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Abstract— Additive manufacturing (AM) enables flexible part
geometry and functionality, and reduces product development
life cycle by direct layer-wise fabrication from CAD files. In the
last decade, great achievements are made on AM materials,
machines, processes, etc. However, the quality of the AM parts is
still questionable for industrial specifications. On the one hand,
AM part quality variables can be either quantitative, such as
dimensional accuracy, or qualitative, such as binary indicators for
voids, missing features, or surface roughness. On the other hand,
both offline process setting variables and functional in situ process
variables can be measured and modeled with both quantitative
and qualitative (QQ) quality response variables. In this paper,
the QQ quality response variables are modeled by offline process
setting variables and in situ process variables via functional QQ
models. The modeling of these in situ process variables provides
the basis for real-time monitoring and control for AM processes.
Simulation studies and experimental data from a fused deposition
modeling process are performed to demonstrate the effectiveness
of the proposed method.

Note to Practitioners—Additive manufacturing (AM) processes
have attracted much attention and showed many advantages over
the traditional subtractive manufacturing processes. However,
the product quality issues make AM intractable for high-quality
parts in industrial applications. This paper aims to address the
quality issues by modeling both quantitative quality variables,
such as dimensional accuracy, and qualitative quality variables,
such as the binary (go/no-go) indicator for surface conditions.
Both offline process setting variables and in situ process variables
are used in the model as predictors. Such a model is important
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for systematically quality evaluation of AM parts, and provides
the basis for future process monitoring and control. The merits
of the proposed method are demonstrated with simulation studies
and a case study in a fused deposition modeling process.

Index Terms— Additive manufacturing (AM), functional quan-
titative and qualitative (QQ) models, fused deposition modeling
(FDM), in situ process variables, QQ responses.

I. INTRODUCTION

ADDITIVE manufacturing (AM) fabricates a part by print-
ing materials layer by layer from a CAD file, thus enables

flexible part geometry and reduces material wastes. Compared
with the traditional subtractive manufacturing processes, AM
can eliminate the time-consuming fixture and tool design steps.
Therefore, it can significantly reduce the tooling and assembly
cost, as well as the product development life cycle [1]–[3].

AM processes have shown their capability in various indus-
tries, such as aerospace, automobile, and healthcare [4]–[7].
For instance, maxillofacial, neurosurgical, and orthopedic
medical parts were fabricated with stereolithography and fused
deposition modeling (FDM) [4]. Commercial and military
aircraft parts were fabricated with selective laser sintering [5].
However, most of these applications are still in the proof-
of-concept phase, and several challenges need to be solved
before the industrial applications of AM. Among these chal-
lenges, the product quality modeling and assurance is a key
issue [1], [2].

We focus on the AM part quality modeling for a FDM
AM process in this paper. A schematic of a desktop FDM
printer is shown in Fig. 1 [8]. The process fabricates a part
by successively printing layers of molten plastic filament on
the substrate with the following procedures [7], [8]. First,
the offline process setting variables (such as table temperature,
layer thickness, etc.) are specified. Then, the filament heated
over its glass transition temperature is extruded out of the
extruder. The extruded material cools down and solidifies when
it reaches the substrate. The extruder travels over the substrate
to form the desired cross section profile for the current layer.
Finally, the base plate moves down one layer, and the next
layer is deposited. These successive layers solidify and bond
together to form the part. In a FDM process, the part quality
variables are affected by offline process setting variables,
machine precision, material shrinkage, external environment,
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Fig. 1. Schematic illustration of a desktop FDM printer [8].

etc. These quality variables should be controlled to meet the
design specifications.

To improve the part quality, the effects of various offline
process setting variables, such as feed rate, flow rate, build
orientation, layer thickness, extruder temperature, and raster
angle on the part quality were studied [8], [9]. These quality
variables can be quantitative or qualitative, such as dimen-
sional accuracy [10]–[12], surface roughness [13]–[15], pres-
ence or number of voids [16]–[18], and presence of missing
features [19], [20]. In most of the published works, these part
quality variables were investigated separately based on the
offline process setting variables. Limited attention was paid
to the association of the quantitative and qualitative (QQ)
types of part quality variables, and their relationships with the
functional in situ process variables. Recently, it was demon-
strated in a wafer lapping process that the joint modeling of
QQ responses can improve the model prediction performance
compared with separate modeling of each response [21]. But
this paper is limited to model the in situ process variables.
Rao et al. [8] developed a real-time sensing system for a
FDM process. With the help of the sensing system, in situ
process variables such as the vibration at the extruder and
table, and the temperature at the melt pool and table can be
collected [8]. It was shown that these in situ process variables
were informative for predicting whether the FDM part will fail
or not [8], [22]. Therefore, the in situ process variables should
be considered in the FDM process modeling.

In this paper, we focus on the analysis of the association of
the QQ quality variables in a FDM process. These quality vari-
ables are modeled by both offline process setting and in situ
process variables via functional QQ models. The functional
QQ models are widely applicable for the modeling of quanti-
tative quality variables in AM, such as dimensional accuracy
and mechanical property, and qualitative quality variables,
such as surface roughness condition and missing features. The
contributions of this paper mainly lie in the integration of
in situ process variables into the QQ modeling framework.
In addition, a hierarchical variable selection method [i.e.,
hierarchical nonnegative garrote (HNNG)] is used to identify
not only which in situ process variables are significate, but also
which features of these in situ process variables are significant
in the modeling. In particular, HNNG rescales the initial
model estimator (such as ridge estimator [23]) by nonnegative
shrinkage factors, and uses two levels of constraints for the

variable selection (details to be discussed in Section III).
HNNG was demonstrated in a logistic regression model for
a binary defect indicator in a crystal growth process [23], and
a linear regression model for a continuous comfort score in
a vehicle ingress/egress comfort study [24]. However, HNNG
was never reported for functional QQ models with both QQ
responses and functional predictors. The unique features from
the FDM process allow us to explore this new functional QQ
modeling method.

The rest of this paper is organized as follows. The state-of-
the-art for FDM quality improvements and the QQ responses
modeling are reviewed in Section II. In Section III, the
proposed functional QQ models are introduced. Simulation
studies and a case study in a FDM process are used to demon-
strate the effectiveness of the proposed method in Sections IV
and V, respectively. Finally, summary and discussions are
made in Section VI.

II. LITERATURE REVIEW

A. FDM Quality Improvements

In this section, we first review the studies on FDM part
quality improvement, and then review the existing monitoring
and control works for FDM processes.

Various quantitative quality response variables in FDM,
such as mechanical property and dimensional accuracy, were
studied. For instance, Fodran et al. [25] investigated the effect
of air gap, layer thickness and filament width on tensile
stress, tangent modulus, and part strength in qualitative exper-
imental studies. Matas [26] proposed stiffness and strength
models based on first principles. For dimensional accuracy,
Sood et al. [10] used Taguchi methods for length, width,
thickness, and diameter modeling, and found that different
quality variables had different optimal process setting variables
conditions. Boschetto and Bottini [12] proposed a geometrical
model for FDM part irregularity and dimensional accuracy.
Geometrical models were proposed for surface roughness char-
acterization based on process setting variables [13], [14], [27].
Statistical models, such as analysis of variance, Taguchi
methods and artificial neural network, were also applied for
the quality modeling and improvements [11], [28], [29]. See
also [15], [30], [31]. On the other hand, the qualitative quality
response variables in FDM, such as presence or number of
voids and missing features were also studied. For instance,
Agarwala et al. [16] investigated various strategies, such as
improving feed filament quality, optimizing build environment
temperature, and adjusting process variables, to reduce or elim-
inate the presence of voids. Rodriguez et al. [17] concluded
that the fiber gap and flow rate strongly affected the presence
and number of voids. See also [19], [20], and a recent review
in [9].

In this paper, we focus on the FDM part dimensional
accuracy and surface roughness modeling. The dimensional
accuracy can be measured by easily accessible tools such as
calipers, while the surface roughness needed to be measured
by contact or noncontact methods. In contact method (such
as using a profilometer [12]), a stylus is dragged on the
part surface, which may damage the part surface. Noncontact
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method is nondestructive, but professional equipment, such as
confocal microscopy, is needed. The public FDM users may
not have access to professional noncontact equipment or even
profilometer for surface roughness measurement. In addition,
for the situation of in situ quality assessment of roughness, one
cannot measure roughness based on profilometer or micro-
scope during the printing. However, the users can easily
observe part surface appearance, and provide a quick judg-
ment of the surface roughness condition. Therefore, we treat
surface roughness as a binary indicator based on the go/no-go
judgment. Note that the proposed method can be generally
applied to situations with QQ responses, and is not limited to
the modeling of dimensional accuracy and surface roughness
condition.

Recently, in situ process monitoring and control of AM
processes attracted much attention [1]–[3], [32]. Until now,
the majority of research and review for the monitoring and
control were on metal-based AM processes [2], [3], [33].
For the FDM process, Dinwiddie et al. [34] used infrared
cameras to monitor the temperature distribution of the extru-
sion process, where the temperature distribution was useful
for modifying the part design. Kousiatza and Karalekas [35]
embedded fiber Bragg grating sensors and thermocouples
at different layers of a FDM part for in situ strain field
and temperature profile monitoring, and showed that the
sample location with regard to the building platform will
significantly affect the strain and temperature. Rao et al. [8]
built a real-time sensing system to capture the vibration,
temperature, and video of the printing process. These in situ
process variables can help monitor whether the part will
fail or not [8], [22]. Tlegenov et al. [36] integrated the vibra-
tion measurement with physics-based dynamic model for FDM
nozzle clog monitoring. Wu et al. [37] introduced the acoustic
emission sensor for the FDM machine condition monitoring,
and distinguished the normal, semiblock, block and run out
of material conditions with the sensor signal. Shrinkage is
a phenomenon that affects the dimensional accuracy of the
FDM parts, and the offline shape shrinkage compensation
was studied by various scholars to control the part shape to
target [38]–[40].

The aforementioned works discovered many important facts
about the quality variables in FDM, but failed to consider
the association of both the QQ types of quality variables and
their relationships with the process setting variables and in
situ process variables systematically. QQ models are powerful
in exploring the association of heterogeneous quality response
variables, which are adopted in this paper.

B. QQ Responses Modeling

The QQ responses are widely encountered in biomedical,
healthcare, and manufacturing systems [21], [41]–[43]. Tradi-
tionally, the QQ responses are modeled separately [44]–[48].
The separate modeling usually fails to keep track of the
association of these heterogeneous responses, and may lead
to inferior performance compared with joint modeling of QQ
responses [21], [43].

The analysis of the QQ responses started with the cor-
relation study [41], [49]. To model the QQ responses,

Fig. 2. Schematic of the proposed modeling framework.

Catalano and Ryan [50] used a continuous latent variable for
a binary response, and assumed a joint Gaussian distrib-
ution for the latent variable and the continuous response.
Fitzmaurice and Laird [51] incorporated covariates in a mar-
ginal model for the responses. The purposes of the above
models were for independence test and model estimation,
but not for variable selection to obtain a parsimonious and
interpretable model.

Deng and Jin [21] proposed the QQ models for joint
modeling of QQ responses by a constrained likelihood esti-
mation, where the significant variables can be identified.
Deng and Jin [21] applied the QQ models to a wafer lapping
process where wafer total thickness variation was modeled
as a quantitative response and site total indicator reading
was modeled as a binary qualitative response. It was shown
that joint modeling of the QQ responses can improve the
model estimation and model prediction performance for the
lapping process with scalar variables as model input, compared
with the separate modeling approach [21]. In this paper,
we generalize the QQ models to functional QQ models so
that the functional in situ process variables can be modeled as
predictors. Moreover, HNNG is used and generalized in the
functional QQ models to select not only which functional vari-
ables, but also which features in the functional variables are
important for the QQ responses [23], [24]. This hierarchical
variable selection is enabled by two levels of constraints in
HNNG to be discussed in Section III.

III. PROPOSED METHOD

A. Overview

The proposed method is illustrated in Fig. 2. The scalar
offline process setting variables and functional in situ process
variables are processed and used as input for the functional
QQ models. In the functional QQ models, ridge regression
estimator is used as initial estimator [23], and HNNG con-
straint enforces the model sparsity. Finally, the functional QQ
models are compared with the benchmark models, where the
QQ responses are modeled separately.

B. Functional QQ Models

Denote the data for the i th sample xi = (xS
i ; xF

i ) =
(x S

1,i; . . . ; x S
q,i; xF

1,i ; . . . ; xF
p,i ), where xS

i represents the scaler
process setting variables and xF

i represents the functional in
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situ process variables. x S
k,i is the kth process setting vari-

able (such as extruder temperature in FDM), and xF
j,i is the

j th in situ process variable (such as melt pool temperature
in FDM), k = 1, . . . , q and j = 1, . . . , p. “;” represents
column-wise concatenation. We consider the problem with one
quantitative response yi ∈ R (dimensional accuracy in FDM),
and one qualitative (binary) response zi ∈ {0, 1} (surface
roughness condition in FDM, where zi = 1 represents bad
surface roughness condition).

Following a similar spirit of QQ models for scalar vari-
ables [21], the functional QQ models use a functional logistic
regression for the binary response zi , and functional linear
regressions for the continuous response yi conditional on the
binary response zi

logit(E[zi |xi ]) = log

(
p(xi )

1−p(xi )

)
= (

xS
i

)T
γ S

+
∫

x F
1,i (t)γ̃

F
1 (t)dt + · · · +

∫
x F

p,i(t)γ̃
F
p (t)dt

(1)

(yi |zi = m) = (
xS

i

)T bS(m) +
∫

x F
1,i (t)b̃

F
1 (t)

(m)
dt + · · ·

+
∫

x F
p,i(t)b̃

F
p (t)

(m)
dt + ε(m), m = 0, 1 (2)

where γ S = (γ S
1 , . . . , γ S

q )
T

and bS(m) = (bS(m)
1 , . . . , bS(m)

q )T ,
m = 0, 1, is a vector of coefficients for scalar variables for the
functional logistic regression and functional linear regressions,
respectively. γ̃ F

j (t) and b̃F
j (t)

(m)
, j = 1, . . . , p, m = 0, 1,

is the coefficient for the j th functional variable in correspond-
ing models. Assume the error distribution ε(m) ∼ N(0, σ 2),
m = 0, 1 [21].

The functional variables are measured over time, and
usually have high dimensions. To address the high dimen-
sionality issue, various basis expansion techniques, such as
spline expansion, Fourier transform, and wavelet analysis
are adopted [52]. We apply the basis expansion approach
in this paper. Denote the orthogonal basis as θ(t) =
(θ1(t), θ2(t), . . . , θK (t))T , we have γ̃ F

j (t) = (γ F
j )T θ(t),

b̃F
j (t)

(m) = (bF(m)
j )T θ(t), m = 0, 1 after the basis expansion.

γ F
j and bF(m)

j , m = 0, 1, is a vector of K basis expansion

coefficients for γ̃ F
j (t) and b̃F

j (t)
(m)

, respectively. These K
elements are from the same functional coefficients, and form a
group [53]. Reorganizing (1) and (2), the proposed functional
QQ models can be summarized with (see the Appendix for
details)

zi =
{

1, with probability p(�i )

0, with probability 1 − p(�i )
(3)

(yi |zi ) ∼ N
(
zi�

T
i β(1) + (1−zi )�

T
i β(0), σ 2) (4)

where p(�i ) = (exp(�T
i η)/1 + exp(�T

i η)), �i = (xT
i φ)T ,

φ = diag(Iq×q , θ(t)T , . . . , θ(t)T ), η = (γ S; γ F ) =
(η1; . . . ; ηq; ηq+1; . . . ; ηq+p), and γ F = (γ F

1 ; . . . ; γ F
p ). β(m),

m = 0, 1 has similar structure to η (see the Appendix for
details). Considering the group structure (i.e., the elements
from the same functional coefficients after basis expansion

form a group), we have q + p groups of coefficients. For
q scalar variables (such as extruder temperature in FDM),
the group size (i.e., number of coefficients in a group) is 1, and
for the j th functional variables (such as melt pool temperature
in FDM), the group size is Pq+ j , j = 1, . . . , p. For FDM,
the surface roughness condition can be modeled with (3), and
the dimensional accuracy can be modeled with (4). If the
coefficients β(1) and β(0) are identical both in terms of
significant sets and values, i.e., the two linear models are the
same no matter what the value of zi is, the QQ responses are
independent. Otherwise, the QQ responses are associated, and
the joint modeling of the QQ responses has the potential to
provide better prediction performance over separate modeling
of the responses [21].

The model coefficients in (3) and (4) can be estimated with
maximum likelihood estimation (MLE). However, the MLE is
not feasible when the number of coefficients is larger than
the sample size. Different penalties are proposed to learn
a parsimonious and interpretable model [54]. When there
are groups of coefficients, the group Lasso with l1,2 penalty
can be used for variable selection [53]. However, the l1,2
penalty in group Lasso can only select a group of coefficients
as a whole and cannot select individual coefficients in the
group [23], [24]. To address the variable selection problem
for selecting not only the groups but also the coefficients in
the groups, the HNNG constraint is adopted in the functional
QQ models. The model estimation can be solved by optimizing
the objective function

min −2L(η,β(1),β(0))

s.t. (βk,r )
(m) =(ϕk,r )

(m)(β̃k,r )
(m), ηk,r =τk,r η̃k,r , m =0, 1

Pr∑
k=1

wr (ϕk,r )
(m)≤(ρr )

(m),

Pr∑
k=1

wrτk,r≤ρr , m = 0, 1

(ϕk,r )
(m) ≥0, τk,r≥0, (ρr )

(m)≥0, ρr≥0, m =0, 1∑p+q

r=1
((ρr )

(1) + (ρr )
(0))≤M1∑p+q

r=1
ρr≤M2 (5)

where L(η,β(1),β(0)) = log{
n∏

i=1
f (yi |zi ) f (zi )} is the log-

likelihood function, (β̃k,r )
(m) and η̃k,r are the initial estimators

of the kth coefficient in the r th variable in functional linear
regressions and functional logistic regression. The initial esti-
mator is taken as ridge regression estimator [23]. (ϕk,r )

(m)

and τk,r are nonnegative shrinkage factors for general variable
selection [55]. The second line of the constraints controls the
number of coefficients selected in each group of coefficients,
where wr = √

Pr is a weight factor proportional to the
group size Pr of the r th group of coefficients. Adding such
a weight factor will avoid the situation that the coefficients
in a larger group is more likely to be selected compared with
the coefficients in a smaller group [53], [55]. The hierarchical
variable selection is fulfilled by the group level shrinkage
factor (ρr )

(m) or ρr , and the individual level shrinkage factor
(ϕk,r )

(m) or τk,r . If (ρr )
(m) or ρr equals to zero, then the

current group will not be selected. Otherwise, (ϕk,r )
(m) or τk,r

controls whether a coefficient within a group will be selected.
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The constraints in the last two lines control the total number
of groups selected for the functional linear regressions (the
model complexity for dimensional accuracy in FDM, con-
trolled by M1) and functional logistic regression (the model
complexity for surface roughness condition in FDM, con-
trolled by M2), respectively. M1 and M2 can be selected by
Bayesian information criterion, the prediction errors in cross
validation (CV) or the prediction errors in validation data
set [56].

It is worth pointing out that the unique formulation of
the proposed functional QQ models over the QQ models for
scalar variables [21] and the hierarchical variable selection
method [23] includes the following.

1) The functional predictors (in situ process variables)
are modeled for the first time in the QQ modeling
framework.

2) The two tuning parameters M1 and M2 are used to
separately control the complexity in the functional linear
regressions and functional logistic regression.

3) The weight factor wr is introduced to take the
effect of group size into consideration during variable
selection.

To optimize the objective function in (5) directly is a
challenging task due to the complex likelihood function.
Therefore, a quadratic approximation technique is used. The
derivation follows the procedure of Deng and Jin [21]. After
the quadratic approximation, the problem in (5) is simplified
to a quadratic programming problem with guaranteed conver-
gence [21]. In the following, both simulation studies and a
case study in a FDM process are used to demonstrate the
effectiveness of the proposed method.

IV. SIMULATION STUDIES

Denote I(1) and I(0) as the sets of significant coefficients in
the underlying functional linear regressions, and I as the set
of significant coefficients in the underlying functional logistic
regression. To evaluate the performance of the functional QQ
models, four scenarios are considered in the simulation [21].

Scenario 1: the significant sets I(1) and I(0) are exactly
the same, and the significant coefficients in β(1) and β(0)

have similar values.
Scenario 2: the significant sets I(1) and I(0) do not
overlap, but the significant coefficients in β(1) and β(0)

have similar values.
Scenario 3: the significant sets I(1) and I(0) are exactly
the same, but the significant coefficients in β(1) and β(0)

have different values.
Scenario 4: the significant sets I(1) and I(0) do not
overlap, and the signifiant coefficients in β(1) and β(0)

have different values.
Furthermore, several factors are varied during the simual-

tion data generation under each scanario: 1) the number of
variables in the underlying models; 2) the correlation struc-
ture for the model input; and 3) the sparsity (percentage of
significant coefficients) in the underlying models. See Table I
for a summary of detailed settings of these factors and their
meanings. Under each scenario, we have 16 combinations of
simulation settings.

TABLE I

SIMULATION SETTING

For each simulation setting, the data are generated
from (3) and (4). Specifically, �i ∼ N(μ,�), where the mean
vector μ = (μ1; . . . ; μq; μq+1; . . . ; μq+p), μ j , j = 1, · · · , q
is the mean for the j th scalar variable, and μq+k is the mean
for the kth functional variable. The number of coefficients in
each functional variable is set to be 10. Here, μ is set to
be a zero vector. The covariance matrix � = diag(�S ,�F ),
�S = Iq×q is the covariance matrix for the scalar variables

�F =
⎛
⎜⎝

�11 . . . �1p
...

. . .
...

�p1 . . . �pp

⎞
⎟⎠

is the covariance matrix for the functional variables

�rr =

⎡
⎢⎢⎢⎣

1 ρ
|i− j |
1

ρ
|i− j |
1 1

. . . ρ
|i− j |
1

. . . ρ
|i− j |
1

. . . . . .

ρ
|i− j |
1 ρ

|i− j |
1

. . . . . .

. . . 1

⎤
⎥⎥⎥⎦

Pr ×Pr

is the within group covariance matirx for coefficients in the
r th functional variable

�rs =

⎡
⎢⎢⎢⎣

ρ2 ρ
|i− j |+1
2

ρ
|i− j |+1
2 ρ2

. . . ρ2
|i− j |+1

. . . ρ
|i− j |+1
2

. . . . . .

ρ
|i− j |+1
2 ρ

|i− j |+1
2

. . . . . .

. . . ρ2

⎤
⎥⎥⎥⎦

Pr ×Ps

is the among group covariance matrix for coefficients in the r th
and sth functional variable. Three data sets, training, validation
and testing data sets of sample sizes ntr = 100, nva = 100,
and nte = 200 are generated for each setting. Note that
one can also generate the simulation data by first generating
the functional variables, and then using basis expansion to
decompose the functional variables to form xi , but the nature
of the problem will not change.

The model coefficients are generated as follows. For sce-
narios 1 and 2, β

(1)
0 ∼ N(μ′, I ), μ′ has the same structure

as μ. The scalar variables’ coefficients in μ′ have mean 2,
and the functional variables’ coefficients in μ′ have mean 1,
where 1 is a vector composed of 1s. I is an identity matrix.
The coefficients in β

(0)
0 is generated by adding a small

pertubation that follows N(0, 0..12) to coefficients in β
(1)
0 . For

scenarios 3 and 4, β
(1)
0 and β

(0)
0 are generated independently

of N(μ′, I ) and N(μ′ + 3, I ), respectively. For all scenarios,
η0 ∼ (1/2)N(μ′, I ). The elements in the significant sets I(1)
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Fig. 3. Summary of representative simulation average testing RMSPE
(yellow) for the quantitative response and CE (white) for the qualitative
response. The vertical line on each bar (red) shows the standard error of
RMSPE or CE over 50 replications. (a) Compare four scenarios. (b) Compare
number of variables. (c) Compare correlation structure. (d). Compare density.

and I(0) and I take binary values, and are randomly generated
according to the conditions in scenarios 1–4. Finally, β(1),
β(0) and η are obtained by β(1) = β

(1)
0 · I(1), β(0) = β

(0)
0 · I(0),

and η = η0 · I, where represents elementwise multiplication.
Finally, ε(m) ∼ N(0, 1), m = 0, 1.

We compare the proposed functional QQ models with
benchmark models, where l1 penalized functional linear
regressions and an l1 penalized functional logistic regression
are separately used for modeling the QQ responses [57]. For
each simulation setting, 50 replications are performed. In each
replication, the training data set is used for model estimation,
the validation data set is used for tuning parameters selection,
and the model prediction performance is evaluated with the
testing data set. Specifically, the tuning parameters that yield
the smallest prediction errors in the validation data set are
selected for model prediction.

Fig. 3 shows comparisons of some representative average
testing root-mean-square prediction errors (RMSPE) for the
quantitative response and classification errors (CE) for the
qualitative response over 50 replications, and the standard
errors over these replications are shown in the red error bar.
The smaller the errors, the better the models perform. In each
plot of Fig. 3, the left vertical axis shows the scale for average
RMSPE (yellow), the right vertical axis shows the scale for
average CE (white), and the horizontal axis shows different
simulation settings. These simulation settings are indexed by
the numbers in the parethnesis (see Table I for detailed values
and meanings of these numbers). For instance, [1, 1, 4, 2] rep-
resents the current simulation setting is for the first scenario,
the first number of variables level (p = 2, q = 4), the fourth
correlation structure level (ρ1 = 0.6, ρ2 = 0.3), and the second
sparsity level (S = 0.4). A list of average testing RMSPE and
CE along their standard errors over all simulation settings are
provided in Table S-I in the supplemental materials.

The major conclusions from the simulation are the
following:

1) For scenario 1 (at fixed levels for other factors),
the benchmark models have comparable prediction

performance with the functional QQ models [the
leftmost setting in Fig. 3(a)].

2) For scenarios 2–4 (at fixed levels for other factors),
the functional QQ models perform better than bench-
mark models for the quantitative response prediction,
and the two models are comparable for the qualitative
response prediction [the last three settings in Fig. 3(a)].

3) When the number of variables or the proportion of sig-
nificant coefficients in the underlying models increases,
both the RMSPE in the proposed and benchmark models
increase [from the setting in the left to the setting in
the right in Fig. 3(b) and (d)]. And the advantage of
the proposed models over benchmark models becomes
more obvious under the above situations.

The functional QQ models perform well under scenarios 2–4
since the underlying models for the quantatitative response at
different conditions of the qualitative response are different,
and the association of the QQ responses can be borrowed to
enhance the model performance.

Fig. 4 shows comparisons of some representative variable
selection accuracy over 50 replications, where a variable is
treated important if it is selected in more than half of the repli-
cations (i.e., 25 replications). The variable selection accuracy
is calculated as the proportion of significant coefficients in the
underlying model being selected or insignificant coefficients in
the underlying model being eliminated. For benchmark linear
regression, we compare the estimated model with the underly-
ing m = 1 and m = 0 linear models to obtain the accuracy for
“Benchmark Linear m = 1” and “Benchmark Linear m = 0,”
respectively. The vertical axis in each plot of Fig. 4 represents
the variable selecton accuracy, and the horizontal axis has
the same meaning as those in Fig. 3. A list of overall
variable selection accuracy, true positive rate (proportion of
significant coefficients in the underlying model being selected)
and true negative rate (proportion of insignificant coefficients
in the underlying model being eliminated) over all simulation
settings are provided in Tables S-II–S-IV in the supplemental
materials. For the variable selection accuracy, the proposed
models have better variable selection accuracy than bench-
mark models under scenarios 2–4 [the last three settings
in Fig. 4(a)]. The variable selection accuracy (especially in
the linear m = 1 model) tends to decrease when the number
of variables or the proportion of significant coefficients in the
underlying models increases [from the setting in the left to the
setting in the right in Fig. 4(b) and (d)], which is consistent
with the results in Fig. 3(b) and (d). The advantage of the
proposed models is more obvious for these situations.

V. CASE STUDY

The proposed functional QQ models are applied to
a FDM process. In this process, a part modified from
National Aerospace Standard (NAS) 979 standard testing part
[Fig. 5(a)] is printed with Acrylonitrile Butadiene Styrene
material by MakerBot Replicator 2X [8]. During the experi-
ment, three factors are varied: feed/flow ratio, layer thickness,
and extruder temperature [8]. Other process variables, such as
extruder travel path, filament diameter, etc., are kept constant.
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Fig. 4. Summary of representative simulation variable selection accuracy
comparison. (a) Compare four scenarios. (b) Compare number of variables.
(c) Compare correlation structure. (d). Compare density.

Fig. 5. (a) FDM test part modified from NAS 979 standard part [8].
(b) FDM printed part and representative quality variables.

In total, we have 44 successfully printed parts, where in situ
process variables are collected from the sensor network [8].
After the parts are printed [Fig. 5(b)], their dimensional
accuracy is inspected by the coordinate measurement machine.
The dimensional accuracy variables measured include (Fig. 5):
part width, part length, diameter of the outer circle, top
plane flatness, outer circle roundness, innercircle roundness,
concentric of the two circles, coaxial of the two circles, and
run-out cylinderity of the outer circle. The surface roughness
(go/no-go) is judged by domain experts, where the “no-go”
samples are indexed by 1 and “go” samples are indexed by 0.

Since the part roughness judgment is only related to the
surface and the dimensional accuracy is related to all layers
but mainly determined by the layers close by the surface,
we extract the segment of the in situ process variables that
corresponded to the top several layers for the quality mod-
eling. Specifically, the segments for the top three layers are
extracted in this paper, where the data for different layers are
separated based on the part g-code. If the printing quality in
between the layers can be measured, the corresponding in situ
measurements for the quality variable can be extracted and
used for the modeling. Fig. 6(a)–(c) shows the sensor system,
and Fig. 6(d) shows an example of the three axes vibration
signals at extruder and table, and temperature signals at melt
pool and table. See the details of the sensor type, placement,
etc., in [8]. In particular, The melt pool temperature is mea-
sured with IR temperature sensor (Exergen UIRT/C.4-440F)
located at the extruder head pointing toward the melt pool
[Fig. 6(a)], the vibration data are measured with tri-axis

Fig. 6. (a)–(c) Sensor placement in the sensor network [8]. (d) Example of
standardized in situ process variables.

accelerometer (Analog Devices ADXL335) located at extruder
arm and table respectively for extruder vibration and table
vibration measurement [Fig. 6(b) and (c)], and the table tem-
perature is measured with thermocouples (Omega 5TC-GG-K-
20-36) located at four corners of the printer table [Fig. 6(c)].
The vibration and table temperature signals are measured at a
sampling frequency of ∼2.5 Hz, and the melt pool temperature
signal is measured at a sampling frequency of 1 Hz. All
signals are synchronized to the same frequency of 1 Hz in
the analysis. Such a senor selection and frequency combina-
tion has shown to be effective to reflect the FDM process
condition [8], [22]. In this paper, the qualitative engineering
knowledge on the potential important variables for product
quality is used for the sensor selection and feature generation.
The quantitative engineering knowledge can also be used
to facilitate the analysis, but such quantitative knowledge is
not well established, and is beyond the scope of this paper.
In each Fig. 6(d), the vertical axis shows the standardized
signal values, and the horizontal axis shows the sample points.
To investigate the effect of number of layers in the analysis,
we vary the total number of layers (segmented based on g-
code) used in the modeling. The corresponding results are
reported in the supplemental materials. For our particular case,
the top three layers yield good model performance since they
are related to the surface quality. Note that the extraction of
segments of in situ process variables in the quality modeling
depends on the part quality feature under study. The part
design file and g-code can be used for the alignment of
quality feature of interest with corresponding segments of in
situ process variables. The extraction of segments of in situ
process variables based on a particular quality feature will be
investigated in the future work.

For extruder and table vibration, the power spectrum den-
sity (PSD) is calculated based on the x-, y-, and z-axes
vibration measurement [58]. The PSD of vibration signal
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Fig. 7. Boxplots of testing. (a) RMSPE for quantitative response. (b) CE for
the quantitative response.

is widely used for machine condition monitoring and fault
diagnosis [58]. The PSD of three axes is calculated as one
variable since the vibration in all axes tends to affect the
part quality, and we are interested in the effects of the entire
vibration at the extruder and at the table on the part quality.
The hypothesis to be tested is that the PSD values are impor-
tant, which means the larger vibration in local area would
affect the product quality. As a result, we have 86 features
for extruder and table vibration, separately. For melt pool
temperature and average table temperature, 56 features are
generated with the spline basis expansion. The PSD and basis
expansion are used instead of synthetic descriptors (such as
mean and standard deviation), since synthetic descriptors will
incur much information loss and there is no engineering per-
ception to indicator which synthetic descriptors to be used. The
process setting variables and their two-way interactions are
also considered, which include six features. In total, we have
290 features as model inputs. We take the first principle
component (PC) of the dimensional accuracy variables as
the quantitative response, and the surface roughness condition
as the qualitative (binary) response. The first PC is used as
a composite quality indicator in this paper to represent the
overall part dimensional accuracy, and functional QQ models
with multiple quantitative responses will be considered in the
future work.

We use two levels of fivefold CV for tuning parameters
selection and model evaluation, separately. fivefold CV is
used since the sample size in the case study is limited for
generating a validation data set for tuning parameters selection.
Specifically, we first divide the samples approximately equally
into fivefolds (first level CV), and select four of them as
training data set. During the model fitting, the selected training
data set is further divided approximately equally into five-
folds (second level CV). The tuning parameters are selected
by the second level CV, i.e., M1 and M2 yielding the smallest
average testing errors in the second level CV are selected.
The model performance is evaluated by the first level CV.
The boxplots of the testing RMSPE and CE for the proposed
models and benchmark models under the fivefold CV are
shown in Fig. 7. From Fig. 7, the functional QQ models have
better prediction performance than the benchmark models for
the quantitative response, and the two approaches have compa-
rable performance for the qualitative response prediction. This
is because the quantitative dimensional accuracy is modeled
conditional on the qualitative surface roughness condition, and

Fig. 8. Number of times a variable being selected over fivefold CV.

the functional linear regressions for the quantitative dimen-
sional accuracy under different surface roughness condition
are different (the first two columns in Fig. 8). Therefore,
the functional QQ models are valuable for the QQ responses
modeling in the FDM process.

Furthermore, a summary of the selected variables over the
fivefold CV (first level CV) is shown in Fig. 8. In Fig. 8, an
in situ process variable is regarded as selected if one or more
of its element is selected. Each column in Fig. 8 repre-
sents a model, and each row represents a variable or two-
way interaction between variables. The intensity (color bar)
in Fig. 8 shows the number of times a variable being selected
in the fivefold CV. From Fig. 8, both offline process setting
variables and in situ process variables are important for the
quality modeling, and the two linear models under the different
surface roughness conditions are different. Note that the condi-
tional relationships between the qualitative response (surface
roughness condition) and quantitative response (dimensional
accuracy) in (6) and (7) show the association among the
QQ responses, but not causal relationships. The functional
QQ models can enhance the prediction performance for the
quantitative response based on this association [Fig. 7(a)],
compared with the benchmark separate modeling of QQ
responses. In particular, the feed/flow ratio governing the ratio
of how fast the nozzle travels and how fast the material is
extruded from the nozzle is very important for the part quality.
The in situ process variables extruder vibration, table vibration,
and melt pool temperature are important for modeling the
dimensional accuracy and surface roughness condition (as
shown in the last three rows in Fig. 8). This is because the
changes in extruder vibration, table vibration, and tempera-
ture in the melt pool area are informative for the process
condition. Moreover, the functional QQ models in the last
CV fold for dimensional accuracy with the surface roughness
at bad condition (m = 1) and at good condition (m = 0),
and for surface roughness condition are shown in (6)–(8),
respectively. The variable names in (6)–(8) are available
in Fig. 8. For instance, x F

3,55 refers to the 55th elements
in the melt pool temperature, and x S

1 refers to feed/flow
ratio

(yi |zi = 1) = −0.038x F
3,55 − 0.912x S

1 + 0.382x S
2

− 0.149x S
5 + 0.005x S

6 (6)
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(yi |zi =0) = 0.012x F
1,37 + 0.092x F

2,37 + 0.007x F
2,82

+ 0.050x F
3,40−0.864x S

1 +0.050x S
2 −0.035x S

5

(7)

logit(E[zi |xi ]) = −1.328 − 0.291x F
1,15 + 0.754x F

1,53

+ 0.692x F
2,3 + 0.240x F

2,20 + 0.488x F
3,40

− 1.283x S
1 + 0.378x S

3 − 0.142x S
4 −1.202x S

5

+ 0.671x S
6 . (8)

These equations are helpful for the AM processes qual-
ity monitoring and control. For instance, one can monitor
whether the surface roughness or dimensional accuracy is
at a desired condition based on the offline setting variables
and in situ process variables by control charts [59], [60].
Equations (6) and (7) can also be used for the dimensional
accuracy control [61]. Note that the model parameters will
vary for different applications, and need to be refitted for other
machines and applications.

VI. SUMMARY AND DISCUSSION

AM is a promising manufacturing process to produce
flexible part, reduce material waste, and product develop-
ment life cycle. In the past decade, both industry and
academia have investigated intensively to help with the
wide deployment of AM applications. More investiga-
tions are still needed for quality control and assurance in
AM processes.

In this paper, we investigate the heterogeneous types of
quality responses in an FDM AM process. The dimensional
accuracy (quantitative response) and surface roughness con-
dition (qualitative response) are jointly modeled with both
offline process setting variables and in situ process variables.
Functional QQ models are newly proposed to fulfill the above
task. It is demonstrated that the product quality responses can
be better predicted by jointly considering the QQ responses.
The offline process setting variables feed/flow ratio, layer
thickness, extruder temperature and their two-way interactions,
and the in situ process variables extruder vibration, table
vibration, and melt pool temperature are important for the
part quality modeling. The functional QQ models are also
evaluated in the simulation studies, and yield better prediction
and variable selection results as long as the underlying linear
models vary with different values of the qualitative response.
The functional QQ models provide a tool to access the part
quality and serve the basis for future QQ responses monitoring
and control.

Several directions can be pursued in the future work.
First, functional QQ models can be generalized so that mul-
tiple dimensional accuracy responses can be jointly mod-
eled. In addition, multiple qualitative responses, such as
number of voids, missing features will also be included in
the functional QQ modeling framework. Second, the spa-
tial response for complex geometry, such as point cloud
data, and spatial input, such as process video and infrared
camera data, will be handled. Finally, the estimated
QQ models will be used for process monitoring and
control.

APPENDIX

After basis expansion, (1) and (2) become

logit(E[zi |xi ) = log

(
p(xi )

1 − p(xi )

)
= (

xS
i

)T
γ S

+
p∑

j=1

∑
t∈

x F
j,i (t)

(
γ F

j

)T
θ(t) (A1)

(yi |zi = m) = (
xS

i

)T bS(m) +
p∑

j=1

∑
t∈

x F
j,i(t)

(
bF(m)

j

)T
θ(t)

+ ε(m), m = 0, 1 (A2)

where  is the time continuum of the corresponding func-
tional variables. Reorganizing the above expression

log

(
p(�i )

1−p(�i )

)
= xT

i φη = �
T
i η (A3)

(yi |zi = m) = �
T
i β(m) + ε(m), m = 0, 1 (A4)

where φ = diag(Iq×q , θ)T , · · · , θ (t)T ), �i = (xT
i φ)T ,

η = (γ S; γ F ) = (η1; · · · ; ηq; ηq+1; · · · ; ηq+p),

and γ F = (γ F
1 ; . . . ; γ F

p ). Similarly, β(m) =
(bS(m); bF(m)) = (β

(m)
1 ; · · · ; β

(m)
q ; β

(m)
q+1; · · · ; β

(m)
q+p) and

bF(m) = (bF(m)
1 ; · · · ; bF(m)

p ), m = 0, 1. Note that the vectors

of coefficients ηq+ j and β
(m)
q+ j , m = 0, 1, for the functional

variables have Pq+ j elements to form a group [53].
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