (n − 2) matrix A and vector
of constraints c(θ ; x) are the bottleneck for efficient
computation. To address this challenge, we consider
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to approximate the matrix A by a n × K dimensional
matrix A∗, where K ≤ n − 2 is independent of n. It
also allows the dimension of θ to be some fixed integer
K + 2 ≤ n.

FollowingWand and Ormerod’s (2008)mixed model
formulation in the semiparametric regression, we adopt
a good way to approximateAwithA∗ = BL, where B is
an n × (K + 4) matrix and L is an (K + 4) × (K + 2)
matrix.

The construction of B is described as follows. First
we define κ1, . . . , κK+8 as

a = κ1 = κ2 = κ3 = κ4 = x1 − ε, κ5 = x1,

κ6, . . . , κK+3 to be the

×
(

1
K + 1

,
2

K + 1
, . . . ,

K
K + 1

)

× 100th percentile of x1, . . . , xn,

κK+4 = xn, b = κK+5 = κK+6

= κK+7 = κK+8 = xn + ε.

Then we construct B-spline basis functions (Hastie,
Tibshirani, & Friedman, 2001) B1,4(x), . . . ,BK+4,4(x)
based on knots sequence κ1, . . . , κK+8 as

Bi,1(x) =
{
1 if x ∈ [κi, κi+1)

0 otherwise,

for i = 1, . . . ,K + 7, and

Bi,m(x) = x − κi

κi+m−1 − κi
Bi,m−1(x)

+ κi+m − x
κi+m − κi+1

Bi+1,m−1(x),

for m = 2, 3, 4 and i = 1, . . . ,K + 8 − m. Conse-
quently, thematrixB is constructed with its (i, j)th entry
bi,j = Bj,4(xi).

The construction of matrix L is described as follows.
First we define an (K + 4) × (K + 4) matrix � with its
(i, j)th entry as

�i,j =
∫ b

a
B′′
i,4(x)B

′′
j,4(x) dx, (10)

where function B′′
i,4(x) is the second derivative function

of Bi,4(x) for i = 1, . . . ,K + 4 as following:

B′′
i,4(x) = 6

{
Bi,2(x)

(κi+3 − κi)(κi+2 − κi)

−
[

1
(κi+4 − κi+1)(κi+3 − κi+1)

+ 1
(κi+3 − κi)(κi+3 − κi+1)

]
Bi+1,2(x)

+ Bi+2,2(x)
(κi+4 − κi+1)(κi+4 − κi+2)

}

Based on the spectral decomposition, � can be written
as� = UDUT , whereU ∈ R

(K+4)×(K+4) is an orthog-
onal matrix and D ∈ R

(K+4)×(K+4) is diagonal matrix
with K + 2 positive entries and two zero entries on the
diagonal. Let d be a vector that contains theK + 2 posi-
tive entries inmatrixD, andmatrixUx ∈ R

(K+4)×(K+2)

contains the columns in U of which their positions
correspond to those positive entries inD. ThenL is con-
structed as L = Uxdiag(d− 1

2 ), where diag(d) denotes a
diagonal matrix with diagonal entries equal to vector d.

Wand and Ormerod (2008) shows that when
K = n−2,A∗ = BL = A.WhenK<n−2, by substitut-
ingmatrixA byA∗, the length of parameter vector θ∗ =
(θ0, θ1, b∗) reduces toK + 2 since the length of vector b∗
is K. Another advantage of using A∗ is that other than
the fact thatK ≤ n, the choice ofK is independent to n.

The essence of this approximation attributes to the
construction of matrix B in Step 1(c) above. The choice
ofK controls the length of knots sequence being used in
the construction of the B-spline basis functions. When
K is at its maximum of n−2, all data are used as the
knots sequence. Then no approximation will occur.
When K<n−2, a proper subset of data is used as the
knots sequence. One can understand this reduction in
the length of knots sequence as approximating the full
data with a properly chosen (equally spaced in terms of
percentile) subset of data. As a result of this approxima-
tion, there is a reduction in dimension from A to A∗.
For a proper choice of K, a large value of K close to n
may not lead to significant computational gain. While
a small value of K could make the approximation low
accurate. From our empirical experience, K = 30 pro-
vides a good balance between computational gain and
approximation quality.

4.2. Tuning parameter selection

The tuning parameter λ controls the smoothness of the
estimated function. As λ → ∞, the estimated function
approaches linearity (smoothest); whereas when λ →
0, the estimated function tends to the natural cubic
spline interpolant (roughest). Although the incorpo-
ration of appropriate monotonicity and/or convexity
constraints helps smooth out unnecessary roughness in
the estimated function, the choice of tuning parame-
ter λ for the exact shape constrained smoothing spline
is still important in obtaining a good fit. In this work,
we select the optimal value of λ that minimises mean
squared error using k-fold cross-validation.

5. Simulations

In this section, we evaluate the performance of our pro-
posed method, the shape constraint smoothing spline
(SCSS), under various non-linear functions and error
combinations. The methods of comparison include
the Brunk’s isotonic non-parametric estimator (Brunk),
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the unconstrained smoothing spline (SS), the pro-
posed SSCS with global monotone non-decreasing
constraint (SSCS-Monotone), the proposed SSCS with
problem specific convexity constraint (SSCS-Convex),
and the proposed SSCS with global monotone non-
decreasing and problem specific convexity constraints
(SSCS-Mixed). In addition, we also compare the regres-
sion spline under the aforementioned three types of
constraints, respectively, denoted as RS-Monotone, RS-
Convex, and RS-Mixed. We also compare the B-spline
method under the monotone non-decreasing con-
straint (BS-Monotone) and problem specific convex-
ity constraint (BS-Convex). The regression spline and
the B-spline methods are implemented using R Pack-
age cgam and spline2, respectively. Note that Wang
and Li (2008) kindly provided their code for compar-
ison, but requires a commercial optimiser, MOSEK,
which we currently have no access to.

The simulation data are generated from the follow-
ing model:

yi = f (xi) + εi, i = 1, . . . , 50,

where xi distributes uniformly between -10 to 10. The
function f (x) varies among examples as follows:

• Example 1: f (x) = 1/(1 + e−x) is an increasing
functionwhich is convex for x<0 and concavewhen
x>0,

• Example 2: f (x) = x3/103 is an increasing function
which is concave for x<0 and convex when x>0,

• Example 3: f (x) = 0I−10≤x≤−3 + 0.2I−3<x≤0
+ 0.5I0<x≤5 + 0.8I5<x≤8 + 1I8<x≤10 is a non-
decreasing step function,

• Example 4: f (x) = (20x2 + x3)/3000 is a non-
monotone functionwhich is convex for x > −20

3 and
concave when x < −20

3 ,
• Example 5: f (x) = (ex/20 − e−10/20)/e10/20

− e−10/20 is an increasing function which is convex
everywhere.

Figure 1 shows the visualisation of above func-
tions. For each example above, three different distri-
butions for ε are considered: 1) the normal distribu-
tion N(0, σ 2); 2) student t distribution with 10 degree
of freedom; and 3) Beta distribution Beta(3, 2). These
error distributions have zero mean and standard devi-
ation σ = 0.4. These simulation setup is identical to
Wang and Li (2008), except we added a globally convex
function in Example 5. For each setting, the simulation
is repeated for 500 times. The mean squared prediction
error MSPE(f̂ ) = 1/n

∑n
i=1(f̂ (xi) − f (xi))2 is used as

an evaluation criterion.
Table 1 reports the averaged MSPE (×100) and its

standard error (×100) over 500 repetitions for meth-
ods in comparison. It is clear that the proposedmethods
with appropriate constraint have smaller MSPE than
other methods in comparison. Note that it is important
to impose appropriate constraint. In Example 4 which
has a quadratic-shaped function, The performance of
SCSS-Monotone is not as good as the SS since the
monotone constraint is not proper here. When impos-
ing the convexity constraint, the SCSS-convex performs
much better than other methods. It is worth pointing
out the B-spline method has comparable performance
to the proposed method in Example 1, but not as good
as the proposed method in other examples.

Figure 1. Comparison of the five true functions used in simulation studies.
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Table 2. Simulation studies measuring the convergence of
SCSS based on the integrated mean squared errors.

E.g. 5 50 100 200 300

Normal Monotone 6.81 5.82 2.44 2.29
Convex 13.33 4.23 2.44 1.18
Mixed 4.95 2.41 1.39 1.17

Figure 5 to 10 in Appendix 3 report the estima-
tor percentiles (2.5% and 97.5%) of SCSS and other
estimators for Example 4 and Example 5. The SCSS-
Monotone, SCSS-Convex and SCSS-Mixed produce
slightly smoother percentile intervals compared to
other methods, especially at the left and right bound-
aries on the x axis. Example 4 reveals the behaviour
of SCSS under a mis-specified monotone constraint.
On the interval [−10, 0], the true function in Exam-
ple 4 is monotone decreasing but SCSS-Monotone is
constrained to be non-decreasing.

To further examine the rate of convergence, we con-
sider a numerical study to check the proposedmethod’s
convergence as the sample size gets large. Taking Exam-
ple 5 for elaboration, we allow the same size increasing
gradually from n = 50 to n = 300. At each given sam-
ple size, we compare the discrepancy between f (x) and
f̂ (x) by

∫
(f (xi) − f̂ (xi))2dx, Table 2 shows that as sam-

ple size increases, the function estimated by SCSS is
getting closer to the true function. Figure 2 reports
the convergence of the estimated function in Exam-
ple 5 under the normal error and convex constraint.
Results for the other two constraints can be found in
the Appendix 3.

6. Real data analysis

In this section, we evaluate the performance of the
proposed SCSS methods in comparison with the reg-
ular smoothing spline (SS). The Auto MPG Data from
UCI Machine Learning Repository (Lichman, 2013) is
used for our demonstration. This dataset concerning
fuel consumption contains 398 observations with nine
attributes: fuel consumption (miles per gallon), number
of cylinders, engine displacement (cubic inches), horse-
power, vehicle weight (pounds), time to accelerate from
0 to 60mph (sec.), model year (modulo 100), origin
of car (1. American, 2. European, 3. Japanese) and car
names. For both methods, the optimal value of tuning
parameter λ by minimising the average mean squared
error from 10-fold cross-validation.

We first analyse relationship between the weight
(weight) and the fuel consumption (mpg) of vehicles.
Figure 3 confirms the intuition of a negative correla-
tion between weight and mpg. Without any constraint,
SS provided amonotone estimate that is consistent with
the intuition. On the other hand, it is assuring to see
that SCSS-Monotone provides an estimate that almost
overlaps its unconstrained counterpart.
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Figure 2. SCSS convergence for function f (x) = (ex/20 − e−10/20)/(e10/20 − e−10/20) in Example 5 under normal error and convex
constraint.

Figure 3. Comparison between unconstrained (SS) andmonotone constrained (SCSS) smoothing spline for the AutoMPGData. The
response ismpg, modelled as a function ofweight.

Nextwe consider the vehicle’s volume (displacement)
to be the predictor variable instead of weight. In gen-
eral, one would expect a negative correlation between
mpg and displacement. Figure 4 reveals the potential
problemwhenprior knowledge on the function shape is

not incorporated. The wiggly function estimated by SS
contradicts the expectation of a monotone decreasing
relationship between mpg and displacement. While the
proposed SCSS-monotone capture the pattern of data
quite well.
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Figure 4. Comparison between unconstrained (SS) andmonotone constrained (SCSS) smoothing spline for the AutoMPGData. The
response ismpg, modelled as a function of displacement.

In a short summary, when one has prior shape infor-
mation about the function to be estimated, it would
be better to incorporate it into the estimation pro-
cess. The proposed shape constraint smoothing spline
can effectively help avoid unexpected results from non-
parametric method.

7. Discussion

In this work, we proposed to impose the exact shape
constraint on the smoothing spline, and enable efficient
estimation. Compared to other methods also based on
the fundamental assumption that the resulted function
is a NCS with knots at all data points, the proposed
SCSS method guarantees constraints to be followed
exactly and also allows mixed and/or non-global con-
straints.

The technique developed in the SSCSmethod can be
extended for the additive model, partially linear regres-
sion model, the non-parametric model with covaraites,
etc. The theoretical investigation of the asymptotic
convergence of SSCS can be quite challenging due to
the exact (i.e. over an interval) constraint. Some the-
oretical results are available for functional ANOVA
using spline with shape constraint at given finite loca-
tions (Dai & Chien, 2017). However, such results can
not be easily extended to the smoothing spline with
exact constraint. Another future study is to formu-
late necessary and sufficient conditions for function
bound constraint and log-convexity constraint. In addi-
tion, efficient optimisation methods that take advan-
tage of a quadratic programwith non-linear constraints
could be useful for further enhance our proposed
method.

Disclosure statement

Nopotential conflict of interest was reported by the author(s).

Funding

This work was supported by National Science Foundation
[1634867].

Notes on contributors

Vincent Chan obtained his Ph.D. from the department of
statistics at University of Wisconsin-Madison. His research
interests include single index model and regularization.

Kam-Wah Tsui is a professor in the department of statistics
at University of Wisconsin-Madison. His research interests
include Bayesian analysis, decision theory, survey sampling,
and statistical inference.

Yanran Wei is a Ph.D. student in the department of statis-
tics at Virginia Tech. Her research interests include Big Data
analytics, and statistical modeling in financial application.

Zhiyang Zhang is a faculty in the department of statistics at
Virginia Tech. Her research interests include modeling com-
plex data, and statistical modeling in chemistry applications.

Xinwei Deng is an associate professor in the department
of statistics at Virginia Tech. His research interests include
machine learning, design of experiment, and interface
between machine learning and experimental design.

ORCID

Yanran Wei http://orcid.org/0000-0002-6745-7326
Xinwei Deng http://orcid.org/0000-0002-1560-2405

References

Brezger, A., & Steiner, W. J. (2003). Monotonic regression
based on Bayesian P-splines: An application to estimating
price response functions from store-level scanner data. Tech.

http://orcid.org/0000-0002-6745-7326
http://orcid.org/0000-0002-1560-2405


10 V. CHAN ET AL.

rep., Discussion paper//Sonderforschungsbereich 386 der
Ludwig-Maximilians-Universität München.

Curry, H. B., & Schoenberg, I. J. (1966). On Pólya frequency
functions IV: The fundamental spline functions and their
limits. Journal D’analyse Mathématique, 17, 71–107.

Dai, X., & Chien, P. (2017). Minimax optimal rates of
estimation in functional anova models with derivatives.
arXiv:1706.00850.

Delecroix, M., & Thomas-Agnan, C. (2000). Spline and Ker-
nel regression under shape restrictions. In Smoothing and
Regression: Approaches, Computation, and Application (pp.
109–133).

Dierckx, I. P (1980). Algorithm/algorithmus 42 an algorithm
for cubic spline fitting with convexity constraints.Comput-
ing, 24, 349–371.

Ducharme, G. R., & Fontez, B. (2004). A smooth test of
goodness-of-fit for growth curves and monotonic nonlin-
ear regression models. Biometrics, 60, 977–986.

Fan, J., & Gijbels, I. (1996). Local polynomial modelling and
its applications: Monographs on statistics and applied prob-
ability. New York: CRC Press.

Green, P. J. (1987). Penalized likelihood for general semi-
parametric regression models. International Statistical
Review / Revue Internationale de Statistique, 55(3), 245.

Green, P. J., & Silverman, B. W. (1993).Nonparametric regres-
sion and generalized linear models: A roughness penalty
approach. New York: CRC Press.

Hastie, T., Tibshirani, R., & Friedman, J, The elements of sta-
tistical learning, Springer series in statistics Springer (Vol.
1). Berlin, 2001.

He, X., & Shi, P. (1998). Monotone B-spline smoothing.
Journal of the American Statistical Association, 93, 643–
650.

Kelly, C., & Rice, J. (1990). Monotone smoothing with appli-
cation to dose-response curves and the assessment of syn-
ergism. Biometrics, 46(4), 1071–1085.

Liao, X., & Meyer, M. C. (2017). Change-point estimation
using shape-restricted regression splines. Journal of Statis-
tical Planning and Inference, 188, 8–21.

Lichman, M. (2013), UCI machine learning repository.
Mammen, E., & Thomas-Agnan, C. (1999). Smoothing

splines and shape restrictions. Scandinavian Journal of
Statistics, 26, 239–252.

Matzkin, R. L. (1991). Semiparametric estimation of mono-
tone and concave utility functions for polychotomous
choice models. Econometrica: Journal of the Econometric
Society, 59,1315–1327.

Meyer, M. C. (2008). Inference using shape-restricted regres-
sion splines. The Annals of Applied Statistics, 2, 1013–
1033.

Meyer, M. C. (2012). Constrained penalized splines. Cana-
dian Journal of Statistics, 40, 190–206.

Meyer, M. C. (2018). Constrained partial linear regression
splines. Statistica Sinica, 28, 277–292.

Nagahara, M., & Martin, C. F. (2013). Monotone smooth-
ing splines using general linear systems. Asian Journal of
Control, 15, 461–468.

Ramsay, J. O. (1988). Monotone regression splines in action.
Statistical Science, 3,425–441.

Shor, N. Z., & Zhurbenko, N. (1971). The minimization
method using space dilatation in direction of difference of
two sequential gradients. Kibernetika, 3, 51–59.

Turlach, B. A. (2005). Shape constrained smoothing using
smoothing splines. Computational Statistics, 20, 81–104.

Utreras, F. I. (1985). Smoothing noisy data undermonotonic-
ity constraints existence, characterization and convergence
rates. Numerische Mathematik, 47, 611–625.

Villalobos, M., & Wahba, G. (1987). Inequality-constrained
multivariate smoothing splines with application to the esti-
mation of posterior probabilities. Journal of the American
Statistical Association, 82, 239–248.

Wahba, G. (1990). Spline models for observational data.
Philadelphia, Pennsylvania: Siam.

Wand, M., & Jones, M.. (1995), Kernel smoothing. Vol. 60 of
Monographs on statistics and applied probability.

Wand, M. P., & Ormerod, J. T. (2008). On Semiparametric
regression with O’sullivan penalized splines. Australian &
New Zealand Journal of Statistics, 50(2), 179–198.

Wang, X., & Li, F. (2008). Isotonic smoothing spline regres-
sion. Journal of Computational and Graphical Statistics, 17,
21–37.

Zeng, L., Deng, X., &Yang, J. (2016). Constrainedhierarchical
modeling of degradation data in tissue-engineered scaffold
fabrication. IIE Transactions, 48, 16–33.

Zhang,D., Lin, X., Raz, J., & Sowers,M. (1998). Semiparamet-
ric stochastic mixed models for longitudinal data. Journal
of the American Statistical Association, 93(442), 710.

Appendices

Appendix 1

We provide some preliminary materials about natural cubic
spline (NCS) and smoothing spline. Readers of interest can
refer to Wahba (1990) and Green and Silverman (1993) for
details.

A.1 Value-second derivative representation

The value-second derivative representation allows specifica-
tion of aNCS simply by its value and second derivative at each
knots. This representation provides a link between the entire
NCS f (x) and (xi, f (xi)) for i = 1, . . . , n. Let us define

gi = f (xi) and γi = f ′′(xi) for i = 1, . . . , n.

Also, let vector g = (g1, . . . , gn)T and γ = (γ1, . . . , γn)T .
Note that due to the natural boundary conditions of a NCS,
γ1 = γn = 0. In addition, construct n × (n − 2) matrix Q
and (n − 2) × (n − 2) matrix R as follows:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h−1
1

−h−1
1 − h−1

2
. . . 0

h−1
2

. . .

. . . h−1
n−2

0 −h1n−2 − h−1
n−1

h−1
n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A1)

R =

⎛
⎜⎜⎜⎜⎝

1
3 (h1 + h2) 1

6h2 0
1
6h2

. . . . . .

. . . . . . 1
6hn−2

0 1
6hn−2

1
3 (hn−2 + hn−1)

⎞
⎟⎟⎟⎟⎠ ,

(A2)

where hi = xi+1 − xi, fori = 1, . . . , n − 1. By construction,
matrix R is strictly positive-definite.

LemmaA.1 (Theorem 2.1 in Green and Silverman (1993)):
The vectors g and γ specify a natural cubic spline f if and only
if the condition

QTg = Rγ , (A3)
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is satified. If (A3) is satified then the roughness penalty will
satisfy ∫

[f ′′(t)]2dt = γ TRγ = gTKg, (A4)

where K = QR−1QT.

This value-second derivative representation provides a
formula to recover the entire NCS with xi and f (xi) for i =
1, . . . , n.

A.2 Linearmixedmodel representation

The linearmixedmodel representation of anNCS allows us to
express f (x1), . . . , f (xn) as a linear combination of a specific
basis functions. Let function f be an NCS on interval [a, b].
Denote L2[a, b] the space of square integrable functions on
interval [a, b]. Let H = {f : f , f ′ are absolutely continuous,
f ′′ ∈ L2[a, b]} be a second-order Sobolev space of the NCS
functions. Under the following definition of norm

||f ||2 =
[∫ b

a
f (x) dx

]2

+
[∫ b

a
f ′(x) dx

]2

+
∫ b

a
[f ′′(x)]2 dx.

Wahba (1990) shows that H is a reproducing kernel Hilbert
space that can be decomposed into a direct sum of three
orthogonal subspaces:

H = {1} ⊕ H0 ⊕ H1,

where {1} is the mean subspace, H0 = {f : f ′′(x) = 0} is
the linear contrast subspace and H1 = {f : ∫ b

a f (x)dx =
0,

∫ b
a f ′(x)dx = 0,

∫ b
a f ′′(x)dx ∈ L[a, b]} is the non-linear

subspace. This decomposition means that any NCS function
f ∈ H can be uniquely decomposed into a sum of a constant
part, a linear part and a non-linear part as follows:

f (x) = θ0 + xθ1 + f1(x), (A5)

for some functions f1 ∈ H1.
Knowing that the solution is necessarily a NCS with knots

at x1, . . . , xn, one particular form of Equation (A5) is given by
the linear mixed model representation (Green 1987; Zhang
et al. 1998) as follows:

g = 1nθ0 + xθ1 + Aβ , (A6)

where A = Q(QTQ)−1R1/2 is a n × (n − 2) matrix, 1n is a
length-n vector of ones and x = (x1, . . . , xn)T .

Appendix 2

The linear mixed model representation is used for efficient
computation of NCS. Meanwhile, the piecewise polynomial
representation is used for formulating shape constraint on
NCS for the same problem. The connection between lin-
ear mixed model representation and piecewise polynomial
representation are stated as follows.

A.3 Specifying the NCS function f from x and g
Given x, matrice Q and R can be constructed as shown
in Appendix A.2. The second derivative vector γ , can be
obtained by Theorem A.1 as follows,

γ = R−1QTg, (A7)

since R is of full rank by construction. From Section 2.4.1 in
Green and Silverman (1993), the derivate of f (.) at knot x1
and xn are

g′
1 = g2 − g1

x2 − x1
− 1

6
(x2 − x1)γ2

g′
n = gn − gn−1

xn − xn−1
+ 1

6
(xn − xn−1)γn−1,

respectively. Finally, with hi = xi+1 − xi, the following
formula summarised from Section 2.4.2 in Green and
Silverman (1993) gives the entire NCS function f :

f (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1 − (x1 − t)g′
1, if t ≤ x1,

(t−xi)gi+1+(xi+1−t)gi
hi

− (t−xi)(xi+1−t)
6{(

1 + t−xi
hi

)
γi+1

+
(
1 + xi+1−t

hi

)
γi

}
, ifxi < t < xi+1

for i ∈ (1, . . . , n − 1),
gn + (t − xn)g′

n, if t > xn.

Hence the NCS function f is fully specified. That is, we can
reconstruct NCS function f from x and g.

A.4 Specifying the piecewise polynomial
representation given f

The resulting function f can be used to estimate all coef-
ficients ai, bi, ci and di under the piecewise polynomial
representation of f. The steps are as follows:

(1) Given x and the function of f, get γ from (A7).
(2) Calculate (f ′(x1), . . . , f ′(xn))T by Equation (2.20) and

(2.21) in Green and Silverman (1993) as:

f ′(xi) = gi+1 − gi
xi+1 − xi

− (xi+1 − xi)(2γi + γi+1)

6
, i = 1, . . . , n − 1;

f ′(xn) = gn − gn−1

xn − xn−1
+ γn−1(xn − xn−1)

6
.

(3) Obtain c0 = f ′0(x1) and cn = f ′n(xn) based on the piece-
wise polynomial representation.

(4) Using the fact f ′′(xi+1) = 6aixi+1 + 2bi and f ′′(xi) =
6aixi + 2bi, we get ai = 1

6 ((γi+1 − γi)/(xi+1 − xi)) for
i = 1, . . . , n − 1.

(5) With ai’s from previous step, obtain bi = 1
2 (γi − 6aixi)

for i = 1, . . . , n − 1.
(6) From previous steps with ai, bi and f ′(xi), obtain ci =

f ′(xi) − 3aix2i − 2bixi for i = 1, . . . , n − 1.
(7) Obtain dn = f (xn) − cnxn, d0 = f (x1) − c0x1, and di =

f (xi) − aix3i − bix2i − cixi for i = 1, . . . , n − 1.
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Appendix 3

Figure A1. The estimator percentiles (2.5% and 97.5%) of SCSS for function f (x) = (20x2 + x3)/3000 in Example 4 under normal
error.

Figure A2. The estimator percentiles (2.5% and 97.5%) of SCSS for function f (x) = (20x2 + x3)/3000 in Example 4 under t error.



STATISTICAL THEORY AND RELATED FIELDS 13

Figure A3. The estimator percentiles (2.5% and 97.5%) of SCSS for function f (x) = (20x2 + x3)/3000 in Example 4 under beta error.

Figure A4. The estimator percentiles (2.5%and97.5%) of SCSS for function f (x) = (ex/20 − e−10/20)/(e10/20 − e−10/20) in Example
5 under normal error.
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Figure A5. The estimator percentiles (2.5%and97.5%) of SCSS for function f (x) = (ex/20 − e−10/20)/(e10/20 − e−10/20) in Example
5 under t error.

Figure A6. The estimator percentiles (2.5%and97.5%) of SCSS for function f (x) = (ex/20 − e−10/20)/(e10/20 − e−10/20) in Example
5 under beta error.
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Figure A7. SCSS convergence for function f (x) = (ex/20 − e−10/20)/(e10/20 − e−10/20) in Example 5 under normal error and
monotone constraint.

Figure A8. SCSS convergence for function f (x) = (ex/20 − e−10/20)/(e10/20 − e−10/20) in Example 5 under normal error andmixed
constraint.
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