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 A B S T R A C T

Vector autoregression (VAR) models are popular in modeling multivariate time series in data 
sciences and other areas. When the number of time series is large, the number of parameters 
in the VAR model increases dramatically, posing great challenges for proper model estimation 
and inference. In this work, we propose a so-called neighborhood vector autoregression (NVAR) 
model to efficiently analyze large-dimensional multivariate time series. We assume that the time 
series have underlying neighborhood relationships, e.g., spatial or network, among them based 
on the inherent setting of the problem. When this neighborhood information is available or 
can be summarized using a distance matrix, we demonstrate that our proposed NVAR method 
provides a computationally efficient and theoretically sound estimation of model parameters. 
The performance of the proposed method is compared with other existing approaches in both 
simulation studies and a real-data application in environmental science.

. Introduction

Modeling multivariate time series has attracted great attention from different areas such as environmental sciences (e.g. Davis 
t al. (2016), Cavalcante et al. (2017)), network sciences (e.g. Ma et al. (2015), Valdés-Sosa et al. (2005)), gene expression 
e.g. Opgen-Rhein and Strimmer (2007), Fujita et al. (2007)), and economics (e.g. Rubio-Ramirez et al. (2010), Todd (1990), 
ernanke et al. (2004), Nicholson et al. (2017)). With the increasing sophistication in data availability and methodology, recent 
evelopments in advanced manufacturing such as Steed et al. (2017), Hsu and Liu (2020), Ghahramani et al. (2020) have also 
tarted focusing on multivariate time series analysis.
In a number of these multivariate timeseries problems, the underlying source of the timeseries data exhibits dependencies either 

n the form of a spatial field, which can then be handled by spatiotemporal methods or Gaussian processes e.g., Cressie and Wikle 
2015), or neighborhood information, where ‘‘nearby’’ timeseries are more correlated with the focal timeseries than ‘‘farther’’ ones, 
.g., Guo et al. (2016). This notion of ‘‘neighborhood’’ is formalized in this paper based on the context of the problem, i.e., spatial 
imeseries or networked timeseries etc. using a distance matrix and, under the assumption that this distance matrix is known, this 
aper develops a new methodology to efficiently model multivariate timeseries. In cases where the distance matrix is not given, 
his paper provides heuristics to compute it based on the structural relationships of the timeseries for the problem at hand. The 
heoretical justification for the estimation method, a simulation study and an interesting illustration to an important management 
roblem in water systems control using a stream nitrogen study are also demonstrated in this paper.
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When the number of time series is large, the number of parameters in the conventional vector autoregression model (VAR) 
increases dramatically, posing great challenges to performing proper estimation and inference on these time series data. Recent 
work to address this issue in the context of high-dimensional data has resulted in the notion of sparsity for efficient estimation of 
the VAR model, including the use of lasso penalization (e.g. Hsu et al. (2008), Arnold et al. (2007), Lozano et al. (2009), Song and 
Bickel (2011)), the group lasso penalization (e.g. Haufe et al. (2010), Shojaie and Michailidis (2010), Basu et al. (2015), Bolstad 
et al. (2011)), Dantzig-type penalization (e.g. Qiu et al. (2015), Han et al. (2015)), adaptive lasso penalization (e.g. Ren and Zhang 
(2010), Kock and Callot (2015)), graph regularization (e.g. Jiang et al. (2015)), among many others. Such strategies typically adopt 
regularization to reduce the number of parameters in the estimated model, achieving model parsimony.

In many applications with multiple time series, e.g., modeling the nitrogen of multiple streams that is considered here, there is a 
natural dependence structure among time series collected from neighboring locations. The spatial nature of the problem implies that 
two time series from nearby locations are more likely to correlate with each other than those from far-away locations. Without loss 
of generality, let us assume that each time series is collected from a sensor at a location. Here we use the metaphor of a ‘‘sensor’’ 
though the so-called sensor may not have a physical meaning, and just represents the location where the time series originated 
from. The term ‘‘location’’ is also not restricted to physical location, and instead means that the multiple timeseries are assumed to 
have a correlation with each other that can be measured in terms of their distances under some distance measure in a metric space. 
For instance, for time series data over networks, one could consider an embedding of the network in a latent space (e.g. Hoff et al. 
(2002)) and measure distances between nodes based on the distances in the latent space. This is different from the typical spatial 
statistics or spatio-temporal statistics problem, where there is an underlying spatial process that results in spatial observations at 
different locations.

In the work of Guo et al. (2016), the time series are assumed to be located on a one-dimensional lattice at equally spaced 
intervals. Their so-called banded VAR (BVAR) method has a clear interpretation and can effectively reduce model complexity while 
outperforming penalization-based algorithms like the LASSO. But the assumption of a sequential ordering of time series is too 
restrictive for general applications and it would be more reasonable to consider a more generalized notion of location on a vector 
space rather than on a one-dimensional lattice.

In this article, we propose the Neighborhood Vector AutoRegression model (NVAR), which extends the notion of ‘‘band’’ in Guo 
et al. (2016) to the notion of a ‘‘neighborhood’’. Having a more general modeling assumption, the proposed method maintains 
efficient parameter estimation with clear model interpretation. The proposed method also guarantees the convergence rate of the 
estimated coefficient matrix. In particular, we show that the asymptotic properties proved in the Guo et al. (2016) paper hold for 
our proposed method. In the case study of modeling the nitrogen content of multiple streams, the proposed NVAR method takes 
advantage of the notion of neighborhood to model the water quality data from multiple streams in a joint manner. In the United 
States, excess nutrients are one of the most important causes of impairment for rivers and streams (see EPA (2000)). Increasing rates 
of nutrient supply fuels accelerating primary production or eutrophication, which leads to discoloration of affected waters (see Paerl 
et al. (2001)). The proposed method provides a useful tool to understand how the water quality changes over time and also the 
interactions of water systems at different locations. In comparison with several existing approaches, the case study shows the merits 
of the proposed method with a reasonable computational cost.

The remainder of this work is organized as follows. Section 2 describes the neighborhood VAR model and the algorithm. Section 3 
provides some theoretical results for the proposed method. Section 4 discusses simulation results and we conclude this work with 
a practical application in Section 5.

2. The proposed model

Denote 𝐲(𝑡) = [𝑦1(𝑡), 𝑦2(𝑡),… , 𝑦𝑝(𝑡)]𝑇  as the 𝑝 dependent time series, where 𝑦𝑖(𝑡) ∈ R and 𝑡 = 1, 2,… , 𝑛. We assume that the time 
series 𝑦1(𝑡),… , 𝑦𝑝(𝑡) are collected from ‘‘sensors’’ located at 𝑠1,… , 𝑠𝑝 with 𝑠𝑖 ∈ (𝑀,𝑑), where 𝑀 is a metric space with distance 
measure defined by 𝑑, say (R𝑚, 𝑑). Here the 𝑑 is a pre-defined distance measure with distances 𝑑(𝑠𝑖, 𝑠𝑗 ) for 𝑠𝑖, 𝑠𝑗 ∈ 𝑀 . Hereafter 
we will abbreviate 𝑑(𝑠𝑖, 𝑠𝑗 ) as 𝑑(𝑖, 𝑗) for notation convenience. Since the sensors have a distance measure, we can define ‘‘𝑑0-
neighborhood’’ of the 𝑖th time series as  𝑑0

𝑖 = {𝑗 ∶ 𝑑(𝑖, 𝑗) ≤ 𝑑0} for some 𝑑0 ∈ 𝑅, and is a representation of the set of all time 
series that have an influence on the 𝑖th time series at this particular distance level 𝑑0. Thus we consider the NVAR(𝑞) model in a 
form similar to the classical VAR(q) model as 

𝐲(𝑡) = 𝐴1𝐲(𝑡 − 1) + 𝐴2𝐲(𝑡 − 2) +⋯ + 𝐴𝑞𝐲(𝑡 − 𝑞) + 𝐞(𝑡), 𝑡 = 1, 2,… , 𝑛, (1)

with 𝐴𝑠(𝑖, 𝑗) = 0, 𝑠 = 1,… , 𝑞, 𝑗 ∉  𝑑0
𝑖  for some ‘‘𝑑0-neighborhood’’ of 𝑖,  𝑑0

𝑖 . Here 𝑞 is the lag order for the autoregressive process. 
The coefficient matrices 𝐴1,… , 𝐴𝑞 are 𝑝 × 𝑝 matrices that represent the dependence between the different time series. We do not 
use bold typeface for 𝐴 to enhance readability. The 𝐞(𝑡) is the serially uncorrelated noise with 𝐸(𝐞) = 0 and 𝑣𝑎𝑟(𝐞) = 𝛴𝑒. Note that 
we need to assume conditions on the coefficient matrices for the time series to be stationary, and we make the assumption that 
|𝐼 − 𝐴1𝑧 −⋯ − 𝐴𝑞𝑧𝑞| ≠ 0 for any |𝑧| ≤ 1. Hereafter, we will drop the time index 𝑡 where possible to enhance readability.

Note that our proposed neighborhood idea generalizes the notion of bandwidth in the banded VAR model and has parallels to 
work by Besag (1974) among others. The proposed NVAR model considers the time series to be homogeneous in the sense that the 
same 𝑑0 is sufficient to characterize the neighbors’ influence for every time series. It can also be extended to the case with different 
values of 𝑑0 being estimated for each individual time series 𝑦𝑖 but we do not consider that case in this paper. When there is no 
direct mapping of time series locations to a metric space, we can potentially embed these time series in a latent space, and obtain 
distances from this embedded space. This adds another layer of uncertainty due to estimation of the distance matrix itself. However, 
2 
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in the rest of this paper, we will not deal with these technical complications and we assume that the distances are well-specified 
and given by the symmetric 𝑝 × 𝑝 matrix 𝐃. Note that time-varying distances are allowed in this algorithm as the sensors may be 
allowed to move in time. This can be included in our algorithm by specifying a different matrix 𝐃(𝐭) at each time instant. For easy 
comprehension though, in this paper, we assume that the coefficient matrices are time-invariant.

2.1. Construction of neighborhood

For every time series 𝑦𝑖, we define a 𝑑-neighborhood as the set of all time series that are at most 𝑑 distance away from it. This 
is denoted by

 𝑑
𝑖 = {𝑗 ∶ 𝑑(𝑖, 𝑗) ≤ 𝑑}.

The neighborhood VAR model assumes that 𝑦𝑖 depends only on its 𝑑0−𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 for some value of 𝑑 = 𝑑0. This is a generalization 
of bandwidth in the banded VAR and allows us to handle more complex time series. Specifically, if we assume that the time series 
reside on a 1-D lattice at locations 1, 2,… , 𝑝, and distance is measured as 𝑑(𝑖, 𝑗) = |𝑖 − 𝑗|, we get back the banded VAR formulation 
with bandwidth = 𝑑0.

Our definition of neighborhood VAR model assumes that the elements of the coefficient matrix are non-zero only at locations 
that are within the 𝑑0 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 of each of the time series 𝑖. That is,

𝐴𝑟(𝑖, 𝑗) = 0, if 𝑗 ∉  𝑑0
𝑖 ,

where 𝐴𝑟(𝑖, 𝑗) represents the (𝑖, 𝑗)𝑡ℎ element of the coefficient matrix 𝐴𝑟 corresponding to a lag of 𝑟. Thus the maximum number of 
non-zero elements in row 𝑖 of the coefficient matrices is given by 𝜏𝑖 = | 𝑑0

𝑖 |. The sparsity assumption implies that 𝜏𝑖 ≪ 𝑝.
Below are a few illustrative cases on constructing the neighborhood.
Banded structures: The banded matrix structure of 𝐴𝑟 discussed in the banded VAR literature is obtained if the time series are 

assumed to be present in locations that are arranged along a line segment such that 𝑠1 < 𝑠2 < ⋯ < 𝑠𝑝 and 𝑑(𝑠𝑖, 𝑠𝑗 ) = |𝑖 − 𝑗|.
Block-banded structures: A block banded structure is obtained if the locations of the time series correspond to locations 

arranged in 2-D space (e.g., pixels in an image matrix) with equal distances between neighboring locations and 𝑑(𝑠𝑖, 𝑠𝑗 ) = |𝑖 − 𝑗|
mod

√

𝑝. Here the locations are in a √𝑝 ×
√

𝑝 lattice and the 𝑠𝑖 are obtained via vectorizing the lattices into a p-dimensional set 
of locations in a row-by-row fashion. Note that this is equivalent to consider each location to be affected by geographically close 
locations as measured using a city-block distance metric. Other formulations and distance metrics lead to different structures on 2-D 
data.

Neighborhood structure under spatial data: In spatial–temporal data, the Euclidean distance between the sensor locations 
can be used for the distance matrix of sensors. The sparsity structure of the coefficient matrices will depend on the actual distances 
between the sensors. Note that it is important, in this case, to normalize the distances to avoid identifiability problems in terms of 
the scale, and also to preserve the spatial meaning of neighborhood in terms of the actual problem. A good scaling constant that 
can be used will approximate the spatial scale to a lattice by scaling distances as (𝑁∕2)

(𝑑𝑚𝑎𝑥)𝑚
, where 𝑁 is the number of timeseries, 𝑚 is 

the dimension of the space (1, 2 or 3 for typical spatial problems), and 𝑑𝑚𝑎𝑥 is the maximum distance among all pairs of sensors.
Neighborhood structure under network data: In a network application, the time series are often from sensors that are 

connected to each other under a network. The distance matrix can be specified by the adjacency matrix of the network, with the 
length of the shortest path between two nodes giving the distance between the two nodes. For a more general formulation, we can 
embed the network in a latent space and compute the distance metric based on distances on the latent space.

2.2. Parameter estimation

Given a particular value of 𝑑0, and subsequently  𝑑0
𝑖  (which can be computed directly since 𝐃 is assumed to be known), the 

estimation of the NVAR model can be conducted using the ordinary least squares (OLS) estimation of the coefficients corresponding 
to each time series. For instance, if 𝐴𝑖 is the set of all coefficients to be estimated for the 𝑖th time series, we can obtain 𝐴𝑖 from  𝑑0

𝑖
and the lag order 𝑞 by selecting the appropriate elements from the VAR coefficient matrices. In the simple case of VAR(1), where 
the only coefficient matrix is 𝐴1, the OLS equation for the 𝑖th time series is simply

𝑦̂𝑖(𝑡) =
∑

𝑗∈ 𝑑0
𝑖 ,𝑟∈{1,…,𝑞}

𝐴̂1(𝑖, 𝑗)𝑦𝑗 (𝑡 − 𝑟),

where 𝐴̂1(𝑖, 𝑗) is the (𝑖, 𝑗)𝑡ℎ element in the estimated coefficient matrix 𝐴̂1, and hence the estimates for the coefficient matrices are 
obtained in a straightforward manner, with all elements of the matrix outside the 𝑑0-neighborhood set to 0.

For NVAR(q) model, we can also use the ordinary least squares (OLS) estimation to estimate parameters separately in each time 
series variables with respect to its 𝑑0 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑. Let us denote 𝐲𝑖 = (𝑦𝑖(𝑛), 𝑦𝑖(𝑛 − 1),… , 𝑦𝑖(𝑞 + 1))𝑇  and

𝐗𝑖 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

{𝐲𝑗 (𝑛 − 1)}𝑇 ||
|𝑗∈ 𝑑0

𝑖
{𝐲𝑗 (𝑛 − 2)}𝑇 ||

|𝑗∈ 𝑑0
𝑖

⋯ {𝐲𝑗 (𝑛 − 𝑞)}𝑇 ||
|𝑗∈ 𝑑0

𝑖

{𝐲𝑗 (𝑛 − 2)}𝑇 ||
|𝑗∈ 𝑑0

𝑖
{𝐲𝑗 (𝑛 − 3)}𝑇 ||

|𝑗∈ 𝑑0
𝑖

⋯ {𝐲𝑗 (𝑛 − 𝑞 − 1)}𝑇 ||
|𝑗∈ 𝑑0

𝑖

⋮ ⋮ ⋮ ⋮

{𝐲𝑗 (𝑞)}𝑇
|

|

|𝑗∈ 𝑑0 {𝐲𝑗 (𝑞 − 1)}𝑇 ||
|𝑗∈ 𝑑0 ⋯ {𝐲𝑗 (1)}𝑇

|

|

|𝑗∈ 𝑑0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠
𝑑

,

𝑖 𝑖 𝑖 (𝑛−𝑞)×𝑞| 0
𝑖 |

3 
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where {𝐲𝑗 (𝑡)}||
|𝑗∈ 𝑑0

𝑖
=
(

𝑦𝑗1 (𝑡), 𝑦𝑗2 (𝑡), … , 𝑦𝑗
|

𝑑0
𝑖 |

(𝑡)
)𝑇

, 𝑗1, 𝑗2,… , 𝑗
| 𝑑0

𝑖 |

∈  𝑑0
𝑖  is a column vector, and | 𝑑0

𝑖 | is the size of  𝑑0
𝑖 . 

Then we denote the coefficients matrix as
𝑩 =

(

𝜷1 𝜷2 ⋯ 𝜷𝑝
)

𝑝×𝑞| 𝑑0
𝑖 |

,

where 𝜷 𝑖 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

{𝐴1(𝑖, 𝑗)}
|

|

|𝑗∈ 𝑑0
𝑖

{𝐴2(𝑖, 𝑗)}
|

|

|𝑗∈ 𝑑0
𝑖

⋮

{𝐴𝑞(𝑖, 𝑗)}
|

|

|𝑗∈ 𝑑0
𝑖

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, and {𝐴𝑞(𝑖, 𝑗)}
|

|

|𝑗∈ 𝑑0
𝑖

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐴𝑞(𝑖, 𝑗1)

𝐴𝑞(𝑖, 𝑗2)

⋮

𝐴𝑞(𝑖, 𝑗
| 𝑑0

𝑖 |

)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, 𝑗1, 𝑗2,… , 𝑗
| 𝑑0

𝑖 |

∈  𝑑0
𝑖  is a column vector. The coefficient matrix 

𝑩 are estimated by minimizing the least-squares objective function as

min𝑩
𝑝
∑

𝑖=1
(𝐲𝑖 − 𝐗𝑖𝜷𝑖)𝑇 (𝐲𝑖 − 𝐗𝑖𝜷𝑖).

It is easy to see that the optimization can be separated into 𝑝 independent OLS estimation,
min𝜷𝑖 (𝐲𝑖 − 𝐗𝑖𝜷 𝑖)𝑇 (𝐲𝑖 − 𝐗𝑖𝜷𝑖), 𝑖 = 1, 2,… , 𝑝.

Thus we can have 
𝜷̂𝑖 = (𝐗𝑇

𝑗 𝐗𝑖)−1𝐗𝑇
𝑖 𝐲𝑖, 𝑖 = 1, 2,… , 𝑝. (2)

With the estimates 𝜷̂1,… , 𝜷̂1, the estimated model can then be expressed as 
𝑦𝑖(𝑡) =

∑

𝑗∈ 𝑑
𝑖

𝐴̂1(𝑖, 𝑗)𝑦𝑗 (𝑡 − 1) +⋯ 𝐴̂𝑞(𝑖, 𝑗)𝑦𝑗 (𝑡 − 𝑞), 𝑡 = 2,… , 𝑛. (3)

To choose the optimal value of 𝑑0, we use the Bayesian information criterion (BIC) by computing 

𝐵𝐼𝐶(𝑑, 𝑖) = log(𝑅𝑆𝑆(𝑑, 𝑖)) + 1
𝑛
𝑞𝜏𝑖𝐶𝑛 log(𝑝 ∨ 𝑛), (4)

for every time series 𝑖 and for 𝑑 = 1, 2,…. The value of 𝑑 that minimizes this quantity is the optimal value for time series 𝑖, i.e., 𝑑0(𝑖). 
Since we assume the 𝑝 time series are homogeneous, we will consider the estimate of 𝑑 for all time series as the maximum of all 
the estimated optimal neighborhood distances. That is, 

𝑑0 = max
1≤𝑖≤𝑝

{argmin
𝑑

𝐵𝐼𝐶(𝑑, 𝑖)} (5)

In the next section, we will show that our estimation algorithm for 𝑑0 will lead to optimal estimation of the neighborhood distance. 
Note that our estimate may result in a number of predictors being given as relevant for any time series depending on the density 
of arrangement in space, and hence an optional step may be used to compute a BIC among these predictors (or sany other variable 
selection procedure) to further reduce the number of predictors. The estimation of lag order 𝑞 can also be wrapped into this same 
algorithm by searching over a grid of 𝑑 and 𝑞 values and choosing the value of 𝑑0 and 𝑞 that maximize the BIC criterion (see Guo 
et al. (2016) for a similar idea).

Algorithm 1 Neighborhood VAR Estimation
Input: time series 𝑦1(𝑡),… 𝑦𝑝(𝑡), lag order 𝑞, and distance matrix 𝐃
Output: Coefficient matrices: 𝐴̂1,… , 𝐴̂𝑞
for 𝑑 𝑖𝑛 1 ∶ 𝑑𝑚𝑎𝑥 do
 for 𝑖 𝑖𝑛 1 ∶ 𝑝 do
 Find the d-neighborhood  𝑑

𝑖  of the 𝑖𝑡ℎ time series
 Perform regression for the 𝑖𝑡ℎ time series on  𝑑

𝑖  and compute coefficients 𝛽𝑑,𝑖
 Compute the marginal BIC as 𝐵𝐼𝐶(𝑑, 𝑖) = log(𝑅𝑆𝑆(𝑑, 𝑖)) + 1

𝑛 𝑞𝜏𝑖𝐶𝑛 log(𝑝 ∨ 𝑛) , 𝜏𝑖 - the number of non-zero elements in row 
𝑖 of the coefficient matrices
 end for
end for
Find 𝑑 = max1≤𝑖≤𝑝{argmin1≤𝑑≤𝑑𝑚𝑎𝑥 𝐵𝐼𝐶(𝑑, 𝑖)}

Note that the proposed algorithm could be vulnerable to model misspecification. It is worth to remarking that the motivation 
for the proposed model is to address concerns with model misspecification in the case of the Banded VAR method. The use of the 
least squares algorithm and the BIC criterion for parsimony suggest the typical problems with model misspecification in terms of 
linearity assumptions, normality of error variable, homoscedasticity etc. In these cases of severe misspecification, the usual problems 
of biased coefficients often occur and suitable modifications need to be made to accommodate these situations. If a severe model 
misspecification such as stationarity assumptions are not met, the VAR model could be severely misspecified and new modeling 
effort needs to be made.
4 
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3. Theoretical properties of estimation consistency

In this section, we show that, under appropriate regularity conditions, the proposed NVAR method can consistently recover the 
appropriate level of sparsity, in terms of the optimal neighborhood distance. In addition, we establish the convergence rate of the 
estimated coefficient matrix to the true coefficient matrix. The regularity conditions and the theorems are presented here, while the 
proofs are in Appendix  A.

First we will formulate the NVAR(q) model of order 𝑞 into a NVAR(1) mode of order 1 as follows.
𝐲̃(𝑡) = 𝐴̃𝐲̃(𝑡 − 1) + 𝐞̃(𝑡),

where 

𝐲̃(𝑡) =

⎛

⎜

⎜

⎜

⎜

⎝

𝐲(𝑡)
𝐲(𝑡 − 1)

⋮
𝐲(𝑡 − 𝑞 + 1)

⎞

⎟

⎟

⎟

⎟

⎠

, 𝐴̃ =

⎛

⎜

⎜

⎜

⎜

⎝

𝐴1 𝐴2 ⋯ 𝐴𝑞−1 𝐴𝑞
𝐼𝑝 0𝑝 ⋯ 0𝑝 0𝑝
⋮ ⋮ ⋮ ⋮ ⋮
0𝑝 0𝑝 ⋯ 𝐼𝑝 0𝑝

⎞

⎟

⎟

⎟

⎟

⎠

, 𝐞̃(𝑡) =

⎛

⎜

⎜

⎜

⎜

⎝

𝐞(𝑡)
0𝑝×1
⋮

0𝑝×1

⎞

⎟

⎟

⎟

⎟

⎠

. (6)

Such a reformulation provides a good framework for investigating the theoretical properties. Next we need several regularity 
conditions that are stated as follows. Note that these regularity conditions are similar to those imposed the banded VAR approach 
(see Guo et al. (2016)).

• Condition 1. For 𝐴̃ defined in (6), ‖𝐴̃‖2 ≤ 𝐶 and ‖𝐴̃𝑗0
‖2 ≤ 𝛿𝑗0 , where 𝐶 > 0, 𝛿 ∈ (0, 1) and 𝑗0 ≥ 1 are constants free of 𝑛 and 𝑝, 

and 𝑗0 is an integer.
• Condition 1′. For 𝐴̃ defined in (6), ‖𝐴̃𝑗0

‖2 ≤ 𝛿𝑗0 , ‖𝐴̃‖∞ ≤ 𝐶 and ‖𝐴̃𝑗0
‖∞ ≤ 𝛿𝑗0 , where 𝐶 > 0, 𝛿 ∈ (0, 1) and 𝑗0 ≥ 1 are constants 

free of 𝑛 and 𝑝, and 𝑗0 is an integer.
• Condition 2. Let 𝑎(𝑙)𝑖𝑗  be the (𝑖, 𝑗)-th element of 𝐴𝑙. For each 𝑖 = 1,… , 𝑝, at least one 𝑗 ∈  𝑑0

𝑖 , {𝐶𝑛𝜏
𝑑0
𝑖 𝑛−1log(𝑝∨ 𝑛)}1∕2 ≪ |𝑎(𝑙)𝑖𝑗 | for 

some 1 ≤ 𝑙 ≤ 𝑞, where 𝐶𝑛 → ∞ as 𝑛 → ∞.
• Condition 3. The minimal eigenvalue 𝜆min{cov(𝐲(𝑡))} ≥ 𝜅1 and max1≤𝑖∕𝑙𝑒𝑝|𝜎𝑖𝑖| ≤ 𝜅2 for some positive constants 𝜅1 and 𝜅2 free of 
𝑝, where 𝜎𝑖𝑖 is the 𝑖th diagonal element of cov(𝐲(𝑡)), and 𝜆min(⋅) denotes the minimum eigenvalue.

• Condition 4. The serial noise {𝐞(𝑡) ∶ 𝑡 = 1, 2,… , 𝑛} is independent and identically distributed with zero mean and covariance 
𝛴𝑒. Furthermore, one of the two assertions below holds:

– (i) max1≤𝑖≤𝑝𝐸(|𝐞𝑖(𝑡)|2𝑞) ≤ 𝐶 and 𝑝 = 𝑂(𝑛𝛽 ), where 𝑞 > 2, 𝛽 ∈ (0, (𝑞 − 2)∕4) and 𝐶 > 0 are some constants free of 𝑛 and 𝑝;
– (ii) max1≤𝑖≤𝑝𝐸{exp(𝜆0|𝐞𝑖(𝑡)|2𝛼)} ≤ 𝐶 and log𝑝 = 𝑜(𝑛𝛼∕(2−𝛼)), where 𝜆0 > 0, 𝛼 ∈ (0, 1] and 𝐶 > 0 are some constants free of 

𝑛 and 𝑝.

Briefly, Condition 3 ensures that the covariance matrix is positive definite. Condition 4(𝑖) ensures strict stationarity of the process 
when the 𝑒𝑖(𝑡) are independent and identically distributed, while Condition 4(𝑖𝑖) is an identifiability condition for the minimum 
value among the non-zero coefficients.

Now we can show that the estimated size of neighborhood to be consistent. 

Theorem 1.  Assume that Conditions 1–4 hold for the proposed neighborhood VAR. Then the estimated size of the neighborhood is consistent, 
i.e., 𝑃𝑟(𝑑 = 𝑑0) → 1 𝑎𝑠 𝑛 → ∞.

This theorem shows that the algorithm to select the optimum neighborhood distance converges to the true neighborhood distance, 
if it exists, as the length of the time series grows. Moreover, we can also establish the convergence error bounds between the 
estimated coefficient matrix 𝐴̂𝑟 and the true coefficient matrix 𝐴𝑟, when using this optimum neighborhood distance in computing 
the estimated coefficient matrix. Using either the Frobenius norm or the 𝐿2 norm, we can show bounds on the norm of the error 
matrix defined as the difference between the estimated coefficient matrix and the true coefficient matrix. The following theorem 
shows that, for each of the 𝑞 coefficient matrices, the error norm is bounded and goes to 0 as the length of the time series grows 
with constant 𝑝. 

Theorem 2.  Assume that Conditions 1–4 hold for the proposed neighborhood VAR. Then as 𝑛 → ∞, we have the following error bounds 
of the estimated coefficient matrix as

‖𝐴̂𝑗 − 𝐴𝑗‖𝐹 = 𝑂𝑝

{

(𝑛−1 log 𝑝)1∕2
}

,

‖𝐴̂𝑗 − 𝐴𝑗‖2 = 𝑂𝑝

{

(𝑛−1 log 𝑝)1∕2
}

,

which hold for 𝑗 = 1,… , 𝑞.

From this theorem, one can infer that the estimated coefficient matrix is accurate even when 𝑝 grows along with 𝑛 as long as 
the number of time series grows at a particular rate, but not as fast as 𝑛 as seen from the theorem. Further details are available 
in Appendix  A.
5 
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Fig. 1. Three simulation cases: banded, block-banded and random structures.

Here we would like to remark that using 𝛿 ∈ (0, 1) in Condition 1 can be a stringent condition for stationarity as discussed in Basu 
et al. (2015). Note that we do not use the even more stringent condition of ‖𝐴̃‖2 ≤ 1 that is remarked on in that paper. While the 
relaxation to a condition on the spectral radius is desirable as proposed in that work, we do not address this here. Instead, for 
practice in the sections of simulation and case study, we consider to scale the transition matrix. In the model, this would introduce 
a scaling on the error standard deviation, and we show that the algorithm works under different conditions imposed on the error 
standard deviation. Further tightening of bounds and exploration of ideas around the spectral radius can be a future work.

4. Simulation study

In this section, we evaluate the performance of the proposed method in comparison with some existing methods. Three different 
simulation cases are conducted with data generated from the NVAR(1) in (1). Fig.  1 illustrates the three simulation cases. In all 
these cases, we consider different values of bandwidth 𝑑0 = 1, 2, 3, 4 and different number of time series 𝑝 = 100, 196, 400, 784. We 
also assume that the distance matrix is known and that the noise process is 𝑁(0, 𝜎2𝑒 𝐼𝑝) with 𝜎𝑒 = 0.01, 1. The sample size 𝑛 is fixed 
at 𝑛 = 200. For each case, we create 500 repetitions for the simulation study.

Case 1: 1-D lattice structure. We generate random coefficient matrices 𝐴 with 𝐴𝑖𝑗 = 0, |𝑖 − 𝑗| ≥ 𝑑0. The non-zero elements of the 
matrix are chosen randomly from [−1, 1] and to ensure stationarity, we force ‖𝐴‖ < 1 by rescaling the matrix to have a random 
norm value between [0.3, 0.9] using the operation (𝐴∕‖𝐴‖) × 𝑢, where 𝑢 ∼ 𝑈 [0.3, 0.9].

Case 2: 2-D lattice structure. We generate random coefficient matrices 𝐴 with the 2-D lattice structure shown in the previous 
section. From the spatial perspective, for any point [𝑖1, 𝑗1] the surrounding points 𝑖2, 𝑗2 with |𝑖1 − 𝑖2|+ |𝑗1 − 𝑗2| < 𝑑0 are the only ones 
that are non-zero. When we vectorize the spatial matrix to obtain the coefficient matrix 𝐴𝑟, this results in a block-banded structure 
where, for the 𝑖th row in 𝐴𝑟, the non-zero elements are the matrix positions with |𝑖 − 𝑗| ≤ 𝑑0 ± 𝑡

√

𝑝, 𝑡 = 0, 1, 2,…
√

𝑝, 1 ≤ 𝑗 ≤ 𝑝. This 
means, as we increase neighborhood distance in steps, multiple time series are included, proportional to 𝑂(𝑑2) rather than to 𝑂(𝑑)
as in the 1-D lattice case. We ensure stationarity of the timeseries process as before.

Case 3: 2-D spatial structure. We generate a random spatial point process and place the ‘‘sensors’’ in these locations and then 
generate data based on an NVAR(1) process, where each time series depends only on its neighbors in space. To ensure a fair 
comparison, we maintain the density of the sensors in any small region to be similar to that of the 2-D lattice on average by 
suitable scaling. In this case, the number of neighbors is random and as we increase 𝑑0 in steps corresponding to the lattice case, 
multiple time series are included in the neighborhood. For instance, we first generate a spatial point process in [0, 1] × [0, 1]. We 
scale this unit square appropriately based on the particular instances of the point processes so that the average number of nearest 
neighbors for all points is roughly 4. Note that, as the number of time series increases, i.e., as 𝑝 increases in the simulation setting, 
to maintain the same average number of neighbors, we need to scale the unit square differently.

The proposed method is compared with the banded VAR method and the LASSO method. In the LASSO method, we use the Lasso 
regression to estimate the coefficients for each time series independently, which is also chosen as a benchmark method in Guo et al. 
(2016). The setting of Case 1 is to validate that our proposed method is equivalent to the banded VAR method under the 1-D lattice 
structure.

Note that error standard deviation 𝜎𝑒 = 0.01 corresponds to very high signal and we would like to recover the true coefficient 
matrix exactly in this scenario. On the other hand, error standard deviation 𝜎 = 1 corresponds to almost all noise, and hence almost 
𝑒
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Fig. 2. Performance comparison of methods with different number of time series (𝑝), different bandwidth (𝑑), and different error standard deviation (sd) in 
Case 1. The error norm is ‖𝐴̂ − 𝐴‖2.

Fig. 3. Performance comparison of methods with different number of time series (𝑝), different bandwidth (𝑑), and different error standard deviation (sd) in 
Case 2. The error norm is ‖𝐴̂ − 𝐴‖2.

all methods will perform relatively poorly. Here we consider the 𝐿2 error norm (spectral norm), i.e. ‖𝐴̂ − 𝐴‖2, as the performance 
measure, where 𝐴̂ is the estimated coefficient matrix, and 𝐴 is the true coefficient matrix.

The simulation results are reported in Figs.  2–4 and Tables  1–3. In Case 1, it is clear from Figs.  2 and Table  1 that the banded 
VAR method and the proposed neighborhood VAR method coincide exactly, and both perform much better than the LASSO method, 
irrespective of the noise variance.
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Fig. 4. Performance comparison of methods with different number of time series (𝑝), different bandwidth (𝑑), and different error standard deviation (sd) in 
Case 3. The error norm is ‖𝐴̂ − 𝐴‖2.
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Table 1
Case 1: Banded Structure. Means with their corresponding standard deviations in parentheses of the errors, and the frequency of estimated bandwidth in estimating 
coefficient matrix.
 Error standard deviation = 1
 NVAR BVAR LASSO

 
𝑝 𝑑0

Est. bandwidth 𝐿2 norm 
‖𝐴̂ − 𝐴‖2

Est. bandwidth 𝐿2 norm 
‖𝐴̂ − 𝐴‖2

𝐿2 norm 
‖𝐴̂ − 𝐴‖2

 
 0 1 2 3 4 0 1 2 3 4  
 100 1 0 327 161 10 2 0.30(0.05) 0 327 161 10 2 0.30(0.05) 0.84(0.06)  
 100 2 0 9 351 133 7 0.35(0.04) 0 9 351 133 7 0.35(0.04) 0.87(0.06)  
 100 3 0 18 51 340 91 0.39(0.03) 0 18 51 340 91 0.39(0.03) 0.90(0.07)  
 100 4 1 39 64 49 347 0.42(0.03) 1 39 64 49 347 0.42(0.03) 0.91(0.08)  
 196 1 0 251 232 16 1 0.32(0.04) 0 251 232 16 1 0.32(0.04) 0.96(0.06)  
 196 2 0 5 295 183 17 0.37(0.04) 0 5 295 183 17 0.37(0.04) 0.99(0.06)  
 196 3 0 7 33 312 148 0.41(0.03) 0 7 33 312 148 0.41(0.03) 1.02(0.07)  
 196 4 0 19 48 51 382 0.44(0.03) 0 19 48 51 382 0.44(0.03) 1.03(0.07)  
 400 1 0 136 327 36 1 0.35(0.04) 0 136 327 36 1 0.35(0.04) 1.04(0.04)  
 400 2 0 0 223 252 25 0.39(0.03) 0 0 223 252 25 0.39(0.03) 1.07(0.05)  
 400 3 0 0 20 282 198 0.43(0.03) 0 0 20 282 198 0.43(0.03) 1.08(0.06)  
 400 4 0 1 42 39 418 0.46(0.03) 0 1 42 39 418 0.46(0.03) 1.10(0.07)  
 784 1 0 52 395 49 4 0.38(0.03) 0 52 395 49 4 0.38(0.03) 1.06(0.03)  
 784 2 0 0 156 297 47 0.42(0.04) 0 0 156 297 47 0.42(0.04) 1.08(0.05)  
 784 3 0 2 14 242 242 0.45(0.03) 0 2 14 242 242 0.45(0.03) 1.09(0.06)  
 784 4 0 1 33 50 416 0.47(0.03) 0 1 33 50 416 0.47(0.03) 1.10(0.07)  
 Error standard deviation = 0.01
 NVAR BVAR LASSO

 𝑝 𝑑0 Est. bandwidth 𝐿2 norm 
‖𝐴̂ − 𝐴‖2

Est. bandwidth 𝐿2 norm 
‖𝐴̂ − 𝐴‖2

𝐿2 norm 
‖𝐴̂ − 𝐴‖2

 
 0 1 2 3 4 0 1 2 3 4  
 100 1 0 278 207 13 2 0.24(0.16) 0 278 207 13 2 0.24(0.06) 1.01(0.11)  
 100 2 0 0 314 168 18 0.30(0.05) 0 0 314 168 18 0.30(0.05) 1.06(0.10)  
 100 3 0 0 0 330 170 0.35(0.04) 0 0 0 330 170 0.35(0.04) 1.08(0.12)  
 100 4 0 0 1 24 475 0.38(0.03) 0 0 1 24 475 0.38(0.03) 1.09(0.12)  
 196 1 0 176 297 25 2 0.27(0.05) 0 176 297 25 2 0.27(0.05) 0.98(0.09)  
 196 2 0 0 223 259 18 0.32(0.04) 0 0 223 259 18 0.32(0.04) 1.01(0.09)  
 196 3 0 0 0 280 220 0.37(0.04) 0 0 0 280 220 0.37(0.04) 1.01(0.07)  
 196 4 0 0 0 8 492 0.40(0.03) 0 0 0 8 492 0.40(0.03) 1.03(0.06)  
 400 1 0 68 398 31 3 0.31(0.04) 0 68 398 31 3 0.31(0.04) 1.28(0.09)  
 400 2 0 0 103 356 41 0.36(0.04) 0 0 103 356 41 0.36(0.04) 1.28(0.07)  
 400 3 0 0 0 174 326 0.40(0.03) 0 0 0 174 326 0.40(0.03) 1.30(0.07)  
 400 4 0 0 0 1 499 0.41(0.03) 0 0 0 1 499 0.41(0.03) 1.31(0.07)  
 784 1 0 12 412 73 3 0.33(0.04) 0 12 412 73 3 0.33(0.04) 1.62(0.08)  
 784 2 0 0 39 399 62 0.38(0.04) 0 0 39 399 62 0.38(0.04) 1.65(0.09)  
 784 3 0 0 0 99 401 0.42(0.03) 0 0 0 99 401 0.42(0.03) 1.66(0.13)  
 784 4 0 0 0 1 499 0.43(0.03) 0 0 0 1 499 0.43(0.03) 1.65(0.09)  

In Case 2, the neighborhood VAR method outperforms the banded VAR method and the LASSO method, especially when the 
error variance is small and the bandwidth is small (Figs.  3, Table  2). We note here that the banded VAR method is adapted to 
the 2-D lattice case in a natural manner as the original paper Guo et al. (2016) explicitly defines only a one-dimensional problem. 
The neighborhood VAR method is significantly better than the banded VAR method at low error variance. This is because banded 
VAR does not take the possibility of non-zero elements in the coefficient matrix far away from the main diagonal. The banded VAR 
method and the neighborhood method provide a comparable performance when the error variance is high, and both outperform 
LASSO significantly.

In Case 3, the simulation results are reported in Figs.  4 and Table  3. From these results, one can see that the neighborhood VAR 
method outperforms the banded VAR method in this case even for the normalized distances.

Recall from our simulation settings that we have re-scaled the spatial distances so that the average number of neighbors for 
any time series is roughly the same as in a 2-D lattice in order to facilitate a fair comparison with the banded VAR method. This 
result indicates that for general spatial problems where the density of neighbors may be very different from that of a lattice process, 
the neighborhood VAR method can easily outperform the banded VAR method. Note that when the number of time series grows 
large, or when the bandwidth grows large at fixed number of time series, the neighborhood VAR method and the banded VAR 
method become comparable. It is clear that the neighborhood VAR method outperforms both the banded VAR method and the 
LASSO method significantly at low bandwidth, and the neighborhood VAR method and the banded VAR method are comparable at 
high bandwidth.

We have also checked the performance of prediction accuracy for the proposed method in comparison with the BVAR and the 
LASSO methods. Specifically, based on the fitted model, we conduct the one-step ahead prediction for 50 steps to calculate the mean 
9 
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Table 2
Case 2: Block-banded Structure. Means with their corresponding standard deviations in parentheses of the errors, and the frequency of estimated bandwidth in 
estimating coefficient matrix.
 Error standard deviation = 1
 NVAR BVAR LASSO

 𝑝 𝑑0 Est. bandwidth 𝐿2 norm 
‖𝐴̂ − 𝐴‖2

Est. bandwidth 𝐿2 norm 
‖𝐴̂ − 𝐴‖2

𝐿2 norm 
‖𝐴̂ − 𝐴‖2

 
 0 1 2 3 4 0 1 2 3 4  
 100 1 2 497 1 0 0 0.33(0.03) 0 345 145 8 2 0.50(0.11) 0.87(0.05)  
 100 2 44 156 300 0 0 0.49(0.05) 6 67 366 60 1 0.62(0.14) 0.94(0.08)  
 100 3 135 221 92 52 0 0.62(0.14) 21 153 118 201 7 0.65(0.16) 0.95(0.11)  
 100 4 183 289 25 3 0 0.67(0.18) 33 205 130 78 54 0.68(0.18) 0.97(0.12)  
 196 1 0 495 5 0 0 0.34(0.03) 0 273 208 18 1 0.51(0.11) 0.99(0.07)  
 196 2 21 169 310 0 0 0.50(0.04) 0 47 366 82 5 0.63(0.14) 1.05(0.09)  
 196 3 92 240 109 59 0 0.63(0.14) 4 121 125 237 13 0.67(0.16) 1.07(0.11)  
 196 4 152 308 38 2 0 0.68(0.19) 12 186 155 91 56 0.69(0.18) 1.08(0.12)  
 400 1 0 500 0 0 0 0.36(0.02) 0 167 310 22 1 0.54(0.11) 1.07(0.05)  
 400 2 10 175 315 0 0 0.51(0.04) 0 25 351 116 8 0.63(0.14) 1.10(0.08)  
 400 3 43 272 122 63 0 0.65(0.13) 0 74 134 270 22 0.68(0.16) 1.12(0.10)  
 400 4 89 369 40 2 0 0.68(0.18) 1 153 170 96 80 0.69(0.17) 1.11(0.10)  
 784 1 0 498 2 0 0 0.37(0.03) 0 84 381 34 1 0.54(0.10) 1.08(0.05)  
 784 2 1 180 319 0 0 0.52(0.04) 0 12 297 174 17 0.64(0.14) 1.11(0.08)  
 784 3 21 284 120 75 0 0.65(0.12) 0 37 140 270 53 0.69(0.15) 1.13(0.13)  
 784 4 53 386 57 4 0 0.69(0.17) 0 89 179 126 106 0.70(0.17) 1.12(0.09)  
 Error standard deviation = 0.01
 NVAR BVAR LASSO

 𝑝 𝑑0 Est. bandwidth 𝐿2 norm 
‖𝐴̂ − 𝐴‖2

Est. bandwidth 𝐿2 norm 
‖𝐴̂ − 𝐴‖2

𝐿2 norm 
‖𝐴̂ − 𝐴‖2

 
 0 1 2 3 4 0 1 2 3 4  
 100 1 0 498 2 0 0 0.26(0.04) 0 0 12 70 418 0.75(0.23) 1.06(0.10)  
 100 2 0 20 480 0 0 0.45(0.04) 0 0 11 66 423 0.83(0.27) 1.11(0.11)  
 100 3 0 14 211 275 0 0.62(0.05) 0 0 3 54 443 0.86(0.28) 1.13(0.13)  
 100 4 0 23 223 186 68 0.76(0.12) 0 0 2 25 473 0.88(0.28) 1.14(0.13)  
 196 1 0 495 5 0 0 0.28(0.04) 0 0 11 63 426 0.77(0.25) 1.01(0.08)  
 196 2 0 11 489 0 0 0.47(0.03) 0 0 1 36 463 0.88(0.28) 1.04(0.06)  
 196 3 0 10 210 280 0 0.64(0.05) 0 0 0 34 466 0.89(0.29) 1.06(0.07)  
 196 4 0 8 238 187 67 0.78(0.12) 0 0 1 13 486 0.91(0.29) 1.06(0.07)  
 400 1 0 498 2 0 0 0.29(0.04) 0 0 0 42 458 0.82(0.28) 1.28(0.08)  
 400 2 0 4 495 0 1 0.49(0.04) 0 0 0 13 487 0.89(0.30) 1.31(0.06)  
 400 3 0 4 202 294 0 0.67(0.05) 0 0 0 11 489 0.93(0.30) 1.32(0.06)  
 400 4 0 5 217 199 79 0.80(0.12) 0 0 0 2 498 0.96(0.32) 1.33(0.06)  
 784 1 0 498 2 0 0 0.31(0.03) 0 0 0 31 469 0.82(0.28) 1.64(0.08)  
 784 2 0 1 498 0 1 0.50(0.04) 0 0 0 3 497 0.92(0.31) 1.66(0.08)  
 784 3 0 0 179 321 0 0.68(0.05) 0 0 0 1 499 0.98(0.31) 1.66(0.08)  
 784 4 0 2 195 223 80 0.82(0.12) 0 0 0 0 500 0.99(0.33) 1.71(0.092)  

squared prediction errors for the methods in comparison. The results show similar merits of the proposed NVAR method as shown 
in the estimated coefficient matrix 𝐴̂ in comparison with the BVAR and LASSO methods, thus the results are omitted here.

Finally, we would like to make two remarks on the performance of the proposed method with respect to model misspecification 
and selection accuracy

Remark 1. Model Misspecification In the case of minor to moderate model misspecification, it will be interesting to conduct a full 
theoretical exploration of what guarantees would be possible to make, which is beyond the scope of this work.

However, simulations suggest that the proposed model can be robust to certain kinds of model misspecification. For example, 
consider the case that a 1-D banded structure is the true data structure but the model is misspecified as having a 2-D structure. The 
proposed algorithm, because it is built to subsume 1-D structures, works as well as Banded VAR as shown in Table  1. Similarly, a 
reverse model misspecification of the true 2-D data structure as a 1-D banded VAR model does not directly impact the algorithm’s 
performance as it is designed to search through both 1-D and 2-D data structures.

Remark 2.  Selection Accuracy The results presented in the tables can also indicate how the algorithm performs in terms of 
the tradeoff between precision and accuracy. We present the analysis results of false positive and false negative rates in terms of 
the estimated 𝑑0, which could reflect the corresponding rates in terms of selected coefficients. For instance, when a block-banded 
structure is considered, under-estimation of 𝑑0 will have a quadratic effect on the number of wrongly omitted coefficients. Whereas 
in a banded structure, such a relationship will be linear. As the tables show, the false negative rate (FNR) is typically larger than 
the false positive rate (FPR) in terms of 𝑑0 estimation. For instance, in Table  3 under the error standard deviation = 0.01, it is seen 
that the FNR for 𝑑  increases from 3.2% for 𝑑 = 2, 𝑝 = 100 to 91.6%, for 𝑑 = 4, 𝑝 = 100. The FPR decreases from 6% to 0% in the 
0 0 0
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Table 3
Case 3: 2-D Spatial Structure. Means with their corresponding standard deviations in parentheses of the errors, and the frequency of estimated bandwidth in 
estimating coefficient matrix.
 Error standard deviation = 1
 NVAR BVAR LASSO

 𝑝 𝑑0 Est. bandwidth 𝐿2 norm 
‖𝐴̂ − 𝐴‖2

Est. bandwidth 𝐿2 norm 
‖𝐴̂ − 𝐴‖2

𝐿2 norm 
‖𝐴̂ − 𝐴‖2

 
 0 1 2 3 4 0 1 2 3 4  
 100 1 0 494 6 0 0 0.36(0.04) 0 33 93 107 267 0.43(0.05) 0.87(0.06)  
 100 2 0 139 361 0 0 0.54(0.05) 6 85 89 81 239 0.60(0.12) 0.93(0.08)  
 100 3 0 283 174 43 0 0.67(0.13) 24 170 93 107 106 0.66(0.17) 0.96(0.11)  
 100 4 0 394 101 5 0 0.71(0.17) 47 240 127 61 25 0.68(0.18) 0.98(0.13)  
 196 1 0 497 3 0 0 0.38(0.04) 0 18 87 90 305 0.45(0.05) 0.99(0.07)  
 196 2 0 119 381 0 0 0.55(0.05) 2 61 104 72 261 0.60(0.12) 1.03(0.09)  
 196 3 0 251 210 39 0 0.68(0.14) 2 141 136 95 126 0.67(0.17) 1.05(0.11)  
 196 4 0 329 168 3 0 0.73(0.17) 10 215 157 87 31 0.69(0.18) 1.08(0.12)  
 400 1 0 473 27 0 0 0.40(0.05) 0 6 76 115 303 0.46(0.04) 1.05(0.06)  
 400 2 0 94 406 0 0 0.57(0.05) 0 26 93 84 297 0.62(0.12) 1.09(0.08)  
 400 3 0 189 245 66 0 0.71(0.13) 0 93 135 91 181 0.69(0.17) 1.11(0.10)  
 400 4 0 281 215 4 0 0.74(0.16) 2 170 166 103 59 0.70(0.17) 1.11(0.10)  
 784 1 0 469 31 0 0 0.43(0.06) 0 0 63 107 330 0.48(0.05) 1.06(0.05)  
 784 2 0 68 432 0 0 0.60(0.05) 0 15 67 79 339 0.64(0.12) 1.10(0.07)  
 784 3 0 155 269 76 0 0.72(0.12) 0 58 132 101 209 0.69(0.16) 1.15(0.98)  
 784 4 0 217 278 5 0 0.77(0.17) 0 102 181 111 106 0.71(0.18) 1.12(0.09)  
 Error standard deviation = 0.01
 NVAR BVAR LASSO

 𝑝 𝑑0 Est. bandwidth 𝐿2 norm 
‖𝐴̂ − 𝐴‖2

Est. bandwidth 𝐿2 norm 
‖𝐴̂ − 𝐴‖2

𝐿2 norm 
‖𝐴̂ − 𝐴‖2

 
 0 1 2 3 4 0 1 2 3 4  
 100 1 0 497 1 0 2 0.31(0.06) 0 0 7 70 423 0.44(0.08) 1.07(0.11)  
 100 2 0 16 484 0 0 0.51(0.04) 0 0 1 33 466 0.71(0.21) 1.11(0.12)  
 100 3 0 7 264 229 0 0.69(0.07) 0 0 1 23 476 0.84(0.26) 1.14(0.13)  
 100 4 0 11 283 172 34 0.83(0.15) 0 0 3 40 457 0.89(0.30) 1.14(0.13)  
 196 1 0 495 5 0 0 0.33(0.04) 0 0 3 84 413 0.45(0.08) 1.01(0.07)  
 196 2 0 5 493 1 1 0.53(0.05) 0 0 1 21 478 0.73(0.22) 1.04(0.07)  
 196 3 0 2 239 258 1 0.72(0.07) 0 0 0 14 486 0.87(0.26) 1.06(0.07)  
 196 4 0 1 267 196 36 0.84(0.15) 0 0 0 17 483 0.91(0.29) 1.06(0.07)  
 400 1 0 488 12 0 0 0.35(0.05) 0 0 0 44 456 0.50(0.10) 1.30(0.08)  
 400 2 0 2 496 1 1 0.55(0.05) 0 0 0 9 491 0.77(0.23) 1.32(0.07)  
 400 3 0 0 224 274 2 0.73(0.07) 0 0 0 5 495 0.89(0.27) 1.32(0.07)  
 400 4 0 0 230 218 52 0.86(0.15) 0 0 0 7 493 0.96(0.34) 1.32(0.07)  
 784 1 0 461 33 0 6 0.39(0.10) 0 0 0 25 475 0.52(0.10) 1.65(0.10)  
 784 2 0 0 494 3 3 0.58(0.06) 0 0 0 3 497 0.77(0.22) 1.65(0.11)  
 784 3 0 0 199 296 5 0.77(0.08) 0 0 0 1 499 0.92(0.28) 1.67(0.09)  
 784 4 0 0 217 236 47 0.88(0.15) 0 0 0 1 499 0.97(0.33) 1.66(0.09)  

same span for the NVAR method. Similar observations can be made throughout the other tables and suggests that the algorithm 
reduces false positives consistently.

5. Case study of stream nitrogen data

Excess nitrogen is one of the most important causes of impairment for rivers and streams (see EPA (2000)). Previous studies also 
showed that nitrogen and phosphorus loads are important driving factors of Harmful algal blooms (HABs) (see Paerl et al. (2001)). 
For urban and urbanizing watersheds, less developed agricultural and low-density residential (suburban/exurban) areas contribute 
most in terms of annual loads of nitrogen, mainly through sewage and fertilizers (see Shields et al. (2008)). Thus, it is of great 
importance to understand the complication and prediction of nitrogen of multiple streams.

In this section, we apply the proposed NVAR method to the case study of surface water quality data, focusing on observed total 
nitrogen (TN) loads from the U.S. Geological Survey (USGS) stream gauges. The daily TN data (1990 to current) for the states of 
Virginia and West Virginia were downloaded. The data for this study are openly available in National Water Information System 
(NWIS) at https://waterdata.usgs.gov/nwis.

We conducted an initial analysis of data availability and temporal consistency. First we transfer the original data to a monthly 
data by using each month’s maximum value as some months have more than one measurement. Next we select a subset of data, 
which has 𝑝 time series, and does not contain any missing values over some 𝑛 consecutive months. Among these selected possible 
datasets, we choose the one with the largest sample size, 𝑝𝑛. As a result, a total of 𝑝 = 14 monitoring sites were selected as the 
dataset for analysis, and the length of time series is 𝑛 = 73. Fig.  5 reports the locations of the sites of the 14 streams of study.
11 
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Fig. 5. Location map of the streams in our study.

Table 4
Mean square prediction error (MSPE) of NVAR, BVAR, LASSO for the stream data. A upper bound is set for the number of selected variables, which is 𝑝∕2.
 𝑝 𝑛 NVAR BVAR LASSO

 Est. band width MSPE Comp. time Est. band width MSPE Comp. time MSPE Comp. time 
 14 73 7 0.746 0.092 3 1.026 0.053 4.787 0.411  

Table 5
Mean square prediction error (MSPE) of the BVAR with different index for the stream data. A upper bound is set for the number of selected variables, which
is 𝑝∕2.
 𝑝 𝑛 BVAR:

longitude index
BVAR:
latitude index

BVAR:
PCA 1 index

BVAR:
PCA 2 index

 Est. band width MSPE Est. band width MSPE Est. band width MSPE Est. band width MSPE 
 14 73 3 1.026 3 0.813 3 1.069 3 0.941 

We analyze this nitrogen dataset using the proposed NVAR method in comparison with the BVAR method and the LASSO method.
To evaluate the performance of the methods in comparison, we partition the data into the training data and test data. For each time
series, the beginning 80% data are used as training data and the later 20% data are used as test data. The one-step ahead prediction
is used to calculate the mean squared prediction errors for the methods in comparison. For the NVAR method, the definition of
bandwidth 𝑘𝑁𝑉 𝐴𝑅 is a little different from the random structure. The 𝑘𝑁𝑉 𝐴𝑅 equals the number of selected neighbors that are
closest to a stream of interest.

Table  4 reports the performance of the methods in comparison. It is seen that the proposed NVAR method performs better than
the BVAR method in terms of mean squared prediction error, and both the NVAR method and the BVAR method have much lower
values of mean squared prediction error in comparison with that the LASSO method.

Note that the order of streams needs to be specified for applying the BVAR method, and the streams are ordered by their longitude
for the BVAR method in Table  4. It means that, when using the BVAR method for analyzing the nitrogen data, its performance
depends on how to specify the order of streams. In contrast, the proposed NVAR method accommodates the natural distance measure
to allow the analysis invariant on the order of the streams.

Table  5 shows the results of the BVAR method using different directions to order the streams. The PCA 1 index chooses the
direction which explains the largest variety of the 2-D location (i.e., longitude and latitude). The PCA 2 index uses the direction
which is perpendicular to the PCA 1 direction. As shown in the Table  5, the performance of the BVAR method varies among different
directions. It is seen that the order of streams has a significant effect on the performance of the BVAR method. The prediction
performance of the BVAR method is not as good as the proposed NVAR method. Note that the NVAR method incorporates 2-D
information instead of 1-D, thus it can include adequate information and is more robust than the BVAR method.

6. Discussion

In this work, we have presented the neighborhood vector autoregression model, which utilizes the underlying distances among
the time series based on the inherent setting of the problem. We have generalized the model assumption in Guo et al. (2016)
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by extending the notion of ‘‘band’’ to the notion of a ‘‘neighborhood’’. The notion of neighborhood can be quite general under a 
distance or dissimilarity measure on where the data of multiple time series are collected. With the aid of the Bayesian information 
criterion to choose an appropriate neighborhood size, the proposed NVAR method uses least squares for parameter estimation, thus 
can outperform penalization-based algorithms (e.g. Lozano et al. (2009), Bolstad et al. (2011)) in terms of computing efficiency. 
We also investigate the theoretical properties of the proposed method under some regularity conditions. Our theoretical studies 
show that the optimum neighborhood distance selected by the NVAR method converges to the true neighborhood distance, and the 
estimated coefficient matrix converges to the true coefficient matrix. The simulation study and case study of stream nitrogen data 
show the NVAR method outperforms the BVAR method and the LASSO method, and the NVAR method is more robust than the 
BVAR method. In particular, it is seen that the proposed method can gain prediction accuracy by borrowing information from the 
neighborhood streams.

A potential limitation of the proposed NVAR method is the assumption that the dependency (e.g., spatial dependency) among 
the time series must exist, and it can be captured by a distance or dissimilarity matrix. When there is no such dependency among 
the time series or the distance matrix is unknown, then the NVAR method might not show advantages over other methods.

There are several directions for future research. First, we would like to study the NVAR method in terms of the estimation of auto-
covariance matrix, and compare the performance with other methods in terms of estimation accuracy, efficiency, and theoretical 
convergence. Second, our current approach adopts the BIC to choose the size of the neighborhood, and then the parameters are 
estimated by the ordinary least squares. Alternatively, we can use the penalized least squares for parameter estimation. Under this 
situation, it will be interesting to investigate what will be appropriate penalty functions for the neighbor vector autoregression 
model. It will also be interesting to examine the theoretical properties on the estimation accuracy when penalized estimation is 
involved.  Third, the proposed method could be conservative in terms of false positives and could be aggressive on minimizing the 
false positives preferentially. One possible explanation can be due to the use of the BIC in the setting where 𝑑0 is already small. 
Alternatively, the use of penalized least squares or other techniques would be interesting in future work to achieve a tradeoff between 
sensitivity and specificity by creating a different threshold for bandwidth detection. Moreover, in a more general framework, the 
investigation on the effects of the precision–accuracy or sensitivity–specificity tradeoff would be of practical use, which can make a 
complete ROC curve for selecting the best bandwidth. Fourth, to address the limitation of relying on a distance matrix, one potential 
remedy is to combine covariance/precision matrix estimation with the NVAR method. It is reasonable to view the multivariate time 
series as a graph, then the conditional dependency can be viewed as the notion of ‘‘neighborhood’’. Thus, the neighborhood of time 
series can be identified with some sparse covariance/precision matrix estimation method, which is a substitute when the distance 
matrix is unknown.
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Appendix A. Supplementary material

A.1. Proof of Theorem  1

Without loss of generality, we consider the NVAR(1) model with ‖𝐴‖1 ≤ 𝛿 < 1. Our goal is to prove that pr(𝑑 = 𝑑0) → 1, 
i.e., pr(𝑑 ≠ 𝑑0) → 0. If 𝑑 ≠ 𝑑0, then either 𝑑 > 𝑑0 or 𝑑 < 𝑑0 holds. Hence it suffices to show that pr(𝑑 < 𝑑0) → 0 and pr(𝑑 > 𝑑0) → 0. 
Our proof follows the arguments in Guo. et al. (2016).

Consider the first case. Observe that pr(𝑑 < 𝑑0) ≤ pr(𝑑𝑖 < 𝑑0) for some 𝑖 ∈ {1,… , 𝑝} and the event (𝑑𝑖 < 𝑑0) imply 
{min𝑑<𝑑0 BIC(𝑑, 𝑖) < BIC(𝑑0, 𝑖)}. To prove pr(𝑑 ≠ 𝑑0) → 0, we only need to show that

pr{min
𝑑<𝑑0

BIC(𝑑, 𝑖) < BIC(𝑑0, 𝑖)} → 0

for some 𝑖. Suppose that we have shown that there exists a constant 𝜂 > 0 and an event 𝑛 such that pr(𝑛) → 1 as 𝑛 → ∞ and on 
the event 𝑛, 

RSS(𝑑, 𝑖) − RSS(𝑑0, 𝑖) ≥ 𝜂RSS(𝑑0, 𝑖)
∑

𝑗∈ 𝑑0
𝑖

(𝑎2𝑖,𝑗 ) (7)

for sufficiently large 𝑛, where 𝑎𝑗,𝑘 is the (𝑗, 𝑘)-element of 𝐴1. On the event 𝑛 with large 𝑛, logRSS(𝑑, 𝑖) − logRSS(𝑑0, 𝑖) ≥
log{1 + 𝜂

∑

𝑗∈ 𝑑0
𝑖
(𝑎2𝑖,𝑗 )}. Note that log(1 + 𝑥) ≥ min(0.5𝑥, log2) for any 𝑥 > 0. consequently, with probability tending to one, 

logRSS(𝑑, 𝑖)−log RSS(𝑑0, 𝑖) can be further bound below by min(0.5𝜂∑
𝑗∈ 𝑑0

𝑖
𝑎2𝑖,𝑗 , log2). Condition 2 implies that for some 𝑖∗ ∈ {1,… , 𝑝}, 

0.5𝜂
∑

𝑗∈ 𝑑0
𝑖∗

𝑎2𝑖∗ ,𝑗 ≫ 𝐶𝑛𝜏
𝑑0
𝑖∗ 𝑛

−1log(𝑝 ∨ 𝑛) as 𝑛 → ∞, where 𝜏𝑑0𝑖∗ = | 𝑑0
𝑖∗ |. Hence, it follows that, with probability tending to 1,

min BIC(𝑑, 𝑖∗) − BIC(𝑑0, 𝑖∗) = logRSS(𝑑, 𝑖∗) − logRSS(𝑑0, 𝑖∗) + 𝐶𝑛(𝜏𝑑∗ − 𝜏𝑑0∗ )𝑛−1log(𝑝 ∨ 𝑛)

𝑑<𝑑0 𝑖 𝑖
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> min(0.5𝜂
∑

𝑗∈ 𝑑0
𝑖∗

𝑎2𝑖∗ ,𝑗 , log2) − 𝐶𝑛𝜏
𝑑0
𝑖∗ 𝑛

−1log(𝑝 ∨ 𝑛)

≫ 0.

where 𝑝 ∨ 𝑛 = max(𝑝, 𝑛),  𝑑
𝑖∗  is the length of non-zero elements in the 𝑖∗-th row of 𝐴1 with 𝑑-neighborhood,  𝑑0

𝑖∗  is the length of 
non-zero elements in the 𝑖∗-th row of 𝐴1 with 𝑑0-neighborhood. Hence, pr{min𝑑<𝑑0 BIC(𝑑, 𝑖) < BIC(𝑑0, 𝑖)} → 0 and thus pr(𝑑 < 𝑑0)→ 0.

Let us prove Eq.  (7). For 𝑑 < 𝑑0, denote 𝐻𝑖,𝑑 = 𝑋𝑖,𝑑 (𝑋𝑇
𝑖,𝑑𝑋𝑖,𝑑 )−1𝑋𝑇

𝑖,𝑑 , 𝑋𝑖,𝑑0 = (𝑆𝑖,𝑑 , 𝑋𝑖,𝑑 ) and 𝛽𝑖,𝑑0 = (𝑏𝑇𝑖 , 𝛽
𝑇
𝑖,𝑑 )

𝑇 , where 𝑋𝑖,𝑑 , 𝛽𝑖,𝑑 , 𝑆𝑖,𝑑
are defined as below

𝑦𝑖(𝑡) =
∑

𝑗∈ 𝑑0
𝑖

𝐴1(𝑖, 𝑗)𝑦𝑗 (𝑡 − 1) + 𝑒𝑖(𝑡),

𝑦𝑖 = 𝑋𝑖,𝑑𝛽𝑖,𝑑 + 𝑒𝑖,

Let {𝑦𝑗 (𝑡 − 1)}|𝑗∈ 𝑑
𝑖
 be a column vector,

then 𝑋𝑖,𝑑 =
{

{𝑦𝑗 (𝑛 − 1)}|𝑗∈ 𝑑
𝑖
, {𝑦𝑗 (𝑛 − 2)}|𝑗∈ 𝑑

𝑖
,… , {𝑦𝑗 (1)}|𝑗∈ 𝑑

𝑖

}𝑇
,

𝛽𝑖,𝑑 =
{

𝐴1(𝑖, 𝑗)
}

|

|

|𝑗∈ 𝑑
𝑖
,

𝑆𝑖,𝑑 =
{

{𝑦𝑗 (𝑛 − 1)}|
𝑗∈ 𝑑0

𝑖 ∖ 𝑑
𝑖
, {𝑦𝑗 (𝑛 − 2)}|

𝑗∈ 𝑑0
𝑖 ∖ 𝑑

𝑖
,… , {𝑦𝑗 (1)}|𝑗∈ 𝑑0

𝑖 ∖ 𝑑
𝑖

}𝑇
,

{𝑗 ∈  𝑑0
𝑖 ∖ 𝑑

𝑖 } = {𝑗 ∈  𝑑0
𝑖  and 𝑗 ∉  𝑑

𝑖 }.

Then RSS(𝑑, 𝑖) = 𝑦𝑇𝑖 (𝐼𝑛−1 −𝐻𝑖,𝑑 )𝑦𝑖, and by Lemma  1(ii) or Lemma  2(ii), we have
RSS(𝑑, 𝑖) − RSS(𝑑0, 𝑖) = 𝑏𝑇𝑖 𝑆

𝑇
𝑖,𝑑 (𝐼𝑛−1 −𝐻𝑖,𝑑 )𝑆𝑖,𝑑𝑏𝑖 + 𝑜𝑃 (1).

From Lemma  1(ii) or Lemma  2(ii) and Lemma  3, there exists a small constant 𝜂 > 0 such that, with probability tending to one,
𝜆𝑚𝑖𝑛{𝑆𝑇

𝑖,𝑑 (𝐼𝑛−1 −𝐻𝑖,𝑑 )𝑆𝑖,𝑑} > 𝜂(1 + 𝜂)𝑛𝜎2𝑖 ,

and RSS(𝑑0, 𝑖) ≤ (1 + 𝜂)𝑛𝜎2𝑖 . Therefore, Eq.  (7) follows.
Now let us prove the second case, pr(𝑑 > 𝑑0) → 0. For 𝑑 > 𝑑0, set

𝑋𝑖,𝑑 = (𝑆𝑖,𝑑 , 𝑋𝑖,𝑑0 ), 𝛽𝑖,𝑑 = (0𝑇 , 𝛽𝑇𝑖,𝑑0 )
𝑇 ,  and 𝑆̃𝑖,𝑑 = (𝐼𝑛−1 −𝐻𝑖,𝑑0𝑆𝑖,𝑑 ).

Let 𝜂 be an arbitrary but fixed positive constant and define

𝑛 =
{

inf
𝑑0≤𝑑≤𝑑𝑚𝑎𝑥

inf
1≤𝑖≤𝑝

RSS𝑖(𝑘)
𝑛𝜎2𝑖

> (1 − 𝜂)
}

,

𝑛 =
⋃

1≤𝑖≤𝑝, 𝑑0≤𝑑≤𝑑𝑚𝑎𝑥

{

𝜆−1min(𝑛
−1𝑆̃𝑇

𝑖,𝑑 𝑆̃𝑖,𝑑 ) < 𝜅−1
1 (1 + 𝜂), sup

1≤𝑗≤𝑑−𝑑0

|

|

|

(𝑛−1𝑆𝑇
𝑖,𝑑𝑆𝑖,𝑑 )𝑗𝑗

|

|

|

< 𝜅2(1 + 𝜂)
}

.

We first give an upper bound on RSS(𝑑0, 𝑖) − RSS(𝑑, 𝑖) for 𝑑 > 𝑑0. For each 𝑖, RSS(𝑑, 𝑖) can be rewritten as
RSS(𝑑, 𝑖) = inf

𝑏
‖𝑦𝑖 −𝑋𝑖,𝑑𝑏‖

2 = inf
𝑏1 ,𝑏2

‖𝑦𝑖 −𝑋𝑖,𝑑𝑏1 − 𝑆𝑖,𝑑𝑏2‖
2.

where 𝑏 is the estimator for 𝛽𝑖,𝑑 . It can be verified that RSS(𝑑0, 𝑖) = ‖(𝐼𝑛−1 −𝐻𝑖,𝑑0 )𝑦𝑖‖
2 and RSS(𝑑, 𝑖) = RSS(𝑑0, 𝑖) − ‖𝑆̃(𝑑)

𝑖 𝑏̂2‖2, where 
𝑏̂2 =

(

𝑆̃𝑇
𝑖,𝑑 𝑆̃𝑖,𝑑

)−1
𝑆̃𝑇
𝑖,𝑑𝑒𝑖, and 𝑒𝑖 is the residual for 𝑖th time series. Then on the event 𝑛 we have

RSS(𝑑0, 𝑖) − RSS(𝑑, 𝑖) = 𝑒𝑇𝑖 𝑆̃𝑖,𝑑 (𝑆̃𝑇
𝑖,𝑑 𝑆̃𝑖,𝑑 )−1𝑆̃𝑇

𝑖,𝑑𝑒𝑖

≤ 𝜅−1
1 (1 + 𝜂)|𝜏𝑑𝑖 − 𝜏𝑑0𝑖 | sup

𝑗,𝑑≤𝑝
|𝑛−1∕2𝑒𝑇𝑗 (𝐼𝑛−1 −𝐻𝑖,𝑑0 )𝑥(𝑑)|

2.

Define

𝑛 =
{

sup
𝑗,𝑑≤𝑝

|

|

|

𝑛−1∕2𝑒𝑇𝑗 (𝐼𝑛−1 −𝐻𝑖,𝑑0 )𝑥(𝑑)
|

|

|

2
𝜎−2𝑖 <

𝜅1(1 − 𝜂)
1 + 𝜂

𝐶𝑛log(𝑝 ∨ 𝑛)
}

.

On the set 𝑛 ∩ 𝑛 ∩𝑛, for all 𝑑 with 𝑑0 ≤ 𝑑 ≤ 𝑑𝑚𝑎𝑥,

RSS(𝑑0, 𝑖) − RSS(𝑑, 𝑖) < 𝜎2𝑖 (1 − 𝜂)|𝜏𝑑𝑖 − 𝜏𝑑0𝑖 |𝐶𝑛log(𝑝 ∨ 𝑛)

< RSS(𝑑, 𝑖)𝐶𝑛|𝜏
𝑑
𝑖 − 𝜏𝑑0𝑖 |𝑛−1log(𝑝 ∨ 𝑛).

Note that log(1 + 𝑥) ≤ 𝑥 for any 𝑥 > 0. Hence, for all 𝑑 with 𝑑0 ≤ 𝑑 ≤ 𝑑𝑚𝑎𝑥, on the set 𝑛 ∩ 𝑛 ∩𝑛,

BIC(𝑑, 𝑖) − BIC(𝑑0, 𝑖) = log RSS(𝑑, 𝑖) − log RSS(𝑑0, 𝑖) + 𝐶𝑛|𝑑
𝑚(𝑖) − 𝑑𝑚0 (𝑖)|𝑛

−1log(𝑝 ∨ 𝑛)

≥ −log
(

1 + 𝐶 |𝜏𝑑 − 𝜏𝑑0 |𝑛−1log(𝑝 ∨ 𝑛)
)

𝑛 𝑖 𝑖
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+ 𝐶𝑛|𝜏
𝑑
𝑖 − 𝜏𝑑0𝑖 |𝑛−1log(𝑝 ∨ 𝑛)

which indicates that over the set 𝑛 ∩ 𝑛 ∩ 𝑛, we have that 𝑑 ≤ 𝑑0. To prove that pr(𝑑 > 𝑑0) → 0, it is sufficient to show that 
pr
{

(𝑛 ∩𝑛 ∩𝑛)𝑐
}

→ 0. In fact, it follows from Lemmas  1 and 3 or Lemma  2(i), that pr(𝑐
𝑛) → 0 and pr(𝑐

𝑛 ) → 0. It remains to show 
that pr(𝑐

𝑛) → 0. Let 𝛴̂𝑖,𝑑 = 𝑛−1𝑋𝑇
𝑖,𝑑𝑋𝑖,𝑑 , 𝛴𝑖,𝑑 = 𝑛−1𝐸

(

𝑋𝑇
𝑖,𝑑𝑋𝑖,𝑑

)

, where 𝐸(𝑋) denotes the expectation of 𝑋. Set 𝐻̃𝑖,𝑑 = 𝑛−1𝑋𝑖,𝑑𝛴−1
𝑖,𝑑𝑋

𝑇
𝑖,𝑑 , 

and 𝑥̃(𝑑) = (𝐼𝑛−1 − 𝐻̃𝑖,𝑑 )𝑥(𝑑). On the event 𝑛, we obtain that
sup
𝑗,𝑑≤𝑝

|𝑒𝑇𝑗 (𝐼𝑛−1 −𝐻𝑖,𝑑0 )𝑥(𝑑)| ≤ sup
𝑗,𝑑≤𝑝

|𝑒𝑇𝑗 𝑥̃(𝑑)| + sup
𝑗,𝑑≤𝑝

|𝑒𝑇𝑗 (𝐼𝑛−1 − 𝐻̃𝑖,𝑑0 )𝑥(𝑑)|

≤ sup
𝑗,𝑑≤𝑝

|𝑒𝑇𝑗 𝑥̃(𝑑)|

+ sup
𝑗,𝑑≤𝑝

‖𝑒𝑇𝑗 𝑋𝑖,𝑑0‖2 ‖𝛴−1
𝑖,𝑑0

‖2 ‖𝛴̂−1
𝑖,𝑑0

‖2 ‖𝛴̂𝑖,𝑑0 − 𝛴𝑖,𝑑0‖2 ‖𝑋𝑇
𝑖,𝑑0

𝑥(𝑑)‖2

≤ sup
𝑗,𝑑≤𝑝

|𝑒𝑇𝑗 𝑥̃(𝑑)| + 𝑑0𝜅
−2
1 𝜅2(1 + 𝜂)2 sup

𝑗,𝑑≤𝑝

|

|

|

𝑒𝑇𝑗 𝑥(𝑑)
|

|

|

⋅ ‖𝛴̂𝑖,𝑑0 − 𝛴𝑖,𝑑0‖2,

where sup1≤𝑑≤𝑝(𝑛−1𝑥(𝑑)𝑥𝑇(𝑑)) ≤ 𝜅2(1 + 𝜂) is used in the above inequality. Hence, it follows from Lemmas  1 and 2, together with 
Condition 3, that pr(𝑐

𝑛) → 0 as 𝑛 → ∞. Then pr(𝑑 > 𝑑0) → 0. □

A.2. Proof of Theorem  2

Without loss of generality, we consider the case of order 1, i.e. NVAR(1) only. It is shown in Theorem  1 that pr(𝑑 = 𝑑0) → 1 as 
𝑛 → ∞. Thus it is sufficient to consider the set 𝑛 = {𝑑 = 𝑑0}. Over the set 𝑛, for each 𝑖, 

𝛽𝑖 − 𝛽𝑖 = (𝑋𝑇
𝑖 𝑋𝑖)−1𝑥𝑇𝑖 𝑒𝑖 (8)

For each 𝑖, the law of large numbers for the stationary process case yields that 𝑛−1𝑋𝑇
𝑖 𝑋𝑖 converges to a positive matrix almost surely, 

and furthermore, with probability tending to one, 𝜆𝑚𝑖𝑛(𝑛−1𝑋𝑇
𝑖 𝑋𝑖) is bounded away from zero. As a matter of fact, if we define

𝑛 =
⋂

1≤𝑖≤𝑝

{

𝜆𝑚𝑖𝑛(𝑛−1𝑋𝑇
𝑖 𝑋𝑖) > 𝜅1(1 − 𝜂)

}

with a small constant 𝜂 ∈ (0, 1), then it follows from by Lemmas  1 and 2 under different moment conditions that 𝑃 {𝑛} → 1 as 
𝑛 → ∞. Hence, over the event 𝑛 ∪ 𝑛,

|

|

|

|

|

|

𝛽𝑖 − 𝛽𝑖
|

|

|

|

|

|

2

2
≤ 𝜅−2

1 (1 − 𝜂)−2𝑛−2‖𝑒𝑇𝑖 𝑋𝑖‖
2
2,

= 𝐶1𝑛
−2
‖𝑒𝑇𝑖 𝑋𝑖‖

2
2,

where 𝐶1 = 𝜅−2
1 (1 − 𝜂)−2 > 0. It is not hard to see from Lemma  1(ii) or Lemma  2(ii) that, for all 1 ≤ 𝑖 ≤ 𝑝, 𝑛−1𝐸‖𝑋𝑇

𝑖 𝑒𝑖‖
2
2 ≤ 𝐶2 with 

some constant 𝐶2 > 0. Therefore, for a large positive constant 𝐶, we obtain that

pr
(

‖

‖

‖

‖

𝐴̂1 − 𝐴1
‖

‖

‖

‖

2

𝐹
> 𝐶𝑛−1𝑝

)

= pr
(

‖

‖

‖

‖

𝐴̂1 − 𝐴1
‖

‖

‖

‖

2

𝐹
> 𝐶𝑛−1𝑝,𝑛 ∪ 𝑛

)

+ pr
(

‖

‖

‖

‖

𝐴̂1 − 𝐴1
‖

‖

‖

‖

2

𝐹
> 𝐶𝑛−1𝑝, (𝑛 ∪ 𝑛)𝑐

)

≤ (𝐶𝑝)−1𝑛(𝐶1𝑛
−2)𝐸

( 𝑝
∑

𝑖=1
‖𝑋𝑇

𝑖 𝑒𝑖‖
2
2

)

+ pr
(

‖

‖

‖

‖

𝐴̂1 − 𝐴1
‖

‖

‖

‖

2

𝐹
> 𝐶𝑛−1𝑝, (𝑛 ∪ 𝑛)𝑐

)

≤ 𝐶1𝐶2𝐶
−1 + 𝑜(1)

For a sufficiently large C, we have pr(‖𝐴̂1 − 𝐴1‖
2
𝐹 > 𝐶𝑛−1𝑝

)

→ 0. Thus the convergence rate of ‖𝐴̂1 − 𝐴1‖𝐹  is established.
Now Let us derive the convergence rate of ‖𝐴̂1 − 𝐴1‖2. For any matrix 𝐵, ‖𝐵‖22 ≤ ‖𝐵‖1‖𝐵‖∞. Hence, on the event 𝑛,

‖𝐴̂1 − 𝐴1‖2 ≤
√

‖𝐴̂1 − 𝐴1‖1

√

‖𝐴̂1 − 𝐴1‖∞

≤ 𝜏𝑑0𝑖 sup
𝑖,𝑗≤𝑝

|𝛽𝑖𝑗 − 𝛽𝑖𝑗 |,

where 𝛽𝑖𝑗 and 𝛽𝑖𝑗 are the 𝑗th element of 𝛽𝑖 and 𝛽𝑖, respectively. Observe from (3) that

sup
𝑖,𝑗≤𝑝

|𝛽𝑖𝑗 − 𝛽𝑖𝑗 | = 𝜅−1
1 (1 − 𝜂)−1𝜏𝑑0𝑖 𝑛−1

(

sup
𝑖,𝑗≤𝑝

|𝑒𝑇𝑖 𝑥(𝑗)|
)

, 𝑖 = 1,… , 𝑝.

Hence, using Lemma  1(ii) or Lemma  2(ii), we have
sup |𝛽𝑖𝑗 − 𝛽𝑖𝑗 | = 𝑂𝑃

{

(

𝑛−1log𝑝
)1∕2

}

,

𝑖,𝑗≤𝑝
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which shows that
‖𝐴̂1 − 𝐴1‖2 = 𝑂𝑃

{

(

𝑛−1log𝑝
)1∕2

}

.

Then the proof is done. □

Appendix B. Technical lemmas

The proof of Lemmas  1–3 can be found in Guo. et al. (2016), which are corresponding to Lemma 5 to 7. In addition, the regularity 
conditions should be replaced with our regularity conditions, and the lemmas still hold.

Lemma 1.  Suppose that Conditions (1)-(3) and 4(i) hold. (i) For 𝑗, 𝑑 = 1,… , 𝑝, there exist positive constants 𝐶1, 𝐶2, and 𝐶3 free of 
(𝑗, 𝑑, 𝑛, 𝑝) such that

pr
(

|

|

|

|

𝛴̂𝑗𝑑 − 𝛴𝑗𝑑
|

|

|

|

> 𝑥
)

≤
𝐶1𝑛
(𝑛𝑥)𝑞

+ 𝐶2exp(−𝐶3𝑛𝑥
2)

holds for 𝑥 > 0; consequently, this leads to the following uniform convergence rate:

sup
1≤𝑗,𝑑≤𝑝

|

|

|

|

𝛴̂𝑗𝑑 − 𝛴𝑗𝑑 |
|

|

|

|

= 𝑂𝑃

{

(𝑛−1log𝑝)1∕2
}

.

(ii) For 𝑗, 𝑑 = 1,… , 𝑝, there exist positive constants 𝐶1, 𝐶2, and 𝐶3 free of (𝑗, 𝑑, 𝑛, 𝑝) such that

pr
(

|

|

|

|

𝑒𝑇𝑗 𝑥(𝑘)
|

|

|

|

> 𝑥
)

≤
𝐶1𝑛
𝑥2𝑞

+ 𝐶2exp(−𝐶3𝑥
2)

holds for 𝑥 > 0; in particular, we have:

sup
1≤𝑗,𝑑≤𝑝

|

|

|

|

𝑒𝑇𝑗 𝑥(𝑘)
|

|

|

|

= 𝑂𝑃

{

(𝑛log𝑝)1∕2
}

.

Lemma 2.  Suppose that Conditions (1)-(3) and 4(ii) hold. (i)

sup
1≤𝑗,𝑑≤𝑝

|

|

|

|

𝛴̂𝑗𝑑 − 𝛴𝑗𝑑 |
|

|

|

|

= 𝑂𝑃

{

(𝑛−1log𝑝)1∕2
}

.

(ii)

sup
1≤𝑗,𝑑≤𝑝

|

|

|

|

𝑒𝑇𝑗 𝑥(𝑘)
|

|

|

|

= 𝑂𝑃

{

(𝑛log𝑝)1∕2
}

.

Lemma 3.  Suppose that Conditions (1)-(3) and 4(i) or 4(ii) hold. Then for each finite 𝑑 with 𝑑 ≥ 𝑑0,

sup
1≤𝑖≤𝑝

|

|

|

|

RSS(𝑑, 𝑖)
𝑛𝜎2𝑖

− 1
|

|

|

|

= 𝑂𝑃

{

(𝑛−1log𝑝)1∕2
}

.

as 𝑛 → ∞, where RSS(𝑑, 𝑖) is defined in the main article and 𝜎2𝑖  is the (𝑖, 𝑖)-th element of 𝛴𝑒.
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