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Abstract 

In many biomanufacturing areas such as tissue-engineering scaffold fabrication, the biodegradation 

performance of products is a key to produce products with desirable properties. Prediction of 

biodegradation often encounters the challenge on how to incorporate expert knowledge appropriately. 

This paper proposes a constrained Gaussian process (CGP) method for predictive modeling with 

application to scaffold biodegradation. It provides a unified framework of using proper constraints to 

accommodate various types of expert knowledge in predictive modeling, including censoring, 

monotonicity, and bounds requirements. Efficient Bayesian sampling procedures for prediction are also 

developed. The performance of the proposed method is demonstrated in a case study from a novel 

scaffold fabrication process. Compared with the unconstrained GP and artificial neural networks, the 
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proposed method can provide more accurate and meaningful prediction. A simulation study is also 

conducted to further reveal the properties of the CGP.  

Keywords: biomanufacturing, biodegradation, constrained Gaussian process (CGP), censoring, 

monotonicity, predictive modeling 
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1. Introduction 

Biomanufacturing is an emerging area and getting rapid growth in recent years (Grant and Settles, 

2009). In biomanufacturing, biodegradation is an important performance aspect of products (Buchanan, 

2008), especially for those integrated into human systems and made by degradable biomaterials. Figure 1 

depicts the complicated biodegradation process caused by hydrolysis: in the human body environment, 

water molecules penetrate into the matrix of the product, causing it to swell. This triggers the breakdown 

of chemical chains, leading to weight loss, which continues until complete dissolution of the product.  

For many biomanufacturing processes, the biodegradation rate of products needs to be designed to 

meet requirements in specific applications. One typical example is the scaffold fabrication in tissue 

engineering, as illustrated in Figure 2, in an attempt to develop biological substitutes for failing 

tissues/organs (Chu and Liu, 2008; Fisher et al., 2007; Sultana, 2013). First, relevant cells are grown in 

vitro into a three-dimensional tissue/organ. To enable the cells to grow in favored orientations similar to 

the native tissue, the cells are seeded onto the scaffold, which is a highly porous matrix made by 

degradable biomaterials. The pores on the scaffold provide space for flow transport of nutrients and 

metabolic wastes, thus forming a temporary substrate and microenvironment for cells. Then the cell-

scaffold composite is implanted into the human body, where the scaffold eventually degrades, leaving 

only the new tissue/organ. As the scaffold plays a critical role to the success of this development, it is 

very crucial to match the degradation rate of scaffolds to the cell growth rate in the application of interest 

(Burdick and Mauck, 2011). If the degradation rate is too fast, there would be insufficient support to the 

cells, while if the degradation rate is too slow, the scaffold may impede the growth of new tissues.  

In scaffold fabrication, the biodegradation performance of products is usually characterized by an 

experiment setup as shown in Figure 3 (Dey et al., 2008; Henry et al., 2007; Nicodemus and Bryant, 

2008). Scaffold specimens are incubated in phosphate buffered saline (PBS, i.e., salt solution, used to 

mimic the human body environment) for a period of time; at each predetermined time point, one 

specimen is taken out, dried, measured by weight loss, and discarded after that. Scaffold products with 

desired biodegradation performance can be obtained by adjusting process variables in scaffold fabrication 

such as those in material synthesis (e.g., compositions of the biomaterial and their percentages) and those 

in pore construction (e.g., pore size and processing conditions) (Liao et al., 2002; Cui et al., 2015). 
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Achieving desired biodegradation performance is, however, challenging due to the lack of an 

understanding of the relationship between process variables and biodegradation performance of products. 

Analytical models of the relationship are often not available since the effects of process variables on 

scaffold biodegradation are very complicated. As a result, the trial-and-error approach is predominant in 

this field currently (Burdick and Mauck, 2011). In this study, we focus on data-driven methods for 

predictive modeling of scaffold biodegradation. The objective is to establish an empirical model for 

biodegradation prediction in scaffold fabrication such that it will enable process optimization to produce 

scaffolds with required biodegradation performance.  

It is worth pointing out that the problem considered in this work is different from degradation 

modeling in reliability studies (e.g., Bian and Gebraeel, 2014; Chen and Tsui, 2013; Ranfiee et al., 2014). 

First, the biodegradation of scaffolds is treated as a controllable performance aspect of products in this 

study, which bears a different nature than the degradation of engineering components as a reliability 

concern. Second, the modeling of biodegradation is to characterize the relationship between product 

biodegradation performance and process variables in scaffold fabrication, while the degradation modeling 

in reliability studies is to characterize the time evolution of degradation. Finally, the data used in this 

study are scaffold biodegradation measurements (as shown in Figure 3) under different settings of process 

variables. The measurements are often collected at a small number (e.g., 5 in the case study) of time 

points as quantification of biodegradation is very time-consuming (taking months or years in some cases). 

In contrast, classical time-series data are usually used in reliability studies.  

Surrogate models are common methods for predictive modeling of complex relationships between 

process variables/design parameters (predictors) and product performance (response) in manufacturing 

applications (Arendt et al., 2015; Chen et al., 2006; Tsai et al., 2012). Among various surrogate models, 

Gaussian process (GP) and artificial neural networks (ANNs) are two popular ones widely used in similar 

problems as ours. For example, the GP modeling is used in the prediction of product mechanical 

performance in nanomanufacturing (Pourhabib, et al., 2015) and of wafer geometric quality in 

semiconductor manufacturing (Jin et al., 2012). The ANNs are used in the prediction of surface roughness 

and other quality measures in machining (Feng and Wang, 2003, 2004; Feng et al., 2006).  

However, the aforementioned surrogate methods may not work well for modeling scaffold 

biodegradation because expert knowledge needs to be incorporated to ensure meaningful prediction. Such 

knowledge includes: (i) Full-degradation censoring. Once the full degradation is reached, the weight loss 
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measurement will be a constant 100%. (ii) Monotonicity. Intrinsically, the biodegradation of scaffolds is 

monotonically increasing with respect to time and to some process variables in scaffold fabrication. (iii) 

Bounds of weight loss. The percentage of weight loss is bounded between 0% and 100%. Without 

guidelines from expert knowledge, those methods are likely to result in poor predictions and 

interpretation. It calls for a novel modeling method that is able to accommodate these three types of 

expert knowledge.  

Zeng et al. (2016) develop a constrained hierarchical model for the scaffold biodegradation modeling 

problem, where one type of expert knowledge is incorporated as constraints on model parameters. This 

approach is easy to implement with good interpretation, but it only works for monotonicity constraints. In 

the literature, some nonparametric constrained modeling methods, such as shape-constrained function 

estimation methods (e.g., Chatterjee et al., 2015; Shively et al., 2011; Wang and Ghosh, 2012), may be 

useful for this problem. However, they can only deal with monotonicity constraints too. Moreover, they 

are designed for the one-dimensional case (i.e., a single predictor) as opposed to the multi-dimensional 

case (i.e., more than one predictors) assumed in this study. There are also some work considering shape 

constrains in the GP modeling (Lenk and Choi, 2017; Lin and Dunson, 2014; Riihimäki and Vehtari, 

2010; Wang, 2012; Wang and Berger, 2016). These methods can incorporate constraints conveniently and 

work for multi-dimensional cases, but, again, they are limited to monotonicity and other shape 

constraints.    

In this work, we propose a constrained GP (CGP) method for the predictive modeling of scaffold 

biodegradation. It provides a unified framework to accommodate the aforementioned three types of expert 

knowledge in the form of constraints. Efficient Bayesian algorithms are also developed for model 

estimation and prediction. The algorithms address several issues in the implementation of the CGP such 

as the identification of constrained locations and sampling of posteriors. The contribution of this work lies 

in three aspects: First, the CGP method introduces a novel, convenient way to accommodate expert 

knowledge in predictive modeling of product performance. The GP is known as a flexible method for 

predictive modeling (Rasmussen and Williams, 2006). The formation of expert knowledge as proper 

constraints on the GP modeling makes its intrinsic flexibility nimble for accurate prediction with 

meaningful interpretation. Moreover, the proposed method can provide useful inference for scaffold 

fabrication such as estimate of the time to reach full degradation. Second, although the proposed method 

is illustrated using the scaffold biodegradation problem in this work, it has broad applicability in other 
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manufacturing processes such as biomaterial-based additive manufacturing (Wei et al., 2015) and for 

other types of product performance such as mechanical and swelling performances (Wang, et al., 2015; 

Wei et al., 2015), where the three types of expert knowledge also apply. Third, unlike most existing 

studies that utilize simulated or observational data of large sample sizes, this study demonstrates a case of 

experimental data with limited samples and the advantages of the proposed CGP in prediction are 

validated in comparison with GP and ANNs. A simulation study is also conducted to reveal important 

properties of the CGP.  

The remainder of this paper is organized as follows. Section 2 reviews the basics of the Gaussian 

process model and presents definition of the scaffold biodegradation modeling problem. Section 3 

describes the proposed CGP method to impose each type of constraints. Some related problems are 

discussed in Section 4. Results of the case study are given in Section 5. Section 6 presents two numerical 

examples. Finally, Section 7 concludes the paper and discusses future work. Bayesian sampling 

procedures to implement the CGP method are summarized in Appendix III to provide convenience for 

practitioners. 

2. Background and Problem Definition 

In this section, we will briefly review the basics of GP modeling and prediction. Then we define the 

scaffold biodegradation modeling problem. 

2.1 Gaussian process model 

Suppose the observed data are (xi, yi), i=1,…,n, where ]',...,[ 1 idii xxx  is the ith realization of the d-

dimensional predictor and yi is the corresponding response. Following the GP literature (Santner et al. 

2003; Fang et al., 2005), we call x1,…,xn as locations. To model the relationship between the response 

and predictors, the GP modeling considers  

                                                                   
iii fy   )(x ,                                                           (1) 

where  is the mean, f(xi) is a random function of xi, and εi ~ ),0( 2

N is the random error, called nugget 

effect, which is independent of f(xi). Here the random function f(x) follows a Gaussian process with zero 

mean and covariance function )(2
xRf . That is, the vector )]'(),...,(),([ 21 nfff xxx  follows a multivariate 

normal distribution with ),0(~)( 2

fi Nf x  and 
ijfji Rff 2))(),(cov( xx for ij. A popular choice of the 

correlation function is the Gaussian correlation function (Rasmussen and Williams, 2006) such that  
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                                                              ])(exp[
1

2





d

w

jwiwwij xxR  ,                                                        (2) 

where ]',...,[ 1 dθ  are scale parameters on each dimension of the predictor. It means that the correlation 

of f(xi) and f(xj) depends on the distance between the two locations xi and xj.  

By denoting ],...,,[ 21
 nyyyy , ],...,,[ 21

 nxxxX , ],...,,[ 21
 nε , it is easy to see that  

                                                              )),(,(~ 22

nfnN IXXR1y   ,                                                   (3) 

where 1n is an n-dimensional column vector of 1s and R(X,X) is the correlation matrix of 

)]'(),...,(),([)( 21 nfff xxxXf   with the (i, j)th entry Rij, and In is the nn identity matrix. For notational 

convenience, we denote the covariance function by  

                                                          
nnjif K  )),((),(),( 00200

xxXXRXXK  ,                                             

(4)              

where 
ijfjiji RffK 200 ))(),(cov(),(  xxxx . Here the superscript “00” is to distinguish the covariance 

function of the GP from other covariance functions that will be given in Section 3.2. 

The predication based on the GP modeling is straightforward as follows. Let ],...,,[ **

2

*

1

*
* 

n
xxxX be the 

vector of locations for prediction, and ])(),...,(),([)( **

2

*

1

*
* 

n
fff xxxXf  be the function values at these 

locations. Since f(x) follows a Gaussian process, it is easy to find that ))(,)(( *  XfXf  follows multivariate 

normal, and )( *
Xf  given y also follows a multivariate normal with mean and variance-covariance matrix 

as follows (Schabenberger and Gotway, 2005) 

                
),,(]),()[,(),( ],|)([cov

),(]),()[,(],|)([E

*001200*00**00*

1200*00*
*

XXKIXXKXXKXXKψyXf

1yIXXKXXK1ψyXf









n

nnn








                         

(5) 

where ],,,[ 22

 fθψ   is the parameters of the GP, ),())(),((cov),( *2**00
XXRXfXfXXK f  and 

),( **00
XXK  is similarly defined. Thus, the conditional mean ],|)([E *

ψyXf  in Eq. (5) can be used as a 

best linear unbiased predictor of f(X
*
).   

It needs to mention that the estimation and prediction based on the GP modeling is often described in 

the Bayesian framework. In this framework, the distributions based on the basic setup of GP, e.g., Eq. (3), 

are called prior distributions, while those updated distributions given data, e.g., Eq. (5), are called 

posterior distributions. This framework will be followed in this paper. 

2.2. Predictive modeling of scaffold biodegradation   
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There are two sets of predictors to scaffold biodegradation: time and process variables in scaffold 

fabrication. For convenience, we will use the two-dimensional case, with time t and a process variable z 

as predictors, to illustrate the biodegradation modeling problem, though the proposed CGP is a generic 

method for multi-dimensional cases. Suppose the biodegradation experiment is conducted at a grid of nt 

time points )...( 21 tnttt   and nz values of the process variable )...( 21 znzzz  . We denote {x1,…, 

xn} as these n=ntnz  different settings of the predictors. The corresponding responses are the weight loss 

measurements {y1,…, yn}. Figure 4 illustrates the structure of the data (not real data), where each stream 

of solid dots represent biodegradation measurements under the same value of the process variable. The 

objective of this work is to model the relationship between the response and the predictors, and thus 

enable to predict the weight loss at new locations **

2

*

1 *,...,,
n

xxx . In the modeling, the three types of expert 

knowledge described in the Introduction (i.e., censoring, monotonicity and bounds requirements) will be 

taken into account.  

It is worth pointing out that a new location may represent an unsampled time point under a sampled 

value of z (e.g., a time point between 1t  and 2t  under 
1zz  ), or a sampled time point under an 

unsampled value of z (e.g., 2t under a z value between 1z  and 2z ), or an unsampled time point under an 

unsampled value of z (e.g., a time point between 1t  and 2t  under a z value between 1z  and 2z ). In 

addition, the t value and/or z value of a new location can be within or out of the observed data region; 

estimation of weight loss in these two cases are called interpolation and extrapolation, respectively. For 

simplicity, both cases are called “prediction” in this paper, and the performance of the proposed method 

in each case will be investigated in the case study.  

3. The Proposed Method 

This section describes the proposed CGP method for scaffold biodegradation modeling, where the 

three types of expert knowledge will be incorporated in the form of constraints, referred to as censoring 

constraint, monotonicity constraint and bound constraint. It is designed to simultaneously impose 

multiple constraints of these three types. To facilitate the understanding, how to impose each type of 

constraints will be presented in the following.  

3.1 Imposing censoring constraint 

Censored measurement is often encountered in scaffold biodegradation experiments, as shown in 

Figure 5 where the censored measurement occurs at ],[ 
zt nnn ztx . This measurement indicates that full 

degradation reached at or before 
tnt  under 

znzz  . Obviously, the measured value “100%” cannot be 
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directly used in the modeling and prediction as the response at xn. Here we propose a novel method to 

take this censored measurement into account.  

The idea is as follows: let the dash line in Figure 5 represent the true biodegradation trajectory during 

the measurement period. The piece of the line above “100%” is not realizable due to the full-degradation 

of scaffold; it is simply an extension of the realizable biodegradation trajectory. Let yn be the weight loss 

at xn, denoted by the dot circle in Figure 5. Note that yn is not an actual measurement but an imagined 

quantity. Also, yn is a random variable which cannot be lower than 100% according to the actual 

measurement at this location. Consequently, we can impose a constraint “yn100” in the modeling. The 

CGP method following this idea is described below. 

Let us first consider the case with one censored measurement as shown in Figure 5. Denoting the 

uncensored data as ],...,,[ 121

)1(  



n

n yyyy , ],...,,[ 121

)1(  



n

n
xxxX , the whole dataset is ];[ )1(

n

n y yy , 

];[ )1(

n

n
xXX

 . From Eq. (3), the prior of yn is a truncated Gaussian  

                                                                 )100(,)( 22  nfn yINy  ,                                                 (6)                             

where (.)I is an indicator function. Given this prior, the joint (conditional) posterior of the prediction 

)( *
Xf  and yn can be found, as stated below. 

Proposition 1: Given the prior in Eq. (6), the joint posterior distribution of ( )( *
Xf , yn) is 

                                     
),|(),|)((                                   

),|(),,|)((),|),((

)1(*

)1()1(*)1(*

ψyψyXf

ψyψyXfψyXf









n

n

n

nn

nn

n

yPP

yPyPyP
,                         

where 

                                                          )100()(),(~,| )1( 

nnn

n

n yIVmNy xxψy ,                                        (7) 

                                                             )(),(~,|)( ***
XVXmψyXf N  ,                                                  (8) 

with 

)()]),()[,()( 1

)1(1

1

2)1()1(00)1(00







  n

n

n

nnn

nnm 1yIXXKXxKx  
, 

),(]),()[,(),()( )1(001

1

2)1()1(00)1(0000

n

n

n

nnn

nnnn KV xXKIXXKXxKxxx




   , 

)(]),()[,()( 1200*00*
* nnn

1yIXXKXXK1Xm     , 

),(]),()[,(),()( *001200*00**00*
XXKIXXKXXKXXKXV

 n . 

The proof is given in Appendix I. The above result indicates that the joint posterior of )( *
Xf  and yn 

given the uncensored data y
(n1)

 and the GP parameter  can be decomposed into two parts: the 

conditional posterior of yn given y
(n1)

, and the conditional posterior of )( *
Xf  given y

(n1)
 and yn. The 

specific forms of the two conditional posteriors are given in Eqs. (7) and (8). Specifically, the conditional 
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posterior of yn is a truncated normal distribution, while the conditional posterior of )( *
Xf  is a multivariate 

normal distribution. Consequently, an estimate for )( *
Xf  can be found by sampling from the joint 

posterior of )( *
Xf  and yn in two steps: first draw a sample of yn from the truncated normal distribution in 

Eq. (7), and then given that value, draw a sample of )( *
Xf  from the multivariate normal distribution in 

Eq. (8).  

The above method can be extended straightforwardly to deal with cases of more than one censored 

measurements. Assume there are nc censored measurements, with locations ],...,[
)()1()c( c 

n
xxX  and 

imagined responses ],...,[
)()1()c( c 

n
yyy . Then the prior in Eq. (6) becomes 

  )100,...,100(),(,)(
)()1(2(c)(c)00(c) c

cc


n

nn yyIμN IXXK1y  . 

Given this prior, the posteriors in Eqs. (7) and (8) still apply except that the scalar terms are replaced by 

their vector counterparts. 

3.2 Imposing monotonicity constraint 

As mentioned in the Introduction, scaffold biodegradation follows some intrinsic monotonicity 

properties with respect to time or certain process variable according to expert knowledge. As shown in 

Figure 3, each scaffold specimen only yields one data point and it will be destructed during the weight 

loss measurement and discarded after that. In other words, the data points on the observed biodegradation 

profile are obtained from different specimens rather than from the same specimen over time. As a result, 

it is possible that some later measurements are smaller than earlier measurements (e.g., the 2
nd

 data point 

in the lower of Figure 3) due to sample uncertainty among scaffold specimens. Consequently, predictions 

violating the intrinsic monotonicity may occur. Therefore, monotonicity constraints are necessary in 

modeling and prediction of the scaffold biodegradation data in practice. 

One advantage of adopting the GP modeling is that the derivative process of the GP is also a GP 

(Rasmussen and Williams, 2006), thus making it convenient to impose monotonicity constraints. 

Hereafter the two processes will be referred to as the original GP and the derivative GP. For easy 

understanding, we will first consider monotonicity with respect to a single predictor, and then generalize 

to both predictors. 

Case I: Monotonicity with respect to a single predictor 

Let us consider imposing monotonicity constraints with respect to time. We first need to specify a set 

of locations, called constrained set, where monotonicity is required. Let ],...,,[ 21
 

mxxxX  be the vector 

of m constrained locations, and ])(),...,(),([)( 21
 

mfff xxxXf  be the first derivatives with respect to 
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time at these locations. Thus, the monotonicity constraints are 0)(,...,0)( 1  

mff xx , as illustrated in 

Figure 6. Note that the locations in the constrained set do not have to be the observed ones {x1,…,xn}. 

The covariance of the derivative GP and the covariance of the derivative GP and the original GP are  

                          

  ],)(21[(2),(  where,)),((),(

,)),(()),((),(

),(2),(  where,)),((),(

2

1111

2111111

011010

111

2010101



























kjjkfkjmmkj

mnjinmij

jiijfjimnji

xxRKK

KK

xxRKK





xxxxXXK

xxxxXXK

xxxxXXK

       

(9)                       

where K
11

( , ) is the covariance function of the derivative GP, and K
01

( , )/K
10

( , ) is the covariance 

function of the original GP and the derivative GP. In the above formulas, 1ix , 


1jx  and 


1kx  are the time 

values (among 
tntt ,...,1 ) of locations ix , 



jx  and 


kx , Rij is the correlation function defined in Eq. (2) 

between locations ix  and 


jx , and 1 is the scale parameter for time in the correlation function. 

Derivations of Eq. (9) are provided in Appendix II. 

Given the monotonicity constraints, the prior of )(  Xf is 

                                    ).0)(,...,0)((),(,))(( 1

11  

mffIN xxXXK0Xf                              (10) 

The joint posterior of )( *
Xf  and )(  Xf  can be derived in a similar way as Proposition 1.   

Proposition  2: Given the prior in Eq. (9), the joint posterior distribution of ( )( *
Xf , )(  Xf ) is 

                                      ),|)((),),(|)((),|)(),(( **
ψyXfψyXfXfψyXfXf

  PPP ,                            

where  

                                       )0)(,...,0)(())(),((~,|)( 1  

mffIN xxXVXmψyXf ,                        

(11)   

                                                                  )(),(~,),(|( ***
XVXmψyXfXf N ,                                               

(12) 

with 

)()],()[,()( 100210

n1yXXKIXXKXm    , 

),()],()[,(),()( 0110021011   XXKXXKIXXKXXKXV  , 

))()(()( 2

1

2

1

11

1*
*

  XfAB1yBAA1Xm n

T

n
 , 

1*)(  AXV . 

In the above terms, the matrix 1

21

1

11

  BABAA
T  with 1**00*00

1 )],()[,(  XXKXXKA , 

111*01

2 )],()[,(  XXKXXKA ,  ),()],()[,(),( *001**00*00002

1 XXKXXKXXKXXKIB
  , and 

),()],()[,(),( *10111*01**00

2 XXKXXKXXKXXKB
 . This result is similar to Lemma 3.1 in the 
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study of Wang (2012). It has a similar interpretation as Proposition 1, that is, we can find estimate for 

)( *
Xf  by sampling from the joint posterior of )( *

Xf  and )(  Xf : first draw a sample of )(  Xf  from the 

truncated multivariate normal distribution in Eq. (11), and then draw a sample of )( *
Xf  from the 

multivariate normal distribution in Eq. (12).  

If the biodegradation increases monotonically as the process variable z increases according to expert 

knowledge, monotonicity constraints with respect to z need to be imposed. All the formulas will take the 

same form as above except that 
1  and 

 11 ji xx  are replaced by 
2  and 

 22 ji xx , respectively, in Eq. 

(9).   

Case II: Monotonicity with respect to both predictors 

When the monotonicity constraints are applicable for both of the two predictors, we can specify a 

general constrained set  

],...,,,...,[ 11 11
 





mmm xxxxX ,  

with their first derivatives  

])(),...,(),(),...,([)( 11 11
 





m

z

m

z

m

tt ffff xxxxXf , 

where tff t  /)()( , zff z  /)()( . The constraints to impose are 

0)(,...,0)(,0)(,...,0)( 11 11
 





m

z

m

z

m

tt ffff xxxx .  

That is, there are monotonicity constraints with respect to time at m1 locations { 

1
,...,1 mxx } and those with 

respect to the process variable at mm1 locations { 

 mm xx ,...,11
}, as illustrated in Figure 7. 

In this case, Proposition 2 still applies, except that the covariance functions, i.e., ),(01 
XXK  and 

),(11 
XXK  in Eqs. (11)-(12), are replaced by  

                                                     
,  

),(),(

),(),(
),(

,  ]),(),([),(

IIIIIII

IIIII11

II

0

I

010





















XXKXXK

XXKXXK
XXK

XXKXXKXXK

zzzt

tztt

zt

                                        

(13) 

where ],...,[
11I
 

mxxX , ],...,[ 1II 1
 





mm xxX , and ],[ III
 

XXX . In the superscripts of the terms at the 

right side, “0” indicates the original GP, “t” indicates the first derivative with respect to time, and “z” 

indicates the first derivative with respect to the process variable. Specific formulas of the covariance 

functions and derivations are given in Appendix II. 

3.3 Imposing bound constraint 
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Bound constraints may exist at one or several locations for prediction. Let us consider a general case 

where the predictions must satisfy ** )(,...,)( *

1

*

1 nn
UfUf  xx , with 

*,...,1 n
UU  being the bounds of weight 

loss according to expert knowledge. This equates to a prior for the predictions 

                                            
})(,...,)({

**00*

*
*

*1
*
1

),(,))((
nn

UfUf
N




xx
1XXK0Xf .                                     (14) 

The resulting posterior of )( *
Xf is given below. 

Proposition 3: Given the prior in Eq. (14), the posterior of )( *
Xf  is 

                                                
})(,...,)({

***

*
*

*1
*
1

)(),(~,|)(
nn

UfUf
N




xx
1XVXmψyXf ,                                  (15) 

where the mean and variance-covariance matrices of the normal distribution are as defined in Eq. (8).  

This result is natural based on the results in Propositions 1 and 2. To obtain samples of )( *
Xf , we 

need to draw from the truncated multivariate normal distribution in Eq. (15).   

4. Model Estimation and Inference 

Note that the posterior distributions in Propositions 1-3 are conditional on the parameters of the 

original GP model ],,,[ 22

 fθψ  , where  is the mean, ]',...,[ 1 dθ  are parameters of the 

correlation function, 2

f  is the process variance, and 2

  is the random error variance. Thus,  needs to 

be estimated from data to generate predictions. Basically, the implementation of the proposed CGP 

method involves two steps: estimation of  and prediction of f(X
*
) given the estimate of . A fully 

Bayesian approach treats  as a random vector like f(X
*
) and conducts the two steps simultaneously by 

finding the joint posterior of  and f(X
*
). However, this contains challenging issues, e.g., specifying 

priors for components of  which are intrinsically correlated (Wang, 2012) and sampling of the high-

dimensional posterior. In this study, we adopt the idea of empirical Bayesian methods (Robert, 2007) and 

use the maximum likelihood estimate (MLE) of . Then we predict f(X
*
) by sampling from its 

conditional posterior given the MLE of . Details of the two steps are given in this section. Some other 

related issues will also be discussed. 

4.1 Parameter estimation 

A commonly used method to find the MLE of  (Ranjan et al., 2011) is briefly described here. 

Defining 22 / f  , the closed form of the MLEs of μ and 2

f  given  and  are 

yIXXR11IXXR1θ
111 )),((])),(([),(ˆ   n

T

nnn

T

n  , 

   
n

nn

T

n
f

1θyIXXR1θy
θ

),(ˆ)),((),(ˆ
),(ˆ

1
2 







, 
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that is, the MLEs of  and 2

f are functions of other parameters (i.e.,  and ). Consequently, the MLEs 

of  and  can be found by minimizing the negative profile log-likelihood 

)),(ˆ]()),(()),(ˆlog[(|),(|loglog2 1  θ1yIXXRθ1yIXXR n

T

nn nL   , 

where |∙| is the determinant of a matrix. To address possible issues with bumpy likelihood surface near 

boundaries of the parameter space, a new parameterization for  (Butler et al., 2014) can be used 

dwθω ww ,...,1    )(log10   

With this parameterization, peaks and dips of the likelihood surface will appear in the middle of the 

parameter space to facilitate a thorough search for MLEs of  and .  

4.2 Posterior sampling 

Sampling from the posteriors given in Propositions 1-3 is challenging due to their high dimension and 

need for truncation. We propose the following strategy for the posterior sampling which integrates built-

in random generators in software (e.g., MATLAB) and Markov chain Monte Carlo (MCMC) algorithms 

(Robert and Casella, 2004).  

 The posterior of yn in Eq. (7), which is a truncated univariate normal distribution, can be sampled 

simply by drawing from the normal distribution and discarding samples that do not satisfy the 

constraint. Alternatively, to enhance the efficiency of sampling, we can use popular MCMC 

algorithms which directly draw from nonstandard distributions such as truncated normal. One good 

choice is the slice sampler (Neal, 2003), which is both powerful and convenient to use as it only 

needs the posterior to be sampled from and a set of casually picked initial values as inputs. 

 The posterior of )(  Xf  in Eq. (11), a truncated multivariate normal distribution, is more complex to 

sample. In this case, generating all elements of )(  Xf  simultaneously from the distribution has many 

issues including the inefficiency in multivariate truncation. A better method is the Gibbs sampler 

which generates each element of )(  Xf , i.e., )(),...,( 1

 
m

zt ff xx , separately from its conditional 

posterior given other elements (Gelfand et al., 1992). This method will be used in this study for all 

samplings from truncated multivariate normal. 

 The posteriors of f(X
*
) in Eqs. (8) and (12) are multivariate normal distributions, which can be 

sampled using software. The posterior of f(X
*
) in Eq. (15) is a truncated multivariate distribution, 

which will be sampled using the abovementioned Gibbs sampler. Note that in calculating the variance 

matrix V(X
*
) in these equations, a simplification based on the Sherman–Morrison–Woodbury 
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formula, i.e.,
21

1

1211122

1 )( BAABABABBA
  TT , can be used for faster and more stable 

computation.  

There is also a short note on the order of sampling when multiple types of constraints are imposed: 

whenever the censoring constraint is considered, the sampling of yn in Eq. (7) should be done the first; 

whenever the bound constraint is considered, the sampling of f(X
*
) in Eq. (15) should be done at the last. 

Detailed procedures of the posterior sampling in each case are summarized in Appendix III.   

4.3 Identifying constrained set 

When imposing monotonicity constraints, we need to specify the constrained set },...,{ 1



mxx . A 

straightforward method is to manually identify a set of locations where the data exhibit a violating trend, 

but this may miss some locations that should be constrained. Alternatively, one can use all the training 

and prediction locations which may include many unnecessary locations. But then problems may occur in 

model estimation and prediction because the inverse of the covariance matrix of GP becomes more 

difficult to compute as more locations and/or more nearby locations are involved. Wang (2012) proposes 

a rigorous procedure to decide the minimal constrained set, which is useful when large samples exist 

and/or locations are densely distributed. In studies of scaffold biodegradation, limited data are typically 

available and locations are sparsely distributed, so we provide a simplified, easy-to-implement procedure 

below to find a reasonable constrained set with a small number of locations (assuming predictions are 

required to be monotonically increasing).  

Step 1: Identify a set of candidate locations { ,..., 21

cc
xx } among the training locations manually. To be 

conservative, we can just use the whole training set as the candidate set.   

Step 2: For each location 
c

x  in the candidate set, since the posterior of the first-derivative at this location 

is a normal distribution, i.e., ))(),((~,|)( ccc VmNf xxψys , according to Eq. (11), we can find the 

probability of negative first-derivative at this location,  

                                                           















)(

)(
),|0)((

c

c
c

Neg

V

m
fPp

x

x
ψyx .                                         

(16) 

Location(s) with a large pNeg should be constrained.  

Step 3: To make sure the predictions at given locations X
*
 satisfy the monotonicity requirement, those 

locations should also be constrained. This leads to a constrained set as follows 
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          },...,{5.0)(arg **

1
,...},{

*

21

n

c

Negp
ccc

xxxX
xxx




 . 

4.4 Estimating full-degradation time 

In the case with full degradation censoring in Section 3.1, scaffold researchers are interested in the 

full-degradation time, which is the time point when full degradation is reached. Let the full-degradation 

time under the process setting that yields the censored data (i.e., 
znzz   in Figure 5) be tF. An estimate of 

this time can be obtained as a by-product of the prediction. According to Eqs. (8), (12) and (15), for any

],[* 
znztx , f(x

*
)|∙ ~ N(m(x

*
),V(x

*
)), where “∙” is the conditioning set in those equations. Thus, the 

probability of full degradation at x
*
 is 

                                                 












 


)(

)(100
1)|100)(()(

*

*
**

x

x
xx

V

m
fPpFull

,                            

(17) 

where  is the cumulative distribution function of the standard normal distribution. Based on this result, 

we can define the estimate of the full-degradation time as 

                                                           100))(((arg5.0)(argˆ **

11




xx fEpt
tntn ttt

Full
ttt

F
.                                   

(18)                       

Here this estimate has two interpretations: as the time point with 50% chance of full degradation, or as the 

time point where the expected weight loss is 100%. Since f(x
*
)|∙ follows a normal distribution which is 

symmetric, these two are equivalent. Note that the percentage “50%” in the first definition can be 

replaced by a higher value, e.g., 60% or 80%, depending on the concern/preference in the specific 

application.  

5. Case Study 

 In this study, the proposed CGP method is applied to data from a novel tissue-engineering scaffold 

fabrication process (Dey et al., 2008; Yang et al., 2004). This process uses a new class of biomaterials 

called urethaned-doped polyester elastomers (CUPEs) to fabricate scaffolds. Unlike conventional 

biomaterials that are either stiff and incompliant or soft but weak, the CUPEs is fully elastic and 

sufficiently strong, making them potential scaffold materials to develop soft tissues such as cardiac tissues 

and blood vessels. Figure 8 displays a dataset from the process, with scaffold weight loss percentages (y) 

under different settings of a critical process variable (z), the percentage of Polyethylene glycol (PEG) in 
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scaffold material synthesis. Figures 8(a)-(c) contain three streams of data under z=75%, 25% and 0%, 

which will be used to demonstrate the proposed method in one-dimensional cases. Figure 8(d) contains 

data at t=3, 7, 14, 21, 28 days under z=0%, 25%, 30%, 40%, 50%, 60%, and 75%, which will be used to 

demonstrate the application in a two-dimensional case. Each data point in the figures is the average of 

five replicates.  

Section 5.1 reports results of CGP prediction with each of the three types of constraints described in 

Sections 3.1~3.3 using the three one-dimensional data streams in Figures 8(a)-(c). It needs to remark that 

the one-dimensional case often occurs in practice, which is to address prediction under an interested 

setting of process variables. Here these cases are used to illustrate details of imposing constraints. Section 

5.2 shows prediction results on the two-dimensional data in Figure 8(d). We first demonstrate the use and 

performance of CGP at unsampled time points and/or settings of the process variable (Section 5.2.1). 

Then a comparative study of CGP, GP and ANNs is conducted through leave-one-out cross validation to 

identify the advantages of CGP over other methods (Section 5.2.2). In the posterior sampling for each 

prediction, 20000 samples are generated using Matlab functions with 2000 burn-ins. 

5.1 One-dimensional prediction 

The data in Figure 8(a) contain a censoring measurement (at t=42 days) and thus will be used to 

demonstrate prediction with censoring constraint; the data in Figure 8(b) have an “abnormal” 

measurement (at t=14 days) which may lead to predictions violating the monotonicity requirement, and 

thus will be used to demonstrate prediction with monotonicity constraint; and the data in Figure 8(c) will 

be used to demonstrate the case with bound constraint. Procedures and results of the predictions are given 

as follows.  

Let us first consider the case in Figure 8(a). Predictions are made at t=5, 8, 10, 15, 20, 25, 30, 32, 35, 

38, 40 days using two methods: the (unconstrained) GP based on all the measurements (i.e., y6=100%), 

and the proposed constrained GP with a censoring constraint at t=42 days. Figure 9(a) shows the resulting 

predictions. We can see that the two methods yield similar predictions during the uncensored period 

(3~28 days), whereas their behaviors during the censored period (28~42 days) are clearly different. 

Specifically, the predictions from the CGP is accurate and adequate, which implies that full degradation 

occurred before the last time point (i.e., 42 days). The 95% credible bands of the constrained prediction 

are narrow during the uncensored period and become wider after that, reflecting the increase of 
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uncertainty as time goes on. In contrast, the predictions from the unconstrained GP show a linear trend 

toward 100% in this period, which is expected since the censored measurement “100%” was used directly 

in this method. These results validate the importance of taking the censoring information into account for 

meaningful predictions. 

We can also obtain the full-degradation probability, pFull in Eq. (17), from the two methods for 

comparison. Figure 9(b) shows their estimates of the full-degradation probability at t=4, 5, …, 45 days. 

Again, the proposed CGP method yields reasonable results, with pFull(42)=0.86, which is consistent with 

the fact (i.e., the censoring observed at this time point). Since pFull(38)=0.46 and pFull(39)=0.57, a simple 

estimate of the full-degradation time is 38.5 days based on the definition in Eq. (18). The unconstrained 

results appear not reasonable, where the estimated probability of full-degradation at 42 days is relatively 

small (around 50%), though censoring was actually observed. This suggests that imposing censoring 

constraint makes sense not only to prediction, but also to other inferences on scaffold degradation. 

In the case of Figure 8(b), the weight loss measurement at t=14 days (y3=24.7%) appears “abnormal”, 

which is slightly smaller than the measurement at t=7 days (y2=25.0%). Before applying the proposed 

method, the unconstrained GP is tried to see if there is a need for imposing monotonicity constraints. 

First, the MLEs of the GP parameters are obtained: 25.4921,ˆ  0.2658,ˆ  10.3558, ˆ z 6.3509. ˆ   

Then prediction of weight loss is made at t=5, 8, 10, 12, 15, 17, 20, 22, 25 days. The results, as shown in 

Figure 10(a), exhibit an increasing trend, indicating that the unconstrained GP yields reasonable 

predictions.  

To further understand the data, we calculate the probability of negative first-derivative, i.e., pNeg in 

Eq. (16), during the observed period (3~28 days), which is shown in Figure 10(b). All the probabilities 

are small (<0.5), meaning that monotonicity constraints are probably not needed. One explanation is that 

despite the mild outlier at t=14 days, the whole dataset has an increasing trend overall. In this case, due to 

the smoothing effect of the random error in the GP model, the predictions will follow the overall trend of 

data and will not be affected much by the outlier.  

In the case of Figure 8(c), the MLEs of the GP parameters are 5.8871, ˆ   0.1244,ˆ   9.0483, ˆ z

0.9289.ˆ   We compare predictions at t=1, 5, 8, 10, 12, 15, 17, 20, 22, 25 days using the unconstrained 

GP and the proposed CGP with a bound constraint “f(t)>0” at t=1 day. Note that t=1 day is not in the 

observed time range, so the prediction at this time point is an extrapolation. According to the results 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 L

ib
ra

ri
es

 | 
V

ir
gi

ni
a 

T
ec

h]
 a

t 1
3:

17
 1

8 
D

ec
em

be
r 

20
17

 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 19 

shown in Figure 11, the unconstrained prediction at t=1 day is negative (0.4%), which is not meaningful. 

Such problems are not unexpected for extrapolations. In contrast, the constrained prediction at this time 

point is positive (0.58%), and the 95% credible bands are also positive.  

5.2 Two-dimensional prediction 

5.2.1 Prediction using the proposed CGP 

Now we apply the CGP method to the two-dimensional dataset in Figure 8(d) to demonstrate its use 

and performance in a general multi-dimensional case. Unlike in the one-dimensional case where the three 

types of constraints are imposed separately, here we will focus on the monotonicity constraints and bound 

constraints, and all constraints will be imposed simultaneously when needed. Also, we assume the 

degradation is monotonically increasing with respect to both time and the process variable according to 

expert knowledge. We will consider the two situations of prediction mentioned in Section 2.2, i.e., 

interpolations where prediction is made within the observed data region, and extrapolations where 

prediction is made out of the region. It is well known that the latter situation is challenging in general, and 

the unconstrained GP tends not to work well in this situation due to its flexibility.  

We first predict weight loss at the observed time points (i.e., t=3, 7, 14, 21, 28 days) under three new 

settings of the process variable: z=15%, 32% and 70%, which represent the situation of interpolations. 

Noticing the “abnormal” data point in the dataset (t=14 days, z=30%), monotonicity is our concern here. 

In the first step, the MLEs of the GP parameters are found: 23.6849,ˆ  0.4451,ˆ 1  1.8604, ˆ
2 

29.3117, ˆ z 2.3743. ˆ   Then, we check the probability of negative first-derivative with respect to 

time and the process variable to see if there is a need to impose constraints. The results are shown in 

Figures 12(a)-(b) respectively. In Figure 12(a), the probability is close to zero everywhere within the data 

region except the small neighborhood around the abnormal data point; but even in that neighborhood, the 

peak is lower than 0.2. This means that the predictions will probably satisfy the monotonicity with respect 

to t automatically and constraints are not needed. The probability of negative first-derivative in Figure 

12(b) shows similar patterns, which is near zero in most part of the data region, with small values in the 

margins, meaning that monotonicity constraints with respect to z are not needed either. Therefore, the 

unconstrained GP is used for the prediction. The results are shown in Figure 12(c), which are all 

meaningful, as predicted by the probabilities of negative first-derivative in Figures 12(a)-(b). Especially, 

it seems that the predictions under z=32% are not affected by the abnormal data point under z=30%.  
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For extrapolations, two cases are considered. In the first case, we focus on predicting weight loss at 

some unobserved time points, t=30, 35, 40, 42 days under z=75%. According to Figure 12(a), the 

probability of negative first-derivative at the last observed time point (i.e., t=28 days) is rather high, 

especially under z=75%. So monotonicity constraints with respect to time are imposed at all the time 

points to predict. The constrained GP predictions are given in Figure 13(a), and the corresponding 

unconstrained predictions are also given in the figure for comparison. Clearly, the constraints are 

necessary to produce meaningful predictions. It deserves to point out that the predicted weight loss at 

t=42 days under z=75% is 100%, i.e., full degradation has reached, which is consistent with the actual 

measurement under this setting of z as shown in Figure 8(a). In the second case, we predict weight loss 

under two unobserved settings of the process variable, z=80% and 90%. As implied by Figure 12(b), the 

probability of negative first-derivative tends to getting high around z=75%, so monotonicity constraints 

with respect to z are imposed at the locations to predict. The results of constrained GP and unconstrained 

GP are given in Figure 13(b). The unconstrained predictions are, again, not meaningful: values under 

z=90% are lower than those under z=80% at some time points, and they are similar to the observations 

under z=75%. These results suggest that the constrained GP method is particularly useful in 

extrapolations to enable meaningful predictions. 

5.2.2 Comparative study 

To further understand the advantages of the CGP method, we compare its prediction performance 

with the two popular surrogate models mentioned in the Introduction, i.e., the unconstrained GP and 

ANNs, using data in Figure 8(d). Specifically, two powerful ANN methods are considered, the feed-

forward neural network (FNN) and the radial basis neural network (RNN). There are two key parameters 

of the ANN methods: the number of neurons (#neurons) in FNN, and the upper bound of mean squared 

error in training (trainMSE) for RNN. In this study, these parameters are tuned by considering different 

settings of them (#neurons=3~20, trainMSE=8~40), and the settings that lead to the best prediction 

performance are chosen.  

To assess the prediction performance of the methods, we adopt the leave-one-out cross validation 

with respect to values of the process variable (i.e., z=0%, 25%, 30%, 40%, 50%, 60%, 75%). Specifically, 

for each value of z, data under other values are used for model training, and data under this value are used 

for weight loss prediction at the five observed time points (i.e., t=3, 7, 14, 21, 28 days). Note that the 

predictions under z=0% and z=75% are extrapolations, while those under other values of z are 
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interpolations. Like in Section 5.2.1, performance of the four methods in these two situations is discussed 

below.  

The predictions in interpolations (i.e., z=25%, 30%, 40%, 50% and 60%) are shown in Figure 14, and 

the corresponding root mean squared prediction errors (RMSPEs) are summarized in Table 1. In these 

cases, the predictions from the unconstrained GP are meaningful (i.e., monotonically increasing with 

time), so constraints are not needed; in other words, the CGP will produce the same results as the GP, as 

shown in Figure 14. In terms of prediction accuracy, the GP and CGP methods perform quite well: better 

than FNN and RNN in the cases of z = 20%, 40%, 60%, as shown in Table 1. In terms of prediction 

meaningfulness, both GP and CGP give meaningful predictions, while the FNN predictions violate 

monotonicity in three cases (z=0%, 30%, 40%), and the RNN predictions violate in two cases (z=0%, 

75%). In summary, as we have seen in Section 5.2.1, both GP and CGP give promising prediction 

performance in interpolations.  

The prediction results in extrapolations (i.e., z=0%, 75%) are given in Figure 15 and the 

corresponding RMSPEs are summarized in Table 1. One can see that constraints are not active for the 

CGP method under z=75%, leading to the same performance for both GP and CGP. The results under 

z=0% are interesting, where the four methods perform dramatically differently. In fact, prediction in this 

case is very challenging due to the lack of training data around z=0% (the closest are those under z=25%). 

The proposed CGP used in this case imposes bound constraints “f(t)>0” and monotonicity constraints 

with respect to time at all the locations to predict. In terms of prediction accuracy, the CGP gives the best 

prediction accuracy and substantially outperforms the GP, FNN and RNN methods. In terms of prediction 

meaningfulness, only the CGP predictions are always meaningful; GP gives negative prediction values at 

the beginning time points, while the two neural networks produce negative prediction at some time points 

and not monotonically increasing. These results suggest, again, that the proposed CGP is especially useful 

in extrapolations to provide meaningful predictions. Moreover, it can also improve the prediction 

accuracy.     

6. Numerical Study 

To further reveal properties of the proposed CGP method, we conduct two simulation studies by 

generating new datasets through slightly modifying the original datasets used in Section 5. Since the 
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CGP’s advantages on extrapolations have been well demonstrated in the case study, here we will create 

cases of interpolations where the monotonicity is violated and imposing constraints are necessary.  

6.1 One-dimensional example 

In the one-dimensional data in Figure 8(b), we have noted the abnormal data point at t=14 days, and 

found that since it does not affect the overall monotonic trend of data, constraints are not needed, as 

shown in Figure 10. Now we replace this data point with a smaller value (e.g., 10%), while keeping other 

data points as their original values. The new dataset is shown in Figure 16(a), where the modified data 

point appears to be a serious outlier and has decisive influence on the overall trend of data. As a result, the 

probability of negative first-derivative given in Figure 16(b) becomes very different from that in Figure 

10(b), with large values at some time points, e.g., t=11, 12 days, indicating that monotonicity constraints 

must be imposed. This is validated by the unconstrained GP predictions given in Figure 16(a), which 

exhibits a dramatically downward trend around the modified data point. 

To apply the constrained GP method, a constrained set is first identified following the procedure in 

Section 4.3. The set is found to be {3, 5, 8, 9, 10, 11, 12, 13, 14, 15, 17, 20, 21, 22, 23, 24, 25, 28} days, 

at each of which monotonicity constraint is imposed. The resulting predictions are shown in Figure 16(a), 

which have an increasing trend and seem not to be affected much by the outlier. Another interesting result 

is that the 95% credible bands of the constrained GP is much narrower than the 95% confidence bands of 

the unconstrained GP, which indicates a lower level of uncertainty. These results suggest that the CGP 

will be useful in interpolations when the data set contains influential outliers. 

6.2 Two-dimensional example 

The two-dimensional data in Figure 8(d) are similarly modified by replacing the third data point (at 

t=14 days) under each setting of z with a value that is a little smaller than the second data point (at t= 7 

days). Figure 17(a) shows the new dataset, where the modified data points substantially changed the 

overall trend of data. In Figure 17(b), the probability of negative first-derivative with respect to time now 

looks very different from the one in Figure 12(a), with a high peak (around 0.9) in the neighborhood 

around the third data points across all values of z. Correspondingly, unlike in Figure 12(c), the 

unconstrained predictions under z=15%, 32% and 70% violate the monotonicity. In contrast, when 

monotonicity constraints on related locations are imposed, the predictions become monotonic as shown in 

Figure 17(a). This validates what we found in the one-dimensional examples, i.e., the CGP is needed to 

produce meaningful predictions when substantial outliers exist. 
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A simulation following the similar strategy of data generation is also conducted to find the advantage 

of the CGP on prediction accuracy in cases of outliers. In the simulation, the data point at t=14 days is set 

to be proportional to that at t=7 days under the same setting of z, i.e., y3/y2=r, where 0<r≤1 is an outlying 

factor, a smaller value of which indicates more serious outlying level of the dataset. r=1, 0.95, 0.9, 0.85 

are considered, and given each of these values, the root mean squared prediction errors of GP and CGP in 

leave-one-out cross validation (like that reported in Section 5.2.2) are found. The results under z=25% 

and 60% are given in Figure 18. The benefit of CGP in prediction accuracy is clear, which increases 

approximately linearly as the outlying level increases (i.e., r gets smaller).  

7. Discussion 

Biodegradation prediction is a key problem in tissue-engineering scaffold fabrication. This study 

proposes a constrained Gaussian process method to solve this problem, which is able to incorporate 

various types of expert knowledge such as full-degradation censoring, monotonicity and bounds 

requirements in the prediction. According to the case study, the CGP method can yield meaningful and 

more accurate predictions when the regular GP fails, and it performs better than popular ANN methods. 

Especially, it has promising performance in extrapolations as well as interpolations with influential 

outliers, where prediction is usually very difficult.  

Another interesting and useful finding that deserves mentioning is that the random error ε has an 

effect on the prediction when monotonicity constraints are imposed. Some researchers point out that 

including the random error in the GP model may introduce unnecessary over-smoothing, and thus make 

efforts to minimize over-smoothing (Ranjan et al., 2011). However, this is true only in contexts with 

intrinsically deterministic responses, such as computer experiments, and the purpose of having the 

random error in the model is mainly to solve computational issues related with ill-conditioned matrices in 

the likelihood function. Our application is a different case where the random error is used to characterize 

the substantial randomness contained in scaffold biodegradation measurements. In fact, the smoothing 

effect of the random error may be even beneficial in that it enables the predictions from the GP model to 

satisfy the monotonicity requirement automatically. The case study shows such examples (Figures 10 and 

12) where the predictions from unconstrained GP are satisfactory and thus monotonicity constraints are 

not needed.  
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Due to the flexibility of GP and the wide existence of expert knowledge as considered in this study, 

the proposed CGP method can be useful in many applications. In our future research, we will extend the 

current methodology to handle special problems in practice. Three possible directions of study are as 

follows. First, in the current study, we assume there are an equal number of measurements under each 

setting of the process variable and there are no missing data. Given the high-demanding biodegradation 

measurement process in scaffold fabrication as mentioned in the Introduction, unbalanced design and/or 

missing data are likely to exist. We will modify this method to cover such situations. Second, the GP 

model used in the current work is an ordinary version of GP with a constant mean (i.e.,  in Eq. (1)). In 

the universal version of GP, the mean part takes a more complicated form usually as a function of the 

predictors. A natural question is how to incorporate those constraints in this case. One idea is that we can 

model the mean part using shape-constrained splines. Finally, we will also extend the current framework 

to impose other types of constraints in scaffold fabrication and other biomanufacturing or manufacturing 

applications. 

Appendices 

Appendix I: Proof of Proposition 1 

The following is a well-known result on multivariate normal distribution that will be used in the 

proof: given two vectors X1 and X2 following multivariate normal distribution 
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From the GP model in Eq. (1),   
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Plugging in the terms in the above into (A1) leads to )( nm x  and )( nV x  in Eq. (7). Considering the 

constraint 100ny , the truncated normal distribution in Eq. (7) will be obtained. Similarly, according to 

the joint distribution of )( *
Xf  and y,  
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and thus )( *
Xm  and )( *

XV  in Eq. (7) will be obtained.  

Appendix II: Derivation of Eq. (9) and (13) 

According to the definitions in Rasmussen and Williams (2006), we can find the covariance of the 

derivative GP and the covariance of the derivative GP and the original GP: 

Case I: Monotonicity with respect to t (Eq. (9)) 
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Case II: Monotonicity with respect to both t and z (Eq. (13)) 
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Appendix III: Sampling procedures for the CGP method described in Sections 3.1~3.3 

Section 3.1: prediction with censoring constraint 

Step 1: Find MLEs of the GP parameters ψ̂ using the method described in Section 3.4.1. 

Step 2: Draw )(b

ny  from  Eq. (7). If )(b

ny <100, redraw the sample until the constraint is satisfied.  

Step 3: Given )(b

ny , draw )(*)( b
Xf  from Eq. (8).  

Repeat Steps 2 and 3 to obtain a stream of the posterior samples ,...}2 ,1:)({ )(* bb
Xf .  

Section 3.2: prediction with monotonicity constraint  

The following is the conditional distribution of each variable in a multivariate normal distribution, which 

is the basis for sampling from a truncated multivariate normal distribution. 

Let ),(~]',...,[ 1 ΣμX NXX m , 
jX is X excluding Xj, j=1,…,m, then 
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By (A1), the conditional distribution of Xj is 
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Step 1: Find MLEs of the GP parameters ψ̂ using the method described in Section 3.4.1. 

Step 2: Draw )()( b Xf from Eq. (11): for j=1,…,m, draw a sample from 
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parameters of the univariate normal distribution are 
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where )( 

jm x  is the j
th
 element of )( 

Xm  in Eq. (11), )( 

 jXm  is )( 
xm  excluding the j

th
 element, 

),(  jj xx is the (j, j)
th
 element of )( 

XV in Eq. (10), ),( 



 jj Xx is the j
th
 row of )( 

XV excluding the 

entry from the j
th
 column, ),( 





 jj XX is )( 
XV excluding the j

th
 row and j

th
 column, and ),( 

 jj xX is 

the j
th
 column of )( 

XV  excluding the entry from the j
th
 row.     

Step 3: Given )()( b Xf , draw )(*)( b
Xf  from Eq. (12).  
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Repeat Steps 2 and 3 to obtain a stream of posterior samples ,...}2 ,1:)({ )(* bb
Xf .  

Section 3.3: prediction with bound constraint  

The sampling involves drawing from a truncated multivariate normal distribution (Eq. (15)). This will be 

done following the method in Step 2 of Case II.  

Step 1: Find MLEs of the GP parameters ψ̂ using the method described in Section 3.4.1. 

Step 2: Draw )(*)( b
Xf from Eq. (15) following Step 2 in Case II, except that the generated samples are 

screened by the bound constraints ** )(,...,)( *

1

*

1 nn
UfUf  xx . 

Repeat Step 2 to obtain a stream of posterior samples ,...}2 ,1:)({ )(* bb
Xf . 
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Table 1. Root mean squared prediction errors (RMSPE) of the four methods 

Methods 0% 25% 30% 40% 50% 60% 75% Average 

GP 7.1 2.0 3.7 1.4 3.7 4.8 6.0 4.1 

CGP 1.9 2.0 3.7 1.4 3.7 4.8 6.0 3.4 

FNN 10.3 2.7 5.9 8.2 4.4 5.1 6.7 6.2 

RNN 15.9 5.9 3.6 2.3 3.1 6.1 7.0 6.3 
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Figure 1. An illustration of biodegradation of products made by degradable biomaterials 
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Figure 2. The development of biological substitutes for failing tissues/organs in tissue engineering 
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Figure 3. Experimental setup to characterize biodegradation in scaffold fabrication 
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Figure 4. Illustration of the biodegradation data used in this study 
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Figure 5. Illustration of the censoring constraint 
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Figure 6. Illustration of monotonicity constraints with respect to time 
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Figure 7. Illustration of monotonicity constraints with respect to both predictors 
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Figure 8. Degradation measurements used in the case study: (a) one-dimensional data with z=75%, 

(b) one-dimensional data with z=30%, (c) one-dimensional data with z=0%, and (d) two-dimensional data 
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                                                   (a)                                                                   (b) 

Figure 9. One-dimensional case in Figure 8(a): (a) predictions and (b) full-degradation probability 
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                                                 (a)                                                                     (b) 

Figure 10. One-dimensional case in Figure 8(b): (a) predictions and (b) probability of negative derivative 
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    Figure 11. Prediction in one-dimensional case in Figure 8(c) 
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                                           (a)                                                                         (b) 

     
       (c) 

Figure 12. Prediction in the two-dimensional case in Figure 8(d): (a) probability of negative first-

derivative with respect to t, (b) probability of negative first-derivative  with respect to z, (c) interpolations 

under new settings of z = 15%, 32%, 70% 
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                                                (a)                                                                        (b) 

Figure 13. Prediction in the two-dimensional case in Figure 8(d): (a) extrapolations at new time points 

t = 30, 35, 40, 42 days; (b) extrapolations under new settings of z = 80%, 90% 
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    Figure 14. Leave-one-out predictions of the four methods in interpolations 
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     Figure 15. Leave-one-out predictions of the four methods in extrapolations 
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                                                (a)                                                                          (b) 

Figure 16. One-dim example: (a) data and predictions, and (b) probability of negative first-derivative  
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                                           (a)                                                                       (b) 

Figure 17. Two-dim example: (a) data and predictions, and (b) probability of negative first-derivative 
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Figure 18. Prediction errors under different outlying levels of the modified dataset 
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