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ABSTRACT
As technology advances, the scale of data generated is growing exponentially, bringing huge challenges to data storage and com-
putation. To facilitate the computational cost while maintaining model estimation accuracy, subdata selection become important.
Conventional methods, such as LASSO and ridge regression, often focus on feature selection. In contrast, methods of subsampling
aim at specifying data points to be extracted. However, these subsampling methods often overlook the full consideration of the
role of the response variable and its relationship with predictor variables. In this work, we propose a so-called filtering approach
for model estimation (FAME) method to perform subsampling in combination with feature screening. Compared with existing
methods, the proposed method can result in the subdata being smaller in size both in terms of the number of features and obser-
vations, and also the computational complexity does not increase. The proposed method can be extended to situations when the
predictor is binary, the response is binary, or both are binary. The performance of FAME is evaluated in both numerical studies
and real data examples.

1 | Introduction

As modern technologies advance, the capability of collecting
large datasets is often beyond the analysis ability of traditional
statistical methods. For example, Walmart processes over 40
Petabytes of data with millions of rows per day, aiming to obtain
valuable information on customer needs. Extracting valuable
information from such large-scale data is challenging, and it is
beyond the capability of conventional statistical methods to deal
with these massive datasets directly. There is an emerging need
to conduct data reduction for such large datasets and enable
efficient data analysis.

Without loss of generality, this paper concerns the dataset with
an 𝑛 × 1 response vector and an 𝑛 × 𝑝 predictor matrix. Here,
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a large dataset can be referred to as the situation that both 𝑛
and 𝑝 can be large. In the literature, there are two types of
common approaches for data reduction. The first common
method is subsampling of data points to get a subdata with
𝑛∗ data points, where 𝑛∗ ≪ 𝑛. For example, Drineas et al. [1]
developed algorithms based on statistical leverage scores of
matrices. Ma, Mahoney, and Yu [2] proposed two new leveraging
algorithms: shrinked leveraging estimator and unweighted lever-
aging estimator. The algorithmic leveraging method takes at least
𝑂
(

np log𝑛∕ϵ2
)

(ϵ ∈ (0, 0.5]) time, and 𝑂
(

np2) for appropriate
parameter setting. Besides subsampling-based methods, Wang,
Yang, and Stufken [3] developed information-based optimal
subdata selection (IBOSS) method selecting data points based
on a certain optimal design criterion. Deldossi and Tommasi [4]
proposed the method “Optimal Design Based” for observation
selection based on any optimality criterion. Xie, Bai, and Ma
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[5] proposed data reduction methods on D-optimality improv-
ing the computational efficiency of the online analysis. Meng
et al. [6] used orthogonal Latin hypercube designs for robust
regression estimation even when the underlying linear model
is misspecified. Singh and Stufken [7] proposed the Combining
Lasso and Subdata Selection method combining multiple LASSO
and IBOSS for subdata selection. More work is extended based
on IBOSS, like Cheng, Wang, and Yang [8] applied subdata
selection on logistic regression models and Ai et al. [9] proposed
the subsampling method for quantile regression.

Considering the data with a large dimension of predictor vari-
ables, the second common method for data reduction is to get a
subdata with 𝑝∗ predictors where 𝑝∗ ≪ 𝑝. Various variable selec-
tion methods have been proposed, including LASSO [10], SCAD
[11], and Dantzig [12], among many others. In particular, Fan and
Lv [13] proposed the sure independence screening (SIS) method
to reduce the dimensionality of predictor variables with fast com-
putation. Wang [14] proposed FP-SIS for ultrahigh-dimensional
variable selection by factor analysis. Zhao et al. [15] extended SIS
to a so-called preconditioned profiled independence screening
(PPIS) method that can perform consistent model selection for
spiked populations. Note that the variable selection approaches
do not focus on the reduction of data points, while the sub-
sampling approaches often overlook the problem of the large
dimensionality of predictor variables. Moreover, the subsampling
approaches based on optimal design criteria often fail to take full
advantage of the information on the response variables.

In this work, we proposed a so-called filtering approach for model
estimation (FAME), which efficiently selects subdata for esti-
mating regression models. The key idea of the proposed method
is to consider data reduction on both predictor variables and data
points with fast computation. Specifically, we adopt the sure inde-
pendence screening to effectively reduce the number of predictor
variables in the subdata, and then use the information-based
optimal subdata selection to reduce the number of data points
in the subdata. The proposed FAME approach has several
advantages over other methods. First, the dataset selected by the
proposed FAME method is much smaller in both size and dimen-
sion than the original data. While the model estimation accuracy
based on the reduced data is comparable to that based on the
original data. Second, the computation time of the proposed
FAME method is in the order of 𝑂(np). It implies that there is
no extra computation cost compared with other methods. Third,
we consider both the response variable and predictor variable
in the reduction of data points, which is different from the opti-
mal design-based subdata selection. Finally, although this paper
focuses on both the response variable and predictor variable to be
continuous, the proposed FAME method can be easily extended
to the case when the response variable or predictor variable
is discrete.

The remainder of the paper is organized as follows. In Section 2,
we present the proposed FAME method for continuous data
and derive the statistical properties of the proposed FAME
estimators. We extend it to situations with binary predictor
variables or binary response variables. The proposed FAME
method is evaluated using simulation data in Section 3 and is
also examined in real data in Section 4. In Section 5, we conclude
the paper with discussions on further research directions.

2 | The Proposed Methodology

In this section, we will detail the proposed method. Suppose
that there are 𝑝 predictor variables 𝑥𝑗, 𝑗 = 1, … , 𝑝 and the cor-
responding response variable 𝑦. Let 𝑫 = (𝒚,𝑿) denote the full
dataset, where 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑛)

𝑇 is an n-vector continuous
response variable, and 𝑿 = (𝒙1, … , 𝒙𝑛)

𝑇 is an 𝑛 by 𝑝 input
matrix, where 𝒙𝑖 ∈ 

𝑝 for 𝑖 = 1, … , 𝑛. We consider the linear
regression model for 𝒚 and 𝑿 as

𝒚 = 𝑿𝜷 + 𝝐 (1)

where 𝜷 =
(
𝛽1, 𝛽2, … , 𝛽𝑝

)
is the parameter vector, and

𝝐 = (ϵ1, … , ϵ𝑛)
𝑇 is the error vector with Var(𝝐) = 𝜎2𝐼. When

𝑛 > 𝑝, the estimation of parameter𝜷 depends on the matrix inver-
sion

(
𝑿𝑇𝑿

)−1, which can be expensive when the dimensionality
𝑝 is large. In the high-dimensional setting with 𝑝 > 𝑛, the regu-
larization methods, such as LASSO, are often used for model esti-
mation. It is known that the computational complexity of LASSO
[16] is closely related to both the sample size 𝑛 and dimensional-
ity 𝑝. Moreover, when the sample size 𝑛 is large, the data could
contain redundant information in rows, which may not con-
tribute much to the inference and estimation of 𝜷. To overcome
the above challenges, we consider an efficient data reduction in
terms of reducing both the rows and columns of the original data
for model estimation in sparse regression. We will start with lin-
ear models with continuous inputs in Section 2.1 and extend the
proposed method for generalized linear models in Section 2.3.

2.1 | The FAME Method

To efficiently conduct data reduction, we propose an FAME in
the sparse regression setting. The key idea behind the proposed
FAME method is to select a subset of columns and a subset of
rows based on data filtering to form the reduced dataset for model
estimation. Here, the data filtering aims to filter out (i.e., remove)
relatively unimportant columns or rows such that the reduced
dataset contains key information with a smaller size than the
original dataset.

Specifically, we first conduct a feature screening to select impor-
tant columns. Denote 𝒙(𝑗) to be the jth column of input matrix 𝑿
and recall that the response vector is𝒚. Without loss of generality,
we assume each column of 𝑿 is standardized. Motivated by the
sure independent screening in Fan and Lv [13], we consider to
filter out features based on each individual column’s index score
as 𝑤𝑗 = 𝑔

(
𝒙(𝑗), 𝒚

)
. Thus, we can keep a subset of columns with

the highest scores. Here, the score index measures the impor-
tance of feature 𝒙(𝑗) by the degree of correlation between 𝒙(𝑗) and
the response variable 𝑦 for 𝑗 = 1, … , 𝑝. For example, the index
score 𝑤𝑗 can be the absolute value of the regression coefficient
derived from the marginal regression of 𝒚 on 𝒙(𝑗) as shown in
Fan and Lv [13]. Then, we can define a subset of predictors as

𝑴𝑆 =
{

1 ≤ 𝑞 ≤ ℎ ≤ 𝑝 ∶ 𝑤𝑞 is among the ℎ largest

values in 𝒘 =
(
𝑤1, … , 𝑤𝑝

)𝑇} (2)

Correspondingly, the reduced input matrix consists of 𝑿𝑆 =(
𝒙(1), … , 𝒙(𝑞), … , 𝒙(ℎ)

)
, where 𝒙(𝑞) is the column whose score
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index belongs to𝑴𝑆 . Then, the complete data 𝑫 are reduced to a
subset with ℎ columns as 𝑫𝑆 = (𝑿𝑆, 𝒚).

Although the reduction in the number of predictors will address
the computational challenges of model estimation to some extent,
there may be redundant information among data points for the
big dataset with large size of rows. Thus, in the second step, we
filter out relatively unimportant rows in the dataset 𝑫𝑆 . Specif-
ically, the proposed FAME method selects data points with the
aim of maximizing the Fisher information matrix based on the
model in Equation (1). It is known that the Fisher information
matrix based on the model in Equation (1) for the reduced dataset
𝑫𝑆 can be written as 𝑰(𝛿) = 1

𝜎2

∑𝑛
𝑖=1𝛿𝑖𝒙is𝒙

𝑇
is, where 𝒙is ∈ 

ℎ is the
data point in 𝑫𝑆 and 𝛿𝑖 = 1 means the ith row in 𝑫𝑆 is selected,
otherwise not. Therefore, one could consider to select a subset of
rows with size 𝑘 based on the following criteria:

max
𝜹=(𝛿1 , … ,𝛿𝑛),𝛿𝑖∈{0,1}

||||
𝑛∑
𝑖=1
𝛿𝑖𝒙is𝒙

𝑇
is
||||, s.t.

𝑛∑
𝑖=1
𝛿𝑖 = 𝑘 (3)

which is also known as the D-optimality criterion in the design
of experiment literature Kiefer [17]. However, the optimiza-
tion in Equation (3) is nontrivial due to the discrete nature of
the optimization. To address this issue, we consider an upper
bound of the determinant of 𝑰(𝛿) such that the selection of rows
becomes computationally efficient. Motivated by Wang, Yang,
and Stufken [3], we consider one reasonable upper bound for|𝐼(𝛿)| to be,

|𝑰(𝜹)| ≤ 𝐶 𝑘ℎ+1𝑙2ℎ

4ℎ𝜎2(ℎ+1)

ℎ∏
𝑞=1

(
𝑥(𝑢)𝑞 − 𝑥(𝑣)𝑞

)2
, 𝑞 = 1, … , ℎ (4)

where 𝑥(𝑢)𝑞 =
1
𝑙

(
𝑥(𝑛−𝑙+1)𝑞 + · · · + 𝑥(𝑛)𝑞

)
is the average of the 𝑙

largest order statistic in 𝒙(𝑞). Here, 𝑥(1)𝑞 ≤ 𝑥(2)𝑞 ≤ · · · ≤ 𝑥(𝑛)𝑞
is the order statistic of the qth column 𝒙(𝑞). Similarly,
𝑥(𝑣)𝑞 =

1
𝑙

(
𝑥(1)𝑞 + · · · + 𝑥(𝑙)𝑞

)
is the average of the 𝑙 smallest

order statistic in 𝒙(𝑞). Note that the original upper bound in
Wang, Yang, and Stufken [3] is a special case of the upper bound
in Equation (4). By considering the average of the upper-order
statistics and the average of the lower-order statistic of 𝒙(𝑞), it
would help the selection of data points robust against the poten-
tial outliers and uncertainty on the extreme observations. Thus,
we consider the proposed FAME method of selecting a subset
of rows as

max
𝜹=(𝛿1 , … ,𝛿𝑛),𝛿𝑖∈{0,1}

ℎ∑
𝑞=1
𝛿𝑖 log

[
𝑥(𝑢)𝑞 − 𝑥(𝑣)𝑞

]
, s.t.

𝑛∑
𝑖=1
𝛿𝑖 = 𝑘 (5)

It is seen that the above optimization can be decomposed into
the selection of rows based on each column, which is computa-
tionally fast. For practical implementation, we sort the predictor
values on the qth column 𝒙(𝑞) and select the 2l data points having
the 𝑙 largest and the 𝑙 smallest order statistics. Repeat such a pro-
cedure for each column in𝑫𝑆 , we compose the selected subset of
data as �̃�𝑆 = (�̃�𝑆, �̃�). Note that the reduced input matrix �̃�𝑆 is a
𝑘 × ℎ matrix. The choice of 𝑙 and ℎ is closely related to the size
of the filtered data, 𝑘 = 2lh, which will be discussed at the end of
this subsection.

With the filtered data �̃�𝑆 , we consider the model estimation by
using the LASSO method [10] as

�̃� = arg min
𝜷
(�̃� − �̃�𝑆𝜷)

𝑇
(�̃� − �̃�𝑆𝜷) + 𝜆||𝜷||1 (6)

where 𝜆 ≥ 0 is a tuning parameter and ||𝜷||1 = ∑ℎ𝑗=1|𝜷𝑗| is the 𝑙1
penalty. The optimal value of 𝜆 is chosen using cross-validation.
Algorithm 1 summarizes the proposed FAME algorithm for
sparse regression as follows.

ALGORITHM 1 | (FAME for sparse regression).

Step 1: For 1 ≤ 𝑗 ≤ 𝑝, calculate the score index𝑤𝑗 = 𝑔
(
𝒙(𝑗), 𝒚

)
;

Step 2: Form 𝑫𝑆 = (𝑿𝑆, 𝒚), where 𝑿𝑆 includes the ℎ columns
with the ℎ largest 𝑤𝑗 values;

Step 3: For 𝑞 = 1, … , ℎ, based on column 𝑥(𝑞) in 𝑿𝑆 , form
�̃�𝑆 = (�̃�𝑆, �̃�) by including 2𝑙 data points with the 𝑙 smallest val-
ues and 𝑙 largest values but excluding data points already been
selected;

Step 4: Obtain parameter estimation from Equation (6) using
the data �̃�𝑆 .

One can see that the computation complexity of Algorithm 1
is on the order of 𝑂(np), which can be much faster than the
Lasso using the original dataset. There are several remarks
on the specification of Algorithm 1. First, the index score
𝑤𝑗 measures the relationship between 𝒚 and 𝒙(𝑗). It can be
the Pearson correlation, partial correlation, or other marginal
statistics, like t-statistics and p value. Based on the empir-
ical study, we recommend using t-statistic providing robust
results from Algorithm 1 compared with Pearson correlation
and p value. Details will be discussed in the experimental
section.

Here, we would like to remark that the choice of 𝑘, the
size of reduced data, is often constrained by the practi-
cal consideration. Considering the selected columns have the
most strong score index explaining the response variables,
and the rule of thumb based on our empirical study (see a
numerical study in Section 3) is to select 10–30 points from
each column.

For the choice of ℎ, the number of important features to
be retained in the filtered data, one may follow the sugges-
tion given by Fan and Lv [13] with ℎ = 𝑛∕ log(𝑛) when 𝑛 <
𝑝 and ℎ = 𝑝∕ log(𝑝) when 𝑛 > 𝑝. However, when both 𝑛 and
𝑝 are large, such a choice of ℎ can also be large. Alterna-
tively, one can determine ℎ by using the change-point detec-
tion method based on the score index values 𝑤𝑗 = 𝑔

(
𝒙(𝑗), 𝒚

)
,

𝑗 = 1, … , 𝑝. The change-point detection method is to find the
first point when the distribution of the descending-ordered score
index 𝑤𝑗 changes. Here, we adopt the pruned exact linear
time (PELT) change-point detection algorithm in Killick, Fearn-
head, and Eckley [18]. Specifically, suppose that there are a
sorted score index

(
𝑤(1), … , 𝑤(𝑝)

)
and 𝜏 change-points splitting

the data into 𝜏 + 1 segments. Denote the 𝜏 change-point loca-
tions as 𝐿 = (𝑙1, … , 𝑙𝜏). Then, the jth segment contains all score
index between location 𝑙𝑗−1 + 1 and 𝑙𝑗 , denoted as 𝒘(𝑙𝑗−1+1)∶𝑙𝑗 .
A change point is detected if we can detect a point location
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𝑗 that satisfies,

𝐶
(
𝒘(𝑡+1)∶𝑗) + 𝐶(𝒘(𝑗+1)∶𝑇) + 𝐾 ≤ 𝐶

(
𝒘(𝑡+1)∶𝑇),

for all 𝑡 < 𝑗 < 𝑇 (7)

where 𝐶(⋅) is a cost function for a segment, and 𝐾 is a con-
stant. The settings of 𝐶(⋅) and 𝐾 follow the algorithm in Killick,
Fearnhead, and Eckley [18] and the corresponding R package
changepoint.

2.2 | Theoretical Properties

In this section, we investigate the theoretical properties of
the FAME algorithm. These properties evaluate our proposed
method and give bounds on variances of estimators as well as
asymptotic results.

Theorem 1. Let �̃�S be the subdata selected by the FAME
algorithm including ℎ columns and k data entries in total. Denote
λmin(𝑹) as the smallest eigenvalues of the sample correlation matrix
𝑹 of �̃�S. The determinant |�̃�𝑻

𝑺
�̃�𝑺| satisfies

|�̃�𝑻
𝑺
�̃�𝑺|

𝑘ℎ+1

4ℎ
∏ℎ
𝑞=1
(
𝑥(𝑢)𝑞 − 𝑥(𝑣)𝑞

)2 ≥
𝜆ℎmin(𝑹)

ℎℎ
×

ℎ∏
𝑞=1

(
𝑥(𝑛−𝑙+1)𝑞 − 𝑥(𝑙)𝑞

𝑥(𝑢)𝑞 − 𝑥(𝑣)𝑞

)2

(8)

where 𝑥(𝑛−𝑙+1)𝑞 is the lst largest order statistic and 𝑥(𝑙)𝑞 is the lst
smallest order statistics in 𝒙(𝑞). 𝑥(𝑢)𝑞 is the average of the top 𝑙 order
statistic, and 𝑥(𝑣)𝑞 is the 𝑙 smallest order statistic.

When lim𝑛→∞ 𝜆min(𝑹) > 0, then under suitable assumptions, the
lower bound of Equation (8) will not converge to 0 as 𝑛 →∞.|�̃�𝑻
𝑺
�̃�𝑺| is of the same order as the upper bound for |𝑰(𝛿)| in

Equation (4), although the upper bound is hard to achieve.

Following Tibshirani [10], one can have approximations of the
lasso estimator from Equation (6) as

�̃�(𝜆)|�̃�𝑆 ≈ [�̃�𝑻𝑺 �̃�𝑺 + 𝜆𝚿(�̃�(𝜆)|�̃�𝑆)]−1
�̃�
𝑻
𝑺
�̃� with

{
𝚿(�̃�(𝜆)

}
= diag(𝜓1, 𝜓2, … , 𝜓ℎ),

where 𝜓𝑗 =
⎧⎪⎨⎪⎩

1|𝛽𝑗(𝜆)| if 𝛽𝑗(𝜆) ≠ 0

0 otherwise
, for 𝑗 = 1, … , ℎ.

Then, we can also establish the properties on the variance of the
approximated 𝛽 under the proposed FAME framework.

Theorem 2. Use the same notation as in Theorem 1, when
λmin(𝑹) > 0 and �̃�S is the reduced dataset, then the variance of the
approximated �̃� of the lasso regression satisfies

Var
(
𝛽𝑞|�̃�𝑆) ≤ 4ℎ𝜎2

𝑘𝜆min(𝑹)
(
𝑥(𝑢)𝑞 − 𝑥(𝑣)𝑞

)2 , for 𝑞 = 1, … , ℎ (9)

Theorem 2 is a finite sample property of 𝛽 from the subdata
selected via the FAME algorithm. In the cases when 𝜆 = 0 and

all variables are selected,

𝑉
(
�̃�𝒒|�̃�𝑆) ≥ 4𝜎2

𝑘𝜆max(𝑹)
(
𝑥nq − 𝑥1𝑞

)2 (10)

where 𝑥nq is the largest order statistic and 𝑥1𝑞 is the smallest order
statistics in 𝒙(𝑞). Assume that lim𝑛→∞ 𝜆ℎmin(𝑹) > 0. As 𝑛 →∞, 𝛽
obtained from �̃�𝑆 has the following property:

Var
(
𝛽𝑞|�̃�𝑆) = 𝑂𝑝( ℎ

𝑘
(
𝑥(𝑢)𝑞 − 𝑥(𝑣)𝑞

)2

)
, 𝑞 = 1, … , ℎ

This theorem holds for any values of 𝑛, 𝑟, and ℎ and can also be
used to obtain results when one or more of these values go to
infinity.

Theorem 3. Denote 𝑫 as the full data and the estimator of
linear model using 𝑫 as 𝛽. Denote the upper and lower bound of
Var
(
�̃�q|�̃�S

)
as U�̃�q|D̃S

and L�̃�q|�̃�S
. Similarly, the upper and lower

bound of Var
(
𝛽q|𝑫) are U𝛽q|𝑫 and L𝛽q|𝑫. Then

𝑈𝛽𝑞 |𝑫𝑆 ≤ 𝑈𝛽𝑞 |𝑫 (11)

𝐿𝛽𝑞 |𝑫𝑆 ≥ 𝐿𝛽𝑞 |𝑫 (12)

Theorem 3 shows that the estimator based on �̃�𝑆 can have a
smaller variance range compared to the estimator based on the
full data 𝑫.

2.3 | Extension of Binary Data

We can also extend the proposed FAME method for noncontin-
uous responses or noncontinuous predictors. Here, we focus on
binary response or binary predictors with two levels.

When the response variable 𝒚 is binary as 𝑦𝑖 ∈ {−1, 1} for data
point 𝑖 and the input matrix is continuous, we can use the
main effect in the experimental design to construct the score
index 𝑤𝑗 . That is, the score index 𝑤𝑗 can be calculated as
the difference of the average input between two levels of the
response variable.

𝑤𝑗 = 𝒙
(𝑗)
(𝑦𝑖+) − 𝒙

(𝑗)
(𝑦𝑖−) =

1
𝑛(+)

∑
𝑦𝑖=1
𝑥ij −

1
𝑛(−)

∑
𝑦𝑖=−1

𝑥ij,

1 ≤ 𝑗 ≤ 𝑝, 1 ≤ 𝑖 ≤ 𝑛; (13)

where 𝒙(𝑗)(𝑦𝑖+) is the average of 𝒙(𝑗) values observed at the pos-
itive response level and 𝒙(𝑗)(𝑦𝑖−) is the average of 𝒙(𝑗) values
observed at the negative response level. Here,𝑛(+) and𝑛(−) are the
number of observations with response label 𝑦 = 1 and 𝑦 = −1,
respectively.

Since the response variable 𝒚 is binary, we consider the logis-
tic regression for model estimation. Denote 𝒙𝑚𝑠 ∈ 

ℎ is the data
point and 𝑦𝑚 ∈ {−1, 1} is the response variable in �̃�𝑆 , where
𝑚 = 1, … , 2𝑙. Then, Pr(�̃�𝒎 = 1|𝒙𝑚𝑠) = exp(𝒙𝑇𝑚𝑠𝜷)

1+exp(𝒙𝑇𝑚𝑠𝜷)
, where 𝜷 is an

ℎ × 1 vector of regression coefficients. A penalized likelihood

4 of 12 Statistical Analysis and Data Mining: The ASA Data Science Journal, 2024
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estimation can be used for parameter estimation of 𝜷 by mini-
mizing the negative log-likelihood function.

�̃� = arg min
𝜷
{−𝓁(𝜷) + 𝜆||𝜷||1} (14)

where 𝓁(𝜷) = 1
2𝑙

∑2𝑙
𝑚=1 log

[
1 + exp

(
−𝑦𝑚𝒙

𝑇
𝑚𝑠
𝜷
)]

. Here, 𝜆 ≥ 0
is a tuning parameter. Algorithm 2 summarizes the proposed
FAME algorithm for the binary response variable.

ALGORITHM 2 | (FAME for binary response).

Step 1: For 1 ≤ 𝑗 ≤ 𝑝, calculate the score index 𝑤𝑗 = 𝑔
(
𝒙(𝑗), 𝒚

)
in Equation (13);

Step 2: Form 𝑫𝑆 = (𝑿𝑆, 𝒚), where 𝑿𝑆 includes ℎ columns with
the ℎ largest 𝑤𝑗 values;

Step 3: For 𝑝 = 1, … , ℎ, based on column 𝑥(𝑝) in 𝑿𝑆 , form
�̃�𝑆 = (�̃�𝑆, �̃�) by including 2𝑙 data points with the 𝑙 smallest val-
ues and 𝑙 largest values but excluding data points already been
selected;

Step 4: Obtain model estimation from Equation (14).

The second extension is to consider the FAME method for data
with binary predictor variables with two levels as “+” and “−.”
For the selection of columns, we then can define the score index
based on the difference in the average response between two lev-
els of the predictor variable. That is,

𝑤𝑗 = 𝑦𝑖
(
𝒙(𝑗)+

)
− 𝑦𝑖
(
𝒙(𝑗)−

)
=

1
𝑛(+)

∑
𝑥ij=1

𝑦𝑖 −
1
𝑛(−)

∑
𝑥ij=−1

𝑦𝑖,

1 ≤ 𝑗 ≤ 𝑝, 1 ≤ 𝑖 ≤ 𝑛 (15)

where 𝑦𝑖
(
𝒙(𝑗)+

)
is the average of 𝑦𝑖 values observed at the positive

predictor level and 𝑦𝑖
(
𝒙(𝑗)−

)
is the average of 𝑦𝑖 values observed

at the negative predictor level for the jth covariate. Here, 𝑛(+) and
𝑛(−) are the number of observations with the predictor 𝒙(𝑗) = 1
and 𝒙(𝑗) = −1, respectively.

For the selection of rows, however, the use of criterion in
Equation (4) become improper since

|𝑰(𝛿)| ≤ 𝐶 𝑘ℎ+1𝑙2ℎ

4ℎ𝜎2(ℎ+1)
(16)

where 𝐶 is a positive constant. Clearly, the order statistics of
each column in the input matrix do not work for selecting
subdata to maximize the information matrix. To overcome this
issue, for each filtered column 𝒙(𝑞), sorting predictor values
and denote the location of the value closest to 𝑦𝑖

(
𝒙(𝑞)+

)
as

𝛾(𝑞)(+) and the location of the value closest to 𝑦𝑖
(
𝒙(𝑞)−

)
as

𝛾(𝑞)(−), denoting [ ] as the floor division operator. When 𝑙 is
odd, selecting the 𝑙 data points with response variable closest
to 𝑦𝑖

(
𝒙(𝑞)+

)
denoted as 𝑦𝛾(𝑞)(+)−[ 𝑙2 ]∶𝛾(𝑞)(+)+[

𝑙

2 ]

(
𝑥𝑞+
)

and 𝑙 data
points with response variable closest to 𝑦𝑖

(
𝒙(𝑞)−

)
denoted

as 𝑦𝛾(𝑞)(−)−[ 𝑙2 ]∶𝛾(𝑞)(−)+[
𝑙

2 ]

(
𝑥𝑞−
)
. When 𝑙 is even, selecting the

𝑙 data points 𝑦𝛾(𝑞)(+)−[ 𝑙2 ]+1∶𝛾(𝑞)(+)+[ 𝑙2 ]

(
𝑥𝑞+
)

and 𝑙 data points
𝑦𝛾(𝑞)(−)−[ 𝑙2 ]+1∶𝛾(𝑞)(−)+[ 𝑙2 ]

(
𝑥𝑞−
)
.

Algorithm 3 summarizes the proposed FAME algorithm
for binary predictor variable. It is easy to see that the

computing time is the same as in Algorithm 1, which
is 𝑂(np).

ALGORITHM 3 | (FAME for binary predictor variables).

Step 1: For 1 ≤ 𝑗 ≤ 𝑝, calculate the score index 𝑤𝑗 = 𝑔
(
𝒙(𝑗), 𝒚

)
in Equation (15);

Step 2: Form 𝑫𝑆 = (𝑿𝑆, 𝒚), where 𝑿𝑆 includes the ℎ columns
with the ℎ largest 𝑤𝑗 values;

Step 3: For 𝑞 = 1, … , ℎ, based on column 𝑥(𝑞) in𝑿𝑆 , form �̃�𝑆 =

(�̃�𝑆, �̃�) by including 2𝑙 data points with the 𝑙 values around
mean of 𝑦𝑖 when 𝑥iq is positive and 𝑙 values around mean of
𝑦𝑖 when 𝑥iq is negative but excluding data points already been
selected;

Step 4: Obtain coefficient estimation from Equation (6).

Corollary 1. For the subdata selected by the FAME algorithm
with binary predictor variables, denote 𝑹 as the sample correlation
matrix of �̃�S, the determinant |||�̃�𝑻𝑺 �̃�𝑺||| satisfies

|||�̃�𝑻𝑺 �̃�𝑺||| ≥ Ck
(
𝑘𝜆min(𝑹)

ℎ

)ℎ
(17)

where 𝐶 is a constant.

The lower bound of the information matrix of subdata �̃�𝑆 is deter-
mined by the number of columns selected in the subdata as well
as the smallest eigenvalue of the correlation matrix of the sub-
data. Based on Theorem 3, we can know that this bound is larger
than the lower bound of the information matrix of the full data
and will not converge to 0 as 𝑛 →∞ when lim𝑛→∞ 𝜆min(𝑹) > 0.

Corollary 2. When λmin(𝑹) ≥ 0, for the reduced dataset �̃�S
with binary predictors,

Var
(
𝛽𝑞|�̃�𝑆) ≤ Ch𝜎2

𝑘𝜆min(𝑹)
, for 𝑞 = 1, … , ℎ (18)

The upper bound of Var
(
𝛽ℎ
)

is not related to the binary predictors
as in the situation of continuous predictors.

Corollary 3. As n →∞, assuming limn→∞ λmin(𝑹) > 0,

Var
(
𝛽𝑞|�̃�𝑆) = 𝑂𝑝(ℎ𝑘

)
, 𝑞 = 1, … , 𝑗 (19)

When ℎ and 𝑘 are fixed, it is seen that Var
(
𝛽𝑞|�̃�𝑆) = 𝑂𝑝(1).

3 | Simulation

In this section, we will evaluate the performance of the proposed
FAME method using simulated data with continuous predictors
or discrete predictors. To estimate the coefficient parameter �̃�, we
compare the proposed FAME method with five benchmark meth-
ods: IBOSS, IBOSS_LASSO, SIS, SIS_LASSO, and LASSO.

1. FAME: The proposed FAME algorithm;

2. IBOSS: Benchmark method selecting predictors randomly
and selecting features using the IBOSS method [18]. The
subdata are fitted with multivariate linear regression;

5 of 12
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3. IBOSS_LASSO: Benchmark method selecting predictors
randomly and selecting features using IBOSS method [18].
The subdata are fitted with regularized regression;

4. SIS: Benchmark method selecting predictors using the SIS
method [13] with all data points. The subdata are fitted with
multivariate linear regression;

5. SIS_LASSO: Benchmark method selecting predictors using
the SIS method [13] with all data points. The subdata are
fitted with regularized regression;

6. LASSO: Benchmark method on the original data fitted with
regularized regression.

The subdata selected by each method are shown in Figure 1. The
light color in the plot represents selected columns or rows, while
dark color represents selected subdata.

Subdata are split into 70% training data and 30% testing data.
Parameters are estimated on training data and the performance
of methods is evaluated by empirical mean squared errors
(MSEs) and signal-to-noise ratio (SNR) on testing data. MSE =

1
𝑛𝑡𝑆

∑𝑆
𝑠=1
‖‖‖𝒚(𝑠) − �̂�(𝑠)‖‖‖2

, where 𝑆 is the number of simulation and
𝑛𝑡 is the number of data points in the test dataset. 𝒚(𝑠) is the true
response value, and �̂�(𝑠) is the predicted response value in each

simulation. SNR = 1
𝑛

∑𝑆
𝑠=1

var
(
�̂�(𝑠)
)

𝜎(𝑠)
, where 𝜎(𝑠) is the variance of

the predicted residuals.

3.1 | Cases With Continuous Predictors

Data are generated based on Equation (1) with 2000 data
points, 5 true predictors among 1000 features and 𝜎2 = 16.
Covariates matrix 𝑿 is generated from multivariate normal
distribution 𝑿 ∼ 𝑁(𝟎, 𝚺), where 𝚺 is a covariance matrix with
Σij = 0.5𝕀(𝑖≠𝑗) under dependent situation and 𝚺 = 𝑰 under inde-
pendent situation. 𝕀() is the indicator function. The simulation
is repeated 𝑆 = 50 times, and each column is standardized.
The selected subdata has 200 data points with five columns
or 25 columns. Besides MSE, methods are also compared in
terms of the standard deviation of MSE, true positive rate (TPR),
true negative rate (TNR), and computational time (TIME),
where TPR= true positive/(true positive+ false negative) and
TNR= true negative/(true negative+ false positive).

Table 1 summarizes the estimation results of selecting 200 data
points from five columns. For both independent and dependent
covariates cases, the proposed FAME method beats the bench-
mark methods with smaller MSE. Compared with IBOSS with
MSE, the proposed methods selected the most important features
instead of randomly selecting, which contributes to decreasing
the prediction MSE from 19.49 to 16.90. Compared with SIS, the
proposed FAME method uses t-statistic as the score index instead
of componentwise regression. The MSE of SIS_LASSO is 37.10
which is much larger than the MSE of FAME. This big difference
in prediction accuracy shows that the proposed FAME method
has higher accuracy in selecting the most informative features

FIGURE 1 | An illustration of the proposed method and three benchmark methods.

TABLE 1 | Results of filtering 200 data points from five columns.

FAME IBOSS IBOSS_LASSO SIS SIS_LASSO LASSO

Independent
covariates

MSE 16.90 1.35e+ 07 19.49 37.10 37.10 16.43
TPR 0.86 1.00 0.90 0.64 0.63 0.96
TNR 1.00 0.80 0.97 1.00 1.00 0.98

TIME 0.05 0.05 0.26 0.002 0.06 2.49
Dependent
covariates

MSE 18.19 6.64e+ 04 18.85 44.81 44.85 16.34
TPR 0.82 1.00 0.90 0.63 0.61 0.96
TNR 1.00 0.80 0.97 1.00 1.00 0.97

TIME 0.05 0.05 0.26 0.002 0.06 1.79

6 of 12 Statistical Analysis and Data Mining: The ASA Data Science Journal, 2024
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compared with SIS. LASSO used all the data for prediction and
has the smallest MSE of all six methods. However, the MSE of
FAME is similar to that of LASSO with less number of both
predictors and data points.

IBOSS, IBOSS_LASSO, and LASSO used all features for parame-
ter estimation while FAME only utilized five features. The TPR of
FAME is smaller and TNR is higher than those three methods. SIS
already selected several features before regularized regression,
which reduces the number of features, so the MSE of SIS_LASSO
is similar to that of SIS which is 37.10. However, the regularized
regression improves the IBOSS methods by reducing the MSE
from 1.35e+ 07 to 19.49, leading to a decrease in TPR from 1 to
0.9.

The proposed FAME method generates a subdata with the small-
est size by reducing both the number of features and data
points. The computation time is also small compared to LASSO
using all data and is similar to other benchmark methods.
SIS has the smallest computation time because of the small
number of features and no parameter tuning for regularized
regression.

The result is similar when selecting 25 features as shown in
Table 2. The proposed FAME method has MSE similar to that of
LASSO and smaller than other benchmark methods. The predic-
tion accuracy is high, the size of the subdata generated by FAME
is the smallest among all methods and the computation costs is
also low. For the simulated dataset, only five features out of 1000
are true covariates, so compared with Table 1, the MSE of FAME

does not improve, while SIS has a smaller MSE because more
important features are selected.

Table 3 summarizes the variance of the estimation of selecting
200 data points from 25 or five columns. When 25 columns are
selected from 1000 independent predictors, the predicted vari-
ance of all methods is smaller than that of the true variance
besides the IBOSS method. The proposed FAME method has the
largest SNR besides the LASSO method. The above phenomenon
can also be found when the predictors are dependent or when five
columns are selected from 1000 predictors. The proposed FAME
method has a prediction variance close to the true variance and
an SNR close to that of LASSO. The subdata generated by FAME
are the smallest, and the computation time is small.

To determine the optimal number of columns in the subdata, we
apply the change-point detection method described in Section 2.
As shown in Figure 2, the first location of the change point
detected is on the fifth column. One would recommend the num-
ber of features included in the subdata to be five, which is the
number of true coefficients when generating the original data.
The performance of the proposed FAME algorithm does not seem
to improve much when more than five columns are included in
the subdata.

Note that the number of data points contained in the subdata
is 200 in this simulation study, where 40 points from each col-
umn are selected. We also examine the performance of the pre-
diction MSE concerning the number of points in the subdata
in Figure 3. As shown in Figure 3, for the dependent case, the

TABLE 2 | Results of filtering 200 data points from 25 columns.

FAME IBOSS IBOSS_LASSO SIS SIS_LASSO LASSO

Independent
covariates

MSE 17.19 1.60e+ 08 19.52 28.38 28.15 16.43
TPR 0.90 1.00 0.90 0.72 0.72 0.96
TNR 1.00 0.80 0.97 0.98 1.00 0.98

TIME 0.06 0.05 0.26 0.004 0.07 2.44
Dependent
covariates

MSE 17.63 1.05e+ 06 18.75 28.91 28.83 16.35
TPR 0.87 1.00 0.91 0.73 0.73 0.96
TNR 0.99 0.80 0.97 0.98 0.99 0.97

TIME 0.05 0.05 0.23 0.004 0.07 1.78

TABLE 3 | Results of filtering simulated subdata on prediction variance.

25/1000 5/1000

Independent Dependent Independent Dependent

Method
Prediction
variance

True
variance SNR

Prediction
variance

True
variance SNR

Prediction
variance

True
variance SNR

Prediction
variance

True
variance SNR

FAME 5.40 12.94 6.95 59.70 5.45 13.78 6.96 56.58
IBOSS 18.88 1.05 13.85 1.35 16.42 1.07 11.11 1.27
IBOSS_LASSO 5.30 5.53 10.35 6.94 6.99 55.69 5.30 5.53 10.38 6.94 6.99 55.26
SIS 5.41 10.32 6.96 45.98 5.37 8.74 6.94 35.49
SIS_LASSO 5.38 10.14 6.94 45.51 5.35 8.62 6.93 34.94
LASSO 5.40 13.58 6.96 64.75 5.40 13.58 6.96 64.75
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FIGURE 2 | Change-point detection using t-statistics for the simulated dataset.

FIGURE 3 | MSE and number of points in the subdata.

MSE drops significantly when the number of data points in the
subdata increases from 10 to 200. For the independent case, the
turning point of MSE occurs when the subdata have around 100
data points. It is seen that the MSE does not improve much when
we continuously increase the size of the subdata. Without loss of
generality, one would recommend that the rule of thumb is to
choose at least 10 points from each selected column to form the
subdata.

3.2 | Cases With Binary Predictors

The simulated dataset has 700 observations and 700 predictors,
of which five are true predictors generated from the normal dis-
tribution. The predictors came from a binomial distribution with
a probability between a range of 0.3 to 0.7, representing that the
covariates can be imbalanced. The response variable is generated
based on Equation (1), where 𝝐 is the distributed normally with
a mean of 0 and a standard deviation of 0.3. The simulation is
repeated 50 times, and empirical mean squared error (MSE) is
the measurement metric.

The simulation result is shown in Table 4. The proposed method
has the smallest MSE compared with all benchmark methods,
besides LASSO using all data. It shows the superior performance
of feature selection and data points selection in FAME. Compared
with IBOSS and IBOSS_Lasso, FAME selected the most impor-
tant features and data points. Compared with SIS and SIS_Lasso,
the main effect is more effective in selecting the most important
features. The TPR of SIS and SIS_LASSO is only around 0.16,

while that for FAME is around 0.8. IBOSS and LASSO used all
the data, so the TPR of these two methods is almost 100% accu-
rate. The subdata generated by FAME are the smallest among all
methods with low computation cost.

4 | Case Studies

4.1 | ARCENE Data in Cancer Study

The ARCENE dataset is obtained from the UCI Machine
Learning Repository, which was published by the National
Cancer Institute (NCI) and the Eastern Virginia Medical School
(EVMS). The objective of this study is to distinguish cancer
based on patterns which are continuous input variables. It is a
classification problem with binary output. Among the 10,000
predictors, 7000 are real variables while the other 3000 variables
are random probes. Both the training and testing dataset has 100
observations. The estimation result is measured by classification
error 𝑓∕𝑛, where 𝑓 is the number of sample cases incorrectly
classified, and 𝑛 is the total number of sample cases.

Table 5 summarizes the estimation results of the proposed and
benchmark methods. When the subdata has five columns, the
classification error of the proposed FAME method is the smallest
among all methods. Compared with IBOSS and IBOSS_LASSO,
the proposed method selected the most several important
features. Compared with SIS and SIS_LASSO, the main
effect performs well in ranking feature importance. Although
LASSO used all features, its MSE is larger than that of FAME.

8 of 12 Statistical Analysis and Data Mining: The ASA Data Science Journal, 2024
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TABLE 4 | Estimating result for selecting five columns and 50 data points for dataset with binary predictors.

FAME IBOSS IBOSS_LASSO SIS SIS_LASSO LASSO

MSE 0.23 199.73 0.24 0.97 0.96 0.10
TPR 0.78 1.00 0.76 0.17 0.16 0.96
TNR 1.00 0.94 0.97 1.00 1.00 0.96
TIME 0.04 0.01 0.12 0.001 0.05 0.33

TABLE 5 | Results of filtering subdata with 50 observations from five or 10 columns of ARCENE data.

c= 5 c= 10

Classification error Time Classification error Time

FAME 0.26 0.08 0.28 0.25
IBOSS 0.47 3.88 0.48 3.61
IBOSS_LASSO 0.36 0.82 0.37 0.74
SIS 0.35 0.002 0.33 0.004
SIS_LASSO 0.42 0.84 0.40 1.85
LASSO 0.33 2.81 0.33 2.57

TABLE 6 | Result of filtering subdata with 50 observations from five columns of P&G data.

R068_1min R068_5min

5/59 5/3009 5/59 5/3009

Method MSE (SD) Time (SD) MSE (SD) Time (SD) MSE (SD) Time (SD) MSE (SD) Time (SD)

FAME 1.87 0.05 2.05 0.04 2.94 0.05 3.22 0.05
(0.55) (0.01) (0.42) (0.01) (0.60) (0.01) (0.81) (0.003)

IBOSS 2.39e+ 07 0.002 4.04e+ 08 0.03 1.24e+ 05 0.002 8.13e+ 05 0.07
(1.69e+ 08) (0.002) (1.97e+ 09) (0.005) (4.88e+ 05) (0.00) (4.29e+ 06) (0.03)

IBOSS LASSO 2.17 0.12 3.72 0.18 8.82 0.11 4.91 0.28
(1.12) (0.02) (6.87) (0.03) (26.93) (0.03) (11.13) (0.05)

SIS 2.03e+ 04 0.002 9.16e+ 03 0.002 10.37 0.003 5.58 0.003
(8.24e+ 04) (0.00) (4.89e+ 04) (0.002) (23.91) (0.00) (1.26) (0.00)

SIS LASSO 1.96 1.18 2.66 0.12 2.81 0.87 3.53 0.13
(0.93) (0.54) (0.69) (0.12) (0.93) (0.39) (1.30) (0.16)

LASSO 1.83 1.55 1.79 0.26 2.94 1.24 2.70 0.62
(0.66) (0.62) (0.32) (0.04) (1.80) (0.36) (0.44) (0.07)

Meanwhile, the size of the subdata generated by FAME is the
smallest among all. A similar pattern can be observed when 10
features are selected in the subdata.

4.2 | Babycare Process Data in Manufacturing
System

The P&G data are offered by Procter & Gamble with 161 con-
tinuous observations and 59 continuous features. The response
variable is the number of rejects in the production line in a 1-min
interval or 5-min interval. By permuting each feature with noise,
the number of features increases from 59 to 3009. The subdata

contain 50 observations and 50 features. The estimation result is
evaluated using MSE and SNR.

The estimation result is shown in Table 6. For the production line
with a 1-min interval, when the subdata are filtered from the orig-
inal data with 59 features or 3009 features, the proposed FAME
method performs the best besides LASSO, then is SIS_LASSO and
IBOSS_LASSO. The superiority of FAME is more obvious when
the number of features is large. When there are 59 features, the
MSE of FAME is 1.87. Increasing the number of features to 3009,
the MSE of FAME increases to 2.05 while that of SIS_LASSO
increases from 1.96 to 2.66 and that of IBOSS_LASSO increases
from 2.17 to 3.72. LASSO always has the smallest MSE because it
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TABLE 7 | Results of filtering subdata with 50 observations from five columns of P&G data on prediction variance.

R068_1min R068_5min

5/59 5/3009 5/59 5/3009

Method
Prediction
variance

True
variance SNR

Prediction
variance

True
variance SNR

Prediction
variance

True
variance SNR

Prediction
variance

True
variance SNR

FAME 0.28 1.80 0.15 0.47 1.80 0.24 0.45 2.67 0.15 0.56 2.67 0.17
IBOSS 2.39e+ 07 1.00 4.04e+ 08 1.00 1.20e+ 05 0.99 7.87e+ 05 1.00
IBOSS_LASSO 0.42 0.11 1.92 0.13 6.33 0.22 2.18 0.08
SIS 2.02e+ 04 0.80 9.11e+ 03 0.50 8.91 0.64 1.35 0.34
SIS_LASSO 0.33 0.10 0.54 0.27 0.29 0.08 0.35 0.11
LASSO 0.21 0.08 0.07 0.04 0.41 0.07 0.04 0.01

uses all original data. However, the proposed method generates
subdata with the smallest size and low computational cost.

The superiority of the proposed method compared with bench-
mark methods, especially for large datasets, can be observed for
the production line with 5-min interval. When the number of
features is 59, the MSE of FAME is similar to LASSO, but both
are larger than the mSE of SIS_LASSO. However, increasing the
number of features to 3009, the MSE of FAME is the smallest
besides LASSO.

The variance and SNR of the predicted estimator are shown in
Table 7. For the production line with a 1-min interval, the vari-
ance of the predicted response variable of the proposed FAME
method is the smallest besides LASSO. For the production line
with a 5-min interval, although the variance of the predicted
response variable of FAME is larger than SIS_LASSO, the SNR
of FAME is larger than that of SIS_LASSO.

5 | Discussion

In this work, we proposed the FAME method for efficient data
reduction for sparse regression. This proposed methodology con-
ducts data reduction in terms of reducing both the number of
rows and columns of the original data considering the corre-
lation between predictors and response. Overall, the proposed
FAME method is robust in parameter estimation and outper-
forms benchmark methods in scenarios including continuous
response with continuous predictors, continuous response with
binary predictors, and binary response with continuous predic-
tors. The superiority is more obvious when the number of data
points is much larger than the number of predictors. The advan-
tage of the proposed method comes from selecting the most
important features and data points while considering the rela-
tionship between the response variable and predictors in the
procedure. The subdata generated from the proposed FAME
method is always the smallest compared to the benchmark
methods.

We would like to remark that the proposed FAME method may
not be the best data reduction method but aims to strike a good
balance between data reduction efficiency and model estimation
accuracy. There are several aspects worth further investigation.
Currently, we only discuss the scenarios when the predictors or

response are binary. However, in practice, the non-continuous
predictors or response variables usually can have more than two
distinct categories. In some cases, both predictors and response
can be discrete. This brings the challenge to the proposed FAME
algorithm on how to select data points in each level of pre-
dictor variables. Besides, for datasets with discrete responses,
it is possible that the dataset is highly imbalanced where the
majority of classes dominate the whole dataset. It will be of
future interest to improve the proposed FAME method to han-
dle imbalanced data. Third, the current FAME method assumes
a linear model for data reduction. However, the linear model
assumption can be too strong or can be misspecified for some
case studies in practice. It will be interesting to extend the pro-
posed method to enable data reduction for nonlinear models or
nonparametric models.
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Appendix A

A.1 | Proof of Theorem 1

Proof. For the full data 𝑫 with 𝑛 rows and 𝑝 columns, denote
the subdata obtained after feature screening is 𝑫𝑆 = (𝑿𝑆, 𝒚) and
the one from the FAME algorithm as �̃�𝑆 =

(
�̃�𝑺, �̃�

)
. 𝑥(𝑖)𝑞 being the

ith order statistic for 𝒙𝑞 =
{
𝑥(1)𝑞 , · · · , 𝑥(𝑛)𝑞

}
, where 𝑞 = 1, · · · , ℎ and

𝑖 = 1, · · · , 𝑛.

Let �̃� and var(�̃�𝒒) be the mean and variance for the covariate �̃�𝒒 in �̃�𝑆 .
The information matrix of �̃�𝑆 is

�̃�
𝑻
𝑺
�̃�𝑺 = 𝑩

−1

[
𝑘 0𝑇

0 (𝑘 − 1)𝑹

](
𝑩𝑇
)−1 (20)

where

𝑩 =

⎡⎢⎢⎢⎢⎢⎣

1
−

�̃�1√
var(�̃�1)

1√
var(�̃�1)

… ⋱

−
�̃�ℎ√

var(�̃�𝒉)
1√

var(�̃�𝒉)

⎤⎥⎥⎥⎥⎥⎦
(21)

From Equations (20) and (21),

|�̃�𝑻
𝑺
�̃�𝑺| = 𝑘|(𝑘 − 1)𝑹| ℎ∏

𝑞=1
var
(
�̃�𝒒
)
≥ 𝑘(𝑘 − 1)ℎ𝜆ℎmin(𝑹)

ℎ∏
𝑞=1

var
(
�̃�𝒒
)

(22)

For each sample variance,

(𝑘 − 1)var
(
�̃�𝒒
)
=

𝑘∑
𝑖=1

(
�̃�iq − �̃�𝑞

)2 (23)

≥

(
𝑙∑
𝑖=1
+

𝑛∑
𝑖=𝑛−𝑙+1

)(
𝑥(𝑖)𝑞 − �̃�

∗

𝑞

)2
(24)

=

𝑙∑
𝑖=1

(
𝑥(𝑖)𝑞 − 𝑥(𝑢)𝑞

)2
+

𝑛∑
𝑖=𝑛−𝑙+1

)
(
𝑥(𝑖)𝑞 − 𝑥(𝑣)𝑞

)2

+
𝑙

2
(
𝑥(𝑢)𝑞 − 𝑥(𝑣)𝑞

)2 (25)

≥
𝑙

2
(
𝑥(𝑢)𝑞 − 𝑥(𝑣)𝑞

)2 (26)

≥
𝑙

2
(
𝑥(𝑛−𝑙+1)𝑞 − 𝑥(𝑙)𝑞

)2 (27)

where �̃�
∗

𝑞
=
(∑𝑙

𝑖=1 +
∑𝑛
𝑖=𝑛−𝑙+1

)
𝑥(𝑖)𝑞∕(2𝑙), 𝑥(𝑢)𝑞 =

∑𝑛
𝑖=𝑛−𝑙+1𝑥(𝑖)𝑞∕𝑙 and

𝑥(𝑣)𝑞 =
∑𝑙
𝑖=1𝑥(𝑖)𝑞∕𝑙.From Equation (27),

var
(
�̃�𝒒
)
≥
𝑙
(
𝑥(𝑢)𝑞 − 𝑥(𝑣)𝑞

)2

2(𝑘 − 1)

(
𝑥(𝑛−𝑙+1)𝑞 − 𝑥(𝑙)𝑞

𝑥(𝑢)𝑞 − 𝑥(𝑣)𝑞

)2

(28)

Thus, one can have

|�̃�𝑻
𝑺
�̃�𝑺| ≥ 𝑘(𝑘 − 1)ℎ𝜆ℎmin(𝑹)

ℎ∏
𝑞=1

𝑙
(
𝑥(𝑢)𝑞 − 𝑥(𝑣)𝑞

)2

2(𝑘 − 1)

(
𝑥(𝑛−𝑙+1)𝑞 − 𝑥(𝑙)𝑞

𝑥(𝑢)𝑞 − 𝑥(𝑣)𝑞

)2

(29)

=
𝑙ℎ

2ℎ
𝑘𝜆ℎmin(𝑹)

ℎ∏
𝑞=1

(
𝑥(𝑢)𝑞 − 𝑥(𝑣)𝑞

)2
×

ℎ∏
𝑞=1

(
𝑥(𝑛−𝑙+1)𝑞 − 𝑥(𝑙)𝑞

𝑥(𝑢)𝑞 − 𝑥(𝑣)𝑞

)2

(30)
This shows that

|�̃�𝑻
𝑺
�̃�𝑺|

𝑘ℎ+1

4ℎ
∏ℎ
𝑞=1
(
𝑥(𝑢)𝑞 − 𝑥(𝑣)𝑞

)2 ≥
𝜆ℎmin(𝑹)

ℎℎ
×

ℎ∏
𝑞=1

(
𝑥(𝑛−𝑙+1)𝑞 − 𝑥(𝑙)𝑞

𝑥(𝑢)𝑞 − 𝑥(𝑣)𝑞

)2

(31)

◽

A.2 | Proof of Theorem 2

Proof. Approximations of the lasso estimator of Equation (6) according
to Tibshirani [10] is

�̃�(𝜆)|�̃�𝑆 ≈ [�̃�𝑻𝑺 �̃�𝑺 + 𝜆Ψ(�̃�(𝜆)|�̃�𝑆)]−1
�̃�
𝑻
𝑺
�̃� (32)

{
Ψ(�̃�(𝜆)

}
= diag(𝜓1, 𝜓2, … , 𝜓ℎ) (33)

where 𝜓𝑗 =
⎧⎪⎨⎪⎩

1|𝛽𝑗(𝜆)| if 𝛽𝑗(𝜆) ≠ 0

0 otherwise
, for 𝑗 = 1, … , ℎ (34)

11 of 12

 19321872, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sam

.11713 by V
irginia Polytechnic Institute, W

iley O
nline L

ibrary on [16/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



The variance of the approximated lasso estimator is

Var
(
�̃�(𝜆)|�̃�𝑆)
≈ 𝜎2

[
�̃�
𝑻
𝑺
�̃�𝑺 + 𝜆Ψ

(
�̃�(𝜆)|�̃�𝑆)]−1

�̃�
𝑻
𝑺
�̃�𝑺

[
�̃�
𝑻
𝑺
�̃�𝑺 + 𝜆Ψ

(
�̃�(𝜆)|�̃�𝑆)]−1

(35)

Denote 𝜷 as the OLS estimator of Equation (6) when 𝜆 = 0. Denote𝑾 =

�̃�
𝑻
𝑺
�̃�𝑺

[
�̃�
𝑻
𝑺
�̃�𝑺 + 𝜆Ψ

(
�̃�(𝜆)|�̃�𝑆)]−1

.

Var
(
𝜷|�̃�𝑆) − Var

(
𝜷(𝜆)|�̃�𝑆)

= 𝜎2
(
�̃�
𝑻

𝑺
�̃�𝑺

)−1
− 𝜎2𝑾𝑇

(
�̃�
𝑻

𝑺
�̃�𝑺

)−1
𝑾

= 𝜎2
[
𝑾𝑇
(
𝑾𝑇
)−1
(
�̃�
𝑻

𝑺
�̃�𝑺

)−1
𝑾−1𝑾 −𝑾𝑇

(
�̃�
𝑻

𝑺
�̃�𝑺

)−1
𝑾

]
= 𝜎2𝑾𝑇

[(
𝑾𝑇
)−1
(
�̃�
𝑻

𝑺
�̃�𝑺

)−1
𝑾−1 −

(
�̃�
𝑻

𝑺
�̃�𝑺

)−1
]
𝑾

= 𝜎2𝑾𝑇
[(
�̃�
𝑻

𝑺
�̃�𝑺

)−1[
�̃�
𝑻

𝑺
�̃�𝑺 + 𝜆𝚿

(
𝜷(𝜆)|�̃�𝑆)](�̃�𝑻𝑺 �̃�𝑺)−1

[
�̃�
𝑻

𝑺
�̃�𝑺 + 𝜆𝚿

(
𝜷(𝜆)|�̃�𝑆)](�̃�𝑻𝑺 �̃�𝑺)−1

−
(
�̃�
𝑻

𝑺
− �̃�𝑺

)−1]
𝑾

= 𝜎2𝑾𝑇
[
2𝜆
(
�̃�
𝑻

𝑺
�̃�𝑺

)−1
𝚿
(
𝜷(𝜆)|�̃�𝑆)(�̃�𝑻𝑺 �̃�𝑺)−1

+ 𝜆2
(
�̃�
𝑻

𝑺
�̃�𝑺

)−1
𝚿
(
𝜷(𝜆)|�̃�𝑆)(�̃�𝑻𝑺 �̃�𝑺)−1

𝚿
(
𝜷(𝜆)|�̃�𝑆)(�̃�𝑻𝑺 �̃�𝑺)−1]

𝑾

= 𝜎2
[
�̃�
𝑺

𝑻
�̃�𝑺 + 𝜆𝚿

(
𝜷(𝜆)|�̃�𝑆)]-1[

2𝜆𝚿
(
𝜷(𝜆)|�̃�𝑆)

+ 𝜆2𝚿
(
𝜷(𝜆)|�̃�𝑆)(�̃�𝑻𝑺 �̃�𝑺)−1

𝚿
(
𝜷(𝜆)|�̃�𝑆)][

�̃�
𝑻

𝑺
�̃�𝑺 + 𝜆𝚿

(
𝜷(𝜆)|�̃�𝑆)]−1

. (36)

When 𝜆 > 0, for any 𝑣 ≠ 0, 𝑧 =
[
�̃�
𝑻
𝑺
�̃�𝑺 + 𝜆Ψ

(
�̃�(𝜆)|�̃�𝑆)]−1

𝑣 ≠ 0.

𝑣𝑇
(
Var
(
𝜷|�̃�𝑆) − Var

(
�̃�(𝜆)|�̃�𝑆))𝑣

= 𝜎2𝑧𝑇
[

2𝜆𝚿
(
�̃�(𝜆)|�̃�𝑆) + 𝜆2𝚿

(
�̃�(𝜆)|�̃�𝑆)(�̃�𝑻𝑺 �̃�𝑺)−1

𝚿
(
�̃�(𝜆)|�̃�𝑆)]𝑧

= 2𝜎2𝜆𝑧𝑇𝚿
(
�̃�(𝜆)|�̃�𝑆)𝑧 + 𝜎2𝜆2𝑧𝑇𝚿

(
�̃�(𝜆)|�̃�𝑆)(�̃�𝑻𝑺 �̃�𝑺)−1

𝚿
(
�̃�(𝜆)|�̃�𝑆)𝑧

> 0. (37)

Equation (36) is positive definite, and it proves that the variance
of the lasso estimator decreases as 𝜆 increases. Then, from Equations (20)
and (21),

Var
(
𝜷|�̃�𝑆)) = 𝜎2�̃�

𝑻
𝑺
�̃�
−1
𝑺
= 𝜎2𝑩𝑇

[
1
𝑘

0𝑇

0 1
𝑘−1
𝑹−1

]
𝑩 (38)

Var
(
�̃�𝒒|�̃�𝑆)) ≤ 𝑉(𝜷𝒒|�̃�𝑆)) = 𝜎2

𝑘 − 1

(
𝑹−1)

qq

var
(
�̃�𝒒
) (39)

where
(
𝑹−1)

qq is the qth diagonal element of 𝑹−1. Denote the spec-
tral decomposition of 𝑹 as 𝑹 = 𝑽𝚲𝑽𝑇 . Since Λ−1 ≤ 𝜆−1

min(𝑹)𝑰ℎ , 𝑹−1 =

𝑽Λ−1𝑽𝑇 ≤ 𝑽𝜆−1
min(𝑹)𝑰ℎ𝑉

𝑇 = 𝜆−1
min(𝑹)𝑰

𝑇
ℎ

. Thus, 𝑹−1
qq ≤ 𝜆−1

min(𝑹) for all 𝑗.
Based on Equations (27) and (38),

𝑉
(
�̃�𝒒|�̃�𝑆) ≤ 𝜎2

𝑘 − 1

(
𝑹−1)

qq

var
(
�̃�𝒒
) ≤

4ℎ𝜎2

𝑘𝜆min(𝑹)
(
𝑥(𝑢)𝑞 − 𝑥(𝑣)𝑞

)2

≤
4ℎ𝜎2

𝑘𝜆min(𝑹)
(
𝑥(𝑛−𝑙+1)𝑞 − 𝑥(𝑙)𝑞

)2 (40)

With the fact that sum of squared differences from the sample mean is
smaller than the sum of squared differences from other values,

var
(
�̃�𝒒
)
≤

1
𝑘 − 1

𝑘∑
𝑖=1

(
�̃�iq −

𝑥nq + 𝑥1𝑞

2

)2

≤
𝑘

4(𝑘 − 1)
(
𝑥nq − 𝑥1𝑞

)2 (41)

𝑉
(
�̃�𝒒|�̃�𝑆) ≥ 4𝜎2

𝑘𝜆max(𝑹)
(
𝑥nq − 𝑥1𝑞

)2 (42)

In the cases when 𝜆 = 0 and all variables are selected. When 𝜆 →∞,
the lower bound of 𝑉

(
�̃�𝒒|�̃�𝑆) is close to 0 that none of variables are

selected. ◽

A.3 | Proof of Theorem 3

We will use the result in Hwang [19] to prove Theorem 3.

Lemma 1 (Cauchy Interlace Theorem). Let 𝑨 be a Hermitan matrix
of order n and let 𝑩 be a principal submatrix of 𝑨 of order n− 1. If 𝜆n ≤

λn−1 · · · 𝜆2 ≤ 𝜆1 lists the eigenvalues of 𝑨 and 𝜇n ≤ 𝜇n−1 ≤ · · · ≤ 𝜇3 ≤ 𝜇2
lists the eigenvalues of 𝑩, then 𝜆n ≤ 𝜇n ≤ 𝜆n−1 ≤ 𝜇n−1 · · · ≤ 𝜆2 ≤ 𝜇2 ≤ 𝜆1.

Proof of Theorem 3. Denote 𝑹 the correlation matrix of �̃�𝑆 selected
by the FAME algorithm. 𝑹full as the correlation matrix of the full data
D. Let 𝜆min(𝑹) ≤ 𝜆𝑞−1(𝑹) · · · ≤ 𝜆2(𝑹) ≤ 𝜆max(𝑹) lists the eigenvalues
of 𝑹, and 𝜇min(𝑹full) ≤ 𝜇𝑗−1(𝑹full) · · · ≤ 𝜇2(𝑹full) ≤ 𝜇max(𝑹full) lists the
eigenvalues of 𝑹full, where 𝑞 = 1, · · · , ℎ and 𝑗 = 1, · · · , 𝑝. Then

𝜇min(𝑹full) ≤ 𝜆min(𝑹) ≤ 𝜆max(𝑹) ≤ 𝜇max(𝑹full) (43)

Thus, we can have

4𝜎2

𝑘𝜆max(𝑅)
(
𝑥(𝑛)𝑞 − 𝑥(1)𝑞

)2 ≥
4𝜎2

𝑘𝜇max(𝑅full)
(
𝑥(𝑛)𝑞 − 𝑥(1)𝑞

)2 (44)

4ℎ𝜎2

𝑘𝜆min(𝑅)
(
�̃�
𝑢

𝑞
− �̃�

𝑣

𝑞

)2 ≤
4ℎ𝜎2

𝑘𝜇min(𝑅full)
(
�̃�
𝑢

𝑞
− �̃�

𝑣

𝑞

)2 (45)

◽
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