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An uncertainty quantification framework for agent-based modeling and 
simulation in networked anagram games
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aDepartment of Statistics, Virginia Tech, Blacksburg, VA, USA; bAdvanced Research Computing, Virginia Tech, Blacksburg, VA, USA

ABSTRACT
In a networked anagram game, players are provided letters with possible actions of 
requesting letters from their neighbours, replying to letter requests, or forming words. 
The objective is to form as many words as possible as a team. The experimental data 
show that behaviours among players can vary significantly. However, simulations using 
agent-based models (ABM) in the literature often have not incorporated proper uncertainty 
quantification methods to characterise diverse behaviours of players. In this work, we 
propose an uncertainty quantification framework to build, exercise, and evaluate agent 
behaviour models and simulations for networked group anagram games. Specifically, 
using the data of game experiments, the proposed framework considers the clustering of 
game players based on their performance to reflect players’ heterogeneity. Moreover, we 
also quantify uncertainty within each cluster through statistical modelling and inference. 
Numerical studies of networked game configurations are conducted to demonstrate the 
merits of the proposed framework.
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1. Introduction

1.1. Background and motivation

Anagram games are word formation games and have 
been employed in a wide range of research. For exam-
ple, they are used to study individual mental capabil-
ities, and coordination and cooperation within groups. 
This is because anagram games are considered to be 
non-trivial mental tasks (e.g., Cadsby et al. (2007)). 
The anagram games have a unique combination of 
features that make them attractive: simple and unam-
biguous directions, minimal space and equipment 
requirements to play the game, variable and control-
lable complexity of task (e.g., requiring greater rear-
rangement of letters, requiring words with greater 
numbers of letters, giving lesser time to form words), 
and straight-forward ways to quantify performance so 
that success is clearly defined. See Appendix A for 
descriptions of several works.

Anagram games can be divided into two classes, 
based on their goal: ðiÞ rearranging scrambled letters 
to form a unique word, or ðiiÞ identifying as many 
words as possible from a collection of letters. In 
a previous work (Cedeno-Mieles et al., 2020), online 
networked group anagram games (GrAGs) or experi-
ments were conducted, where players share alphabetic 
letters to form words. Using experimental data from 
human subjects, an agent-based model (ABM) was 
developed to enable simulation of games for condi-
tions beyond those tested (Ren et al., 2018). The 

experiments and model are described below as back-
ground. Here, we use the following terms to denote 
GrAG game players because they are also agents in 
ABMs and nodes or vertices in the game network: 
node, vertex, agent, and player.

Figure 1 depicts four consecutive time steps in 
a hypothetical GrAG with a simpler network config-
uration to aid the description. Communication chan-
nels are in purple, and on these channels a player may 
request letters and reply to letter requests. Overall, 
a player may take any of four actions, any number of 
times, and in any order during a 5 minute game: ðiÞ
request a letter from a neighbour (request sent), ðiiÞ
reply to a request with the letter (reply sent), ðiiiÞ form 
a word (form word), and ðivÞ think or idle (i.e., a no- 
op condition).

In our online experiments, human players are 
recruited using Amazon Mechanical Turk (AMT) 
and these people play the GrAG remotely using 
a customised software game platform (Cedeno- 
Mieles et al., 2020) that they access through their 
web browsers. Each player is initially given three let-
ters (shown in brown, in the black boxes). During the 
game, players can request letters from their neigh-
bours, and neighbours can choose to reply with the 
requested letters or not. For example, v1 requests a e 
from v2 at time t, and v2 sends a reply with the e at 
time ðt þ 1Þ so that e gets added to v1’s letter set, with 
which it forms words. Received letters are shown in 
black. If a player shares a letter with the requestor, 
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then both the requestor and the player replying have 
a copy of the letter. A person never loses a letter, even 
when they share it with others. This is to encourage 
sharing letters and forming more words. Also, 
a person may use a letter in any number of words, 
and any number of times within a single word. For 
example, v1 uses s and e in forming sea at time ðt þ 2Þ
and seem at ðt þ 3Þ, thus using the single e once in the 
first word and twice in the latter word. Games are 
played for 300 seconds (5 minutes). Each player typi-
cally forms between 10 and 40 words.

In GrAGs, it is seen that behaviours can vary sig-
nificantly among players. The mean model (Ren et al.,  
2018) does not capture this heterogeneity. A baseline 
ABM that only captures mean behaviour is proble-
matic because it implies that all agent behaviours will, 
over time in one simulation, tend to the same mean 
behaviour, and all agent behaviours over many simu-
lation instances will also tend to the same mean beha-
viour. Producing models that contain greater ranges of 
player performance more faithfully represents the 
ranges in behaviours observed in the games (Cedeno- 
Mieles et al., 2020). This underscores the need for 
methods to quantify the uncertainty in players’ 
behaviours.

Moreover, there are limitations to the amount of 
experimental data that can be collected. It is well- 
known that AMT does not provide an unlimited pool 
of candidate players. Additionally, some candidates do 
not show up for experiments (Mason & Suri, 2018). We 
also constrained our experiments so that a person could 
only play the GrAG one time, to obviate learning from 
past experience. Consequently, we encountered limita-
tions in the size of our candidate pool, resulting in fewer 
completed games than we desired. This produced two 
problems to overcome in building ABMs of game 
player behaviour: data sparsity and variability.

These challenges motivate the development of 
a general uncertainty quantification (UQ) framework 
for building ABMs of human behaviour in the net-
worked anagram game. Our primary objective is not 
necessarily to generate human-like actions or beha-
viours, but rather to accurately quantify the uncer-
tainty inherent in players’ behaviour based on 
experimental data. This uncertainty is then integrated 

into agent-based simulations (ABS) to create more 
faithful representations of the diversity of players in 
the real-world game. The proposed UQ framework is 
designed to study human behaviour in various scenar-
ios that might be expensive or practically impossible to 
conduct in real-world experiments. The original 
experiments, conducted with remote participants 
recruited via AMT, were limited in scope and settings. 
However, our proposed framework has the potential 
to simulate GrAGs with a large number of players and 
explore a variety of scenarios, including different net-
work structures and varying numbers of players’ 
neighbours. This not only allows for the quantification 
of heterogeneous behaviours among players but also 
provides a more comprehensive understanding of 
individual player behaviours. The insights gained 
from these simulations can then be used to guide 
further experiments and studies. (We use “simulation” 
for computations of a simulation, in computing player 
actions during a GrAG; we use “modeling” for the 
process of constructing models used in simulation.) 
We believe that our uncertainty quantification meth-
odology for ABM is also applicable to other types of 
experiments that involve human behaviour, such as 
Mason and Watts (2012).

1.2. Novelty and contributions

The proposed framework is to design, implement, and 
execute a general UQ approach for building ABMs of 
human behaviour from networked GrAG game data, 
such that different agents can have heterogeneous 
behaviours. Based on our best knowledge, it is the 
first UQ framework for modelling and analysis of 
networked GrAGs. The key novelty is systematically 
modelling and simulating the networked anagram 
game with the considerations of data uncertainty and 
player’s uncertainty. Rigorous hypotheses are con-
ducted to investigate the homogeneity of players with 
different numbers of neighbours in the networked 
GrAGs. Furthermore, clustering analysis is performed 
to refine the quantification of heterogeneous beha-
viours among players. The cluster results provide 
a foundation to model player performance based on 
the experimental data for players within each cluster, 

Figure 1. Illustrative play in a group anagram game (GrAG) among three players vi , 1 � i � 3, each with three initial letters in 
brown, within a black box. Received letters from neighbours are in black. In the model of these games, a player executes one 
action per time step where a time step is one second. The game is described in the text.
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such that the variability of players’ abilities to play 
GrAGs can be better quantified. By using the prob-
abilistic uncertainty of estimated transition probabil-
ities of actions via the asymptotic distribution of the 
estimated parameters, we can further accommodate 
data uncertainty into the proposed framework. 
Incorporating the UQ scheme described above, we 
thus build ABMs for simulating networked GrAG 
games where each agent can be endowed with differ-
ent transition probabilities of actions to better reflect 
the UQ of human behaviours.

Figure 2 illustrates two new models, the CWM 
model and the CWUQ model, in comparison with 
the baseline model (Ren et al., 2018). For the baseline 
model, players with the same degree will exhibit the 
same behaviour. In contrast, after grouping players by 
degree (d � 2 and d � 3), the cluster-wise mean 
(CWM) model considers player behaviours to be dif-
ferent within each group. Then for each group, players 
are partitioned into four clusters, c ¼ 1 through 4, 
based on their performance. Thus, the CWM model 
considers four different levels of player behaviours for 
each degree range. Hence, while the degree d is solely 
based on network structure, the cluster is specified as 
an external input that governs players’ performance. 
The cluster-wise uncertainty quantification (CWUQ) 
model is an extension of the CWM model to account 
for game data variability within each cluster (indicated 
by the error bars around each blue data point). These 
models are formally described and evaluated in 
Sections 3 and 4. The models are then used to build 
ABMs and conduct simulations of the anagram game 
for different numbers of game players and connectiv-
ity among them, and different agent performances.

The contributions of the proposed UQ framework 
are as follows. First, a key contribution is to system-
atically quantify the uncertainty of the game data 

through the CWM and CWUQ models. Combining 
hypothesis testing, statistical analysis, and clustering, 
player behaviours from games are partitioned by skill 
level in terms of ðaÞ numbers of interactions with 
neighbours and ðbÞ numbers of words formed. This 
immediately provides a way to specify agent models in 
terms of player performance: through the computed 
clusters. It also provides meaningful distinctions 
between poor- and good-performing agents. For mod-
elling the GrAG, a per-player logit-model is con-
structed to determine a player’s next action at time 
ðt þ 1Þ based on the player’s most recent action at 
time t and on a vector of parameters that describe 
the history of the player’s actions and interactions 
with other players. Moreover, the extension of the 
CWM model to the CWUQ model enables the quan-
tification of uncertainty within a cluster by accounting 
for variability of behaviour within it. This is achieved 
by sampling from distributions of model parameter 
values in the logit-model at each time during 
a simulation. Thus, this model incorporates two levels 
of uncertainty: that from clustering, and uncertainty in 
model parameters.

The second contribution is incorporating the UQ 
into ABM simulation of the networked GrAGs. An 
agent-based modelling and simulation (ABMS) soft-
ware platform was constructed that executes both of 
the agent CWM and CWUQ models for arbitrary 
game configurations and for user-specified assign-
ment of players to clusters (which dictates their per-
formance). An in-depth evaluation of the CWM and 
CWUQ models, as seen in Section 4, can greatly 
enhance the interpretation of ABM results. Thus, the 
proposed framework achieves a good balance among 
model explainability, model flexibility, and model 
complexity, e.g. (Baker, 2016; Pearl & Mackenzie,  
2018). An ABM of human behaviour is expected to 

Figure 2. Illustrations in contrasting different ABMs constructed from GrAGs. (LEFT) The ABM of Ren et al. (2018) where 
a behaviour model is specified for an agent based on a player’s (node’s) degree in the networked anagram game, with values 
2, 4, 6, and 8. (CENTER) The first of two new models is called the cluster-wise mean model, CWM. A behaviour model for an agent is 
specified by the pair ½g; c�, where g ¼ 1 if the agent has degree d � 2 in the network and g ¼ 2 if d � 3, and where c is the cluster 
number 1, 2, 3, or 4. Clusters represent different levels of performance of agents in the game. (RIGHT) The second of two new 
models is called the cluster-wise uncertainty quantification model, CWUQ. This model is similar to CWM, but now within each 
cluster, the uncertainty of behaviour is quantified. It is through the last two models that heterogeneous agent behaviours are 
realized in simulations.
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satisfy one or more criteria such as: (1) explainability 
of human behaviour, (2) sufficient model complexity 
of human behaviour, (3) a favourable framework for 
UQ with consideration of computational cost, and (4) 
other considerations based on specific problems. We 
demonstrate outcomes that illustrate some of these 
criteria with the next contribution below.

Our third contribution is the insightful evaluation of 
the models in the context of ABM for human group 
behaviour. There are the following insights: ðiÞ
Variability in model predictions of numbers of words 
formed are dependent on clusters. Representative simu-
lation results indicate that the number of words formed 
by one player in a game can vary by factors of 5 to 10. 
These ranges are consistent with the variability in the 
game data. ðiiÞ Variability in interactions between 
players is much less than that for numbers of words 
formed because bounds on the number of interactions 
of a player are dictated by a player’s degree in the 
network and the number of letters that a player has. 
ðiiiÞ For each of the CWM and CWUQ models, varia-
bility across agents endowed with the same cluster 
behaviour generally is less than the variability within 
a single player and is less than the variability across 
clusters. The latter point is particularly true when com-
paring the behaviour of cluster 4, which has the greatest 
performance compared to the other three clusters. ðivÞ
We find that the CWUQ model generates at least as 
much variability in results as does the CWM model. In 
many cases, the variability for the two models is com-
parable. These differences are smaller than the differ-
ences produced by changes in behavioural clusters.

1.3. Paper organization

This paper is an extension of preliminary work in Hu 
et al. (2021). In that work, simulations were conducted 
using the CWUQ model and a 5-node star-4 network. 

In this work, we run simulations using both models on 
the star-4 network and an 18-node graph of four 
connected cliques. The 18-node graph is designed to 
address variability of behaviours across agents and 
across subgraphs of different sizes, significantly 
extending the conditions evaluated with the star-4 
graph. We compare the models and simulation pre-
dictions from them on the two networks.

The remainder of the paper is organised as follows, 
using Figure 3. We first present the formalism for the 
baseline model in Section 2, which provides a point of 
departure for our new work, and makes the document 
self-contained. Then we present the two new models in 
Section 3, which includes the clustering method for 
players and quantifying uncertainty for model para-
meters. The simulation system is also defined. Model 
evaluation is in Section 4. In Section 5, we provide 
simulation studies using both models on two networks. 
A discussion concludes the work in Section 6. Related 
work comprises Appendix A. Appendix B contains 
results for a 5-player star game configuration; these 
results supplement those in Section 5. Appendix 
C shows the hypothesis testing results to demonstrate 
the variability of CWM and CWUQ models.

2. Experimentation and baseline model

The anagram game played by a group is described in 
Section 1.1 and shown in Figure 1. At any time during 
a game, a player executes one of the actions from the 
action set A provided in Table 1. In the online experi-
ments, most players spend the majority of their time 
taking no action (i.e., not requesting a letter, not 
replying to a letter request, and not forming a word). 
Hence, in models, we refer to this time as occupied in 
thinking, or otherwise idle. Over all 243 experiments, 
it is exceedingly rare for a player to take two or more 
actions within one second of time; therefore, in our 

Figure 3. Technical sections of this manuscript, with arrows showing dependencies between them. Section numbers are given for 
topics. Section 2 is previous work and is provided as a point of departure for the current work, and to make this manuscript self- 
contained. Sections 3 through 5 contain our new work and contributions.
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models and simulations, we advance time in one- 
second intervals over the 300-second game, with 
each player selecting one action at each second of 
a simulation.

The network configuration for each experiment 
was a random regular graph, meaning that each 
player in one game had the same number d of 
neighbours. Edges between pairs of players were 
placed randomly to meet this goal. A network 
was fixed during an experiment. Experiments 
were run with d ¼ 2, 4, 6, and 8. Each player in 
each game was assigned three initial letters. 
Additional game details are in Ren et al. (2018). 
Note that players evenly split the total earnings 
from a game, where the earnings are proportional 
to the total number of words formed by the team. 
Thus, our networked anagram game is 
a cooperative game (Deutsch, 1949).

Using game data from experiments, Ren et al. 
(2018) constructed a multinomial logistic regres-
sion model to predict a player’s action at time 
ðt þ 1Þ based on the player’s action at time t and 
the values of four temporal variables provided in 
Table 2. Let z ¼ ð1;ZBðtÞ;ZLðtÞ;ZWðtÞ;ZCðtÞÞT5�1. 
Note that ZCðtÞ is used to ensure agents do not 
stagnate in thinking; this parameter forces agents 
to have a finite deliberation period before acting. 
Then the multinomial logistic regression to model 
πij—the probability of a player taking action aj at 
time (t þ 1), given that the player took action ai at 
time t—can be expressed as

πij ¼
expðzTβðiÞj Þ

P4
l¼1 expðzTβðiÞl Þ

; i; j ¼ 1; 2; 3; 4; (1) 

where βðiÞj ¼ ðβ
ðiÞ
j;1; . . . ; βðiÞj;5Þ

T
5�1. For a given i (the index 

i on action ai), the parameter set is 

BðiÞ ¼

βðiÞT1

βðiÞT2

..

.

βðiÞT4

0

B
B
B
B
@

1

C
C
C
C
A
¼

βðiÞ1;1 βðiÞ1;2 . . . βðiÞ1;5

βðiÞ2;1 βðiÞ2;2 . . . βðiÞ2;5

..

. ..
. . .

. ..
.

βðiÞ4;1 βðiÞ4;2 . . . βðiÞ4;5

0

B
B
B
B
@

1

C
C
C
C
A
: (2) 

Game players in the GrAG data are grouped by their 
degrees d in the network G. To estimate the parameter 
sets BðiÞ, Ren et al. (2018) used maximum likelihood 
estimation across the experimental observations for 
each d ¼ 2, 4, 6, and 8. Suppose that there are n observa-
tional data having the same “most recent” action ai and 
number of neighbours d, denote as DðiÞd , then the next 
action for observation l, namely yl, has a multinomial 
distribution with corresponding probability πli1, πli2, πli3, 
and πli4 (πlij is the πij in Equation (1) for observation l). 
The probability of observing outcome yl is 

f ð yljBðiÞ; zÞ ¼ πyl1
li1 � πyl2

li2 � πyl3
li3 � πyl4

li4;

where ylj indicates whether the next action of observa-
tion l is aj or not. ylj ¼ 1 if yl ¼ j, otherwise, it equals 0. 
Then, they conduct parameter estimation by finding 
the BðiÞ that maximises the log-likelihood function 

B
^
ðiÞ ¼ arg max

BðiÞ
log LðBðiÞjDðiÞd Þ ¼ arg max

BðiÞ
log
Qn

l
f ð yljBðiÞÞ

(3) 

using the Broyden – Fletcher – Goldfarb – Shanno 
(BFGS) algorithm of the quasi-Newton optimisation 
method (Broyden, 1967).

Based on the estimation from the multinominal 
logistic model, Cedeno-Mieles et al. (2020); Ren et al. 
(2018) presented an ABM of the GrAG, where the 
game is modelled as a discrete-time process. At each 
time step, a player executes one of the actions from the 
action set. They considered the set V of players and the 
set E of their communication channels (edges) as an 
undirected graph G V;Eð Þ. Here all agents with the 
same number of neighbours d in the network G are 
assigned the same coefficient matrix. Thus, these agents 
will have the same behaviour in expectation. However, 
we would like agents to exhibit heterogeneous 
behaviour. Consequently, we devise a method to pro-
duce variability in actions among agents with the same 
degree d. This is the subject of the next section.

3. The proposed uncertainty quantification 
framework

In this section, we detail the proposed UQ framework. 
Section 3.1 focuses on clustering for players based on 

Table 1. The four actions of players in the GrAG and model. The set a of actions is A ¼ fa1; a2; a3; a4g.
Item Action Name Description Item Action Name Description

1 a1 idling Thinking (a no-op). 3 a3 request Requesting a letter from a neighbour.
2 a2 reply Replying to a neighbour with a requested letter. 4 a4 word Forming and submitting a word.

Table 2. The four temporal variables of players vk 2 V in the 
GrAG and model. The temporal vector is 
z ¼ ð1; ZBðtÞ; ZLðtÞ; ZWðtÞ; ZCðtÞÞ

T
5�1.

Item Variable Description

1 ZBðtÞ Size of the buffer of letter requests that vk has yet to 
reply to at time t.

2 ZLðtÞ Number of letters that player vk has available to use 
at t to form words.

3 ZWðtÞ Number of valid words that vk has formed up to t.
4 ZCðtÞ Number of consecutive time steps that vk has taken 

the same action.
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their activity in a game, such that one can better 
quantify their heterogeneity. Section 3.2 describes the 
UQ for model parameters estimated by the multino-
mial logistic model for each cluster. Section 3.3 details 
the ABM simulation using the obtained UQ for 
GrAGs.

3.1. Clustering methods for players

To quantify the uncertainty of player behaviours, a key 
goal is to partition players based on their activity. The 
number of letters a player requests, the number of letter 
requests a player replies to, and the number of words 
a player forms in a game are used to quantify a player’s 
activity. We define two variables, engagements and 
words. Engagements is the sum of the number of 
requests and number of replies of a player, and words 
is the number of words a player forms in a game. The 
engagements and words are used to partition players.

In experiments, the number of neighbours that 
a player had was either d ¼ 2, 4, 6, or 8. All players 
had the same number of neighbours in one game so that 
they could gather multiple sets of data on players with 
the same d. We want to study whether players should be 
partitioned based on their number of neighbours since 
a player with more neighbours can request more letters 
and reply to more letter requests. Figure 4 shows the 
numbers of engagements and words for players with 
different numbers of neighbours. It is shown that 
engagements increase with the number of neighbours, 
but become saturated when the number of neighbours is 
greater than four. The numbers of words are nearly the 
same for different numbers of neighbours. In summary, 
game data for players with d ¼ 4, 6, and 8 neighbours 
are observed to be similar, and these data are different 
from those of players with d ¼ 2 neighbours.

To determine whether we can divide players into 
separate groups, we conduct hypothesis testing of two- 
sample t-tests on engagements and words: 

Hr;s;eng
0 : μeng

r ¼ μeng
s vs: Hr;s;eng

1 : μeng
r � μeng

s ;

Hr;s;word
0 : μword

r ¼ μword
s vs: Hr;s;word

1 : μword
r � μword

s ;

r; s ¼ 2; 4; 6; 8; and r< s;

where μeng
d and μword

d for d ¼ 2; 4; 6; 8 are the mean 
engagements and words for players with d neigh-
bours, respectively. We also denote μeng

468 and μword
468 

as the mean numbers of engagements and words for 
players with either 4, 6, or 8 neighbours, respec-
tively, and perform hypothesis testing on players 
with 2 neighbours and players with 4, 6, or 8 
neighbours: 

Heng
0 : μeng

2 ¼ μeng
468 vs: Heng

1 : μeng
2 � μeng

468;

Hword
0 : μword

2 ¼ μword
468 vs: Hword

1 : μword
2 � μword

468 :

After partitioning players into two groups based on 
their number of neighbours, we use the k-means clus-
tering method (Hartigan & Wong, 1979) in each 
group to quantify the variability in players’ abilities. 
Before clustering players, the engagement and words 
are standardised first, so no variable would dominate 
the clustering. To determine the number of clusters in 
the k-means clustering, we use the Bayesian 
Information Criterion (BIC) as our criterion (Li 
et al., 2016). Based on the BIC and the size of data, 
we select four clusters, which gives the smallest BIC 
values. After clustering players in each group, we 
denote the formed clusters as DðiÞ

½g;c�, i ¼ 1; 2; 3; 4 for 
data with initial action ai, where g ¼ 1; 2 is the group 
number and c ¼ 1; 2; 3; 4 is the cluster number.

3.2. Quantifying uncertainty for model 
parameters

In the mean multinomial logistic regression model 
(Cedeno-Mieles et al., 2020) of Section 2, the next 

Figure 4. Boxplots of engagements and words; data come from experiments. The left plot shows engagements of each player in 
games with d ¼ 2, 4, 6, 8 neighbours. The right plot shows number of words of each player in games with 2, 4, 6, and 8 
neighbours.
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player action depends on the parameter matrix BðiÞ
and input vector z by mapping them to a probability 
vector πi ¼ ðπi1; πi2; πi3; πi4Þ

T through Equation (1). 

The uncertainty in the estimated B̂ðiÞ matrix results in 
different probabilities πij, therefore, leading to diver-
sity in outcome actions. To quantify these uncertain-
ties, we use two approaches, the CWM and CWUQ 
approaches from Figure 2, which are described next.

3.2.1. Method 1: Within-cluster mean CWM 
approach
We apply the multinomial logistic regression to each 
cluster, and parameter matrices BðiÞ

½g;c� are estimated for 
each cluster in each group. In this approach, uncer-
tainty quantification depends on clustering players, 
and the BðiÞ

½g;c� matrix will be the same for all players 
in the same cluster. Thus, they will have the same 
probability vectors given the same set of z vector 
values. We compare this approach with the approach 
below, which quantifies the uncertainty of model 
parameters.

3.2.2. Method 2: Within-cluster uncertainty 
quantification (UQ) CWUQ approach
In order to study the heterogeneous behaviour of 
players in the same cluster, we utilise the asymptotic 
normality property of MLE to quantify the uncertainty 
for parameter matrix BðiÞ

½g;c�. In this way, different BðiÞ
½g;c�

matrices can be sampled from the asymptotic normal 
distribution, representing different behaviours of 
players. Without loss of generality, we omit the sub-
script ½g; c� in parameter matrix BðiÞ

½g;c� and transform it 
to the parameter vector 
β ¼ βðiÞ ¼ ðβðiÞT2 ; βðiÞT3 ; βðiÞT4 Þ

T
15�1 (Action idling a1 is 

treated as a reference group so βðiÞ1 will not show up 

in the parameter vector, leaving the other three 5� 1 
vectors βðiÞ2 , βðiÞ3 , and βðiÞ4 in β). Then we use the 
asymptotic property of MLE (Sweeting, 1980). That 
is, as sample size increases, the maximum likelihood 
estimator β̂mle of parameter β approximates 
a multivariate normal random variable 

β̂mle � !
d MNðβ;� ¼ IðβÞ� 1

=nÞ; (4) 

where Ið�Þ is the Fisher information matrix (Fisher,  
1922) and n is number of observations in DðiÞ

½g;c�. We 

can estimate β with the MLE β̂mle and covariance 
matrix � with Iðβ̂mleÞ

� 1
=n. Then, we directly draw 

samples from the asymptotic normal distribution in 
Equation (4). Consequently, we can calculate the 
corresponding probability vector based on the 
sampled β̂, again using Equation (1). Note that the 
use of asymptotic normal distribution requires 
a large sample size. In our data, there can be situa-
tions with small sample sizes for certain pairs of 
actions. For instance, among 311 observations in 
group 1 cluster 2, where the initial action is request 
(a3), only two observations transition to reply (a2), 
three observations transition to request (a3) again, 
and there are no observations that transition to form-
ing words (a4). The remainder of the transitions is to 
idle (a1). When the pair of actions occur infrequently, 
we avoid the use of the asymptotic distribution and 
instead utilise point estimators.

3.3. Simulation models

The simulation system models the GrAG of 
Figure 1. Simulation input parameters are provided 
in Table 3. This table also thereby provides much 
of the configuration of a simulation. The para-
meters are divided into three sections by three 

Table 3. Summary of parameters and their values used in simulations of GrAGs. The first section contains variables that are 
physical entities that map directly to a GrAG. The second section contains model parameters that prescribe node (i.e., player, 
agent) behaviours. The third section contains the simulation parameter. Sections are delineated by three horizontal lines.

Parameter Description

Networks GðV; EÞ. Two networks: ðiÞ the star graph of Figure 7 and ðiiÞ the group of cliques in Figure 8.
Number n, of owned letters. The number of owned letters initially assigned to a player.
Initial letters Linit

k . The set of initial n, letters assigned to a player vk .
Word corpus CW . The corpus of 1015 3-letter words is taken from http://www.wordfind.com/3-letter-words/, accessed January 12 

2018. (At the time of this writing, eight words have presumably been removed, since the web page shows 
1007 words.) Only 3-letter words are considered in simulations.

Duration of GrAG tg. GrAG duration is fixed at tg ¼ 300 seconds.
Group, g. There are two groups: g ¼ 1 corresponds to nodes with degree d � 2 in the game network and g ¼ 2 

corresponds to nodes with degree d � 3.
Cluster, c. For each group g, there are four clusters (c): c ¼ 1 through 4.
Group-cluster ½g; c�. The group-cluster pair ½g; c� determines the behaviour regime for each node.
Behaviour classes C. There are two behaviour classes: the CWM model Cμ and the CWUQ model Cβ. Each node is assigned 

a behaviour class.
Game player behaviour models M. Each player in a GrAG is assigned a behaviour model M, which consists of the triple M ¼ ½C; g; c�.
Player actions a. The set A of actions a is given in Table 1.
Number of iterations niters . Each simulation is composed of niters ¼ 50 individual dynamics instances, where each instance starts from time 

t ¼ 0, with initial conditions reset, and then the dynamics of the system are executed for tg discrete time 
steps.
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horizontal lines. The first section contains physical 
parameters of the game. The second section con-
tains parameters of behaviour models that simulate 
player actions in a GrAG. These are produced from 
the methods described in this section. The third 
section of the table, with only one value, is purely 
a simulation parameter: the number of simulation 
instances to perform in order to address stochasti-
city of the models. Details on parameter selections 
are given in Section 5.1 on the simulations; the 
purpose here is to list the parameters because 
they support the simulation models. All parameters, 
including the word corpus, can easily be changed 
through configuration files to run additional 
simulations.

Equation (1) provides the key computations of 
the ABM in generating the probabilities πij of an 
agent vk taking action aj, j 2 f1; 2; 3; 4g, at time t 
given its most recent action ai at time ðt � 1Þ, 
where actions are given in Table 1. This equation 
is used for each of the CWM and CWUQ models 
(the BðiÞ matrices vary between models). Game 
behaviour data for players in each cluster c are 
used to fit a per-cluster model. Further, the net-
work structure defines the group g to which each 
agent belongs. Thus, in total, a game player 
behaviour model M is given as M¼ ½C; g; c�, 
where C is the behaviour class, g is the group, 
and c is the cluster number. Hence, the CWM 
model is Mμ ¼ ½Cμ; g; c� and the CWUQ model 
is Mβ ¼ ½Cβ; g; c�.

A simulation is composed of a collection of simula-
tions instances (also called iterations or runs). An itera-
tion is a sequence of simulation steps from time t ¼ 0 
to tg seconds, in one-second time steps, such that 
actions of all players are computed at each t. The state 
of the system at t ¼ 0 constitutes the initial conditions 
for a simulation instance. Within one simulation, all 
instances have the same initial conditions. These initial 
conditions and properties (see Table 3) are read from 
various input files. The processes of forming words and 
sharing letters in an iteration are shown in Figure 1.

In each iteration, the letters that a player can 
share with her neighbours are her owned (i.e., 
initially assigned) letters. There may be duplicate 
letters between pairs of players, including neigh-
bours of an agent vk. A player vk that receives 
a letter from a neighbour vi cannot then share 
that letter with a different neighbour v,. This is in 
accordance with the experiment rules. Table 4 
defines internal variables used in the algorithms 
of the simulation system.

Algorithm 1 provides the overall simulation struc-
ture: reading inputs, initialising variables, and iterat-
ing over simulation iterations, time, and agents 
vk 2 V . Algorithm 2, invoked from Algorithm 1 on 

step E.2.i.c., provides the steps for computing the next 
action ajðtÞ for node or agent or game player vk, at 
each (iteration, time) pair.

Algorithm 1: Algorithm NETWORKEDGROUPANAGRAMGAME.

1 Input: Data in Table 1 through 3.
2 Output: ðiÞ aj ; ðiiÞ pact ; ðiiiÞ z; and ðivÞ η. Each of these outputs is 

prefaced with the iteration number iter, time t, and node or player or 
agent ID vk .

3 Steps:
# Read inputs from files.

A. GðV; EÞ, and compute N½k� for each agent vk 2 V .
B. CW , niters, and tg.
C. for each vk 2 V :

1. Linit
k , C, g, c, and ρ.

2. C, g, c over all C 2 fCμ; Cβg, g 2 f1; 2g, and c 2 f1; 2; 3; 4g.
D. Set L0k with all Linit

i for all vi 2 N½k�.
# Do simulations over iterations and over time and over nodes/ 
agents.

E. for iter ¼ 1 to niters :
1. for each (vk 2 V): Reset Lih

k ¼ Linit
k , z ¼ 0, B1

k ¼ ;, B2
k ¼ ;, 

Wk ¼ ;.
2. for t ¼ 1 to tg:

i. for each vk 2 V :
a. Receive all letter requests from neighbors N½k� of vk , 

sent to vk at the previous time ðt � 1Þ, and put in 
buffer B1

k .
b. Receive all letter replies from vk ’s neighbors that are 

in response to vk ’s letter requests, sent to vk at the 
previous time ðt � 1Þ, and put in Lih

k ; mark this letter 
request in B2

k as fulfilled.
c. Call Algorithm 2, (VERTEX ACTION), computing vk ’s next 

action.
d. Write next action and other variables in Output 

section above.

Algorithm 2: Algorithm VERTEX ACTION for vertex vk .

1 Input: t, vk , aiðt � 1Þ, z, N½k�, L0k , Lih
k , CW , Wk , B1

k , B2
k , M¼ ½C; g; c�, 

and ρ.
2 Output: ajðtÞ, z, Lih

k , Wk , B1
k , B2

k as appropriate.
3 Steps:

A. Using the property index for vk from ρ, retrieve properties for M
from values ½C; g; c�. Compute all πij , j 2 f1; 2; 3; 4g from 
Equation (1), yielding pact ¼ ðπi1; πi2; πi3; πi4Þ.

B. Uniformly draw a random number r 2 ½0; 1� to determine the 
next action ajðtÞ for vk using pact .

C. if ajðtÞ equals a1 do ## Action ajðtÞ is think/idle.
i. Do nothing.

D. else if ajðtÞ equals a2 do ## Action ajðtÞ is reply (with letter).
i. If there is a letter request from a neighbor of vk in B1

k , that is 
waiting to be fulfilled, then send a letter reply using FIFO 
ordering, and mark the request in B1

k as fulfilled. Otherwise, 
do nothing.

E. else if ajðtÞ equals a3 do ## Action ajðtÞ is send letter request.
i. If there is a letter , 2 L0k that is not in the buffer of letter 

requests B2
k for vk , choose letter , at random, send a letter 

request to the appropriate neighbor that possesses ,, add 
the letter to the request buffer B2

k , and mark the request as 
sent. Otherwise, do nothing.

F. else ajðtÞ equals a4 do ## Action ajðtÞ is form word.
i. Select randomly a word w 2 CW , where w‚Wk and can be 

formed with letters in Lih
k . Add w to Wk . If there is no such 

w 2 CW , do nothing.
G. Return updated variable values in Output section for vertex vk .

4. Model evaluation

We evaluate the UQ method of Section 3, and in 
Section 5, we use these evaluation results to reason 
about ABS output.
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4.1. Clustering players

Table 5 shows the p-values of two-sample t-tests. For 
engagements, the p-values show that 2 neighbours is 
significantly different from 4, 6, and 8 neighbours, 
while pairs of values among 4, 6, and 8 neighbours 
are not significantly different. For words, the p-values 
show that 2 neighbours is significantly different from 4 
neighbours, while, again, pairs of values among 4, 6, 
and 8 neighbours are not significantly different. 
Though 2 neighbours is not significantly different 
from 6 and 8 neighbours, respectively, 2 neighbours 
is significantly different from 4, 6, and 8 neighbours 
together. This means that we can collect players into 
two groups: those players with 2 neighbours [group 

g ¼ 1] and those players with 4, 6, or 8 neighbours 
[group g ¼ 2].

Figures 5(a,b) show the clustering results using the 
k-means method. The left plot is for 2 neighbours, and 
the right plot is for 4, 6, and 8 neighbours. Different 
clusters are marked with different colours and num-
bers, 1 through 4. In Figure 5(a), the black cluster is 
the least active, and the blue cluster is the most active. 
In Figure 5(b), the blue cluster is the least active, and 
the green cluster is the most active. Figure 6 provides 
the same data, but the mean and median points within 
each cluster are shown.

4.2. Quantifying uncertainty for model 
parameters

Table 6 shows one set of z values, for the group 
g ¼ 1, and we use these z values to generate het-
erogeneous probability vectors. Table 7 shows gen-
erated probability vectors sampled from the 
asymptotic normal distribution of β̂ for group 
g ¼ 1. The four clusters correspond to clusters in 
Figure 5(a). In each cluster, the first row provides 
the probability vector from the CWM model, and 
the bottom four rows provide generated probability 
vectors from the CWUQ model. Players in cluster 

Table 4. Summary of additional parameters used in the simulation algorithms. Most of these evolve in time during a simulation.
Parameter Description

Neighbours of a node N½k�. Set of neighbours of a node vk in a graph G.
Mapping ρ. Map of agent vk , for each vk 2 V , to its model Mk .
Action probabilities pact . The vector of probabilities of taking actions, computed for each vk at each t, pact ¼ ðπi1; πi2; πi3; πi4Þ per Equation (1).
Letters in hand Lih

k . The set of letters that a player vk has, at any time t during a game (superscript ih is for ‘in hand’).
Neighbouring letters L0k . The set of letters of the neighbours of vk that vk can request.
Buffer of letters B1

k . The buffer of letter requests that vk has received.
Buffer of letters B2

k . The buffer of letter requests that vk has made to neighbours.
Words Wk . The set of words already formed by vk .
Numbers of actions η. The counts of actions for each vk and each t, η ¼ ðηwords;k; ηreqSent;k; ηreqRec;k; ηreplSent;k ; ηreplRec;kÞ, which are, respectively, 

the number of words formed, number of requests sent, number of requests received, number of replies sent, and 
number of replies received.

Table 5. Pairwise comparisons of engagements and pairwise 
comparisons of words. The numbers are p-values of two-sided 
two-sample t-tests.

Engagements Words

number of neighbours p-value
number of 
neighbours p-value

2 vs. 4 8.286e-13 2 vs. 4 2.151e-03
2 vs. 6 8.386e-05 2 vs. 6 0.236
2 vs. 8 1.418e-04 2 vs. 8 0.210
4 vs. 6 0.269 4 vs. 6 0.589
4 vs. 8 0.641 4 vs. 8 0.967
6 vs. 8 0.202 6 vs. 8 0.749
2 vs. 468 5.009e-18 2 vs. 468 3.231e-03

Figure 5. Data from human subject anagram games, showing results of k-means clustering. Scatter plots of number of words 
formed against number of replies and requests (engagements). Each data point represents one game player. Data points in 
different clusters are denoted in different colors and are numbered, 1 through 4. (a) Data for d ¼ 2 neighbours [group g ¼ 1]. (b) 
Data for d ¼ 4, 6, and 8 neighbours [group g ¼ 2].
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4 have lower to-idle (a1 ! a1) transition probabil-
ity than players in other clusters, so players in 
cluster 4 are the most active ones in group g ¼ 1, 
which can be confirmed in Figures 5(a).

5. Agent-based simulation results from 
networked group anagram games

In this section, we present simulation scenarios and results 
and explanations from the simulations. Note that the simu-
lation process of the game follows very closely the actual 
experimental procedures, by design, so that experimental 
data could be used to develop agent models of player 
behaviours for the agent-based simulations (ABSs). The 
simulation models are presented in Section 3.3.

5.1. Simulation scenarios

We analyse two anagram game configurations of players. 
Figure 7 is a star-4 graph, with a hub node 0 and four leaf 
nodes. This network was analysed in Hu et al. (2021). We 
include new results for it in Appendix B. The second 
graph is a graph on 18 nodes consisting of four clique 
subgraphs (K3, K4, K5, and K6), where Kj is a clique on j 

Figure 6. Data from human subject anagram games, showing results of k-means clustering. Center plots of number of words 
formed against number of replies and requests (engagements). (a) Data for d ¼ 2 neighbours [group g ¼ 1]. (b) Data for d ¼ 4, 6, 
and 8 neighbours [group g ¼ 2].

Table 6. z vector values of ZBðtÞ, ZLðtÞ, ZWðtÞ, and ZCðtÞ.

Initial state
Number of  
neighbours buffer letter word constant

a1 (idle) 2 0 3 1 5

Table 7. Sampling from the asymptotic normal distribution of β̂, where the initial state is a1 (idle) and the group g ¼ 1. The top left 
part is for cluster 1, the top right part is for cluster 2, the bottom left part is for cluster 3, and the bottom right part is for cluster 4. 
One can see these clusters in Figures 5(a). Each row is a probability vector for next actions. The first row (mean) is from the cluster- 
wise mean model (CWM), and the bottom four rows are four samples from the cluster-wise uncertainty quantification model 
(CWUQ). ai ! aj means transition from ai to aj, so the value under each column represents the probability of next action (e.g., 
idling, replying with letter, requesting letter, and forming words).

Cluster 1 Cluster 2

a1 ! a1 a1 ! a2 a1 ! a3 a1 ! a4 a1 ! a1 a1 ! a2 a1 ! a3 a1 ! a4

Mean 0.957 0.006 0.014 0.022 mean 0.942 0.010 0.031 0.017
Sample 1 0.955 0.008 0.014 0.023 sample 1 0.944 0.009 0.028 0.019
Sample 2 0.957 0.006 0.015 0.023 sample 2 0.944 0.010 0.029 0.018
Sample 3 0.958 0.009 0.013 0.019 sample 3 0.941 0.010 0.031 0.018
Sample 4 0.951 0.006 0.019 0.024 sample 4 0.942 0.008 0.031 0.019

Cluster 3 Cluster 4

a1 ! a1 a1 ! a2 a1 ! a3 a1 ! a4 a1 ! a1 a1 ! a2 a1 ! a3 a1 ! a4

Mean 0.917 0.018 0.043 0.023 mean 0.880 0.020 0.051 0.049
Sample 1 0.923 0.017 0.040 0.020 sample 1 0.868 0.019 0.060 0.054
Sample 2 0.922 0.018 0.040 0.020 sample 2 0.868 0.019 0.057 0.056
Sample 3 0.912 0.020 0.046 0.022 sample 3 0.874 0.023 0.053 0.050
Sample 4 0.914 0.018 0.047 0.022 sample 4 0.869 0.022 0.060 0.050

Figure 7. Star network used for simulations. Nodes are game 
players and edges represent communication channels that can 
be used to share letters. The centre node (hub) has degree 
d ¼ 4 and hence is in group g ¼ 2 and the four leaf nodes 
each have degree d ¼ 1 and so are in group g ¼ 1.
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nodes. These four cliques are connected in a circle 
arrangement. See Figure 8.

These two graphs are motivated by the following 
considerations. First, our two groups (g ¼ 1 and 2) are 
based on the degrees of nodes. Hence, we devised one 
graph that had multiple nodes of degree d ¼ 1 so that 
these nodes are in g ¼ 1. This is the star graph. We 
devised the second graph that had multiple nodes of 
degree d � 3 so that these nodes are in g ¼ 2. This is 
the 4-clique graph. Second, we want multiple nodes in 
a graph to have the same degrees and neighbourhoods 
so that we can assess variability in behaviours across 
nodes. For this goal, we have four nodes with degree 
d ¼ 1 in the star graph, and we have multiple similar 
nodes in each clique of the 4-clique graph. Third, for 
the 4-clique graph, we want multiple cliques, of differ-
ent sizes, so that we can assess differences in agent or 
node behaviours as degree increases. Also, these net-
work configurations are different from those used in 
experiments, thus illustrating the ability of simulations 
to address a wide range of player interaction patterns.

This section uses the 4-clique graph because it is 
larger and more nuanced, enabling more detailed ana-
lyses. Many simulations are performed on each game 
configuration where input parameters are varied.

Numbers n, of letters are specified and specific 
letter assignments are made so that players (agents) 
can form words when they choose this action. Four 
letters are used per player in the star graph, since some 
players have only one neighbour, and three letters are 
used per player in the cliques graph because each node 
has more neighbours. One goal in these simulations is 
to determine how many words a player can form. 
Consequently, the initial letter assignments to players 
are done by human decision-making, to ensure that 
a sufficient number of vowels and that often-occurring 
consonants are either owned by players or can be 

requested from neighbours. At the other end of the 
spectrum, we can assign players very poor letters (e.g., 
x, y, z, q) so that no matter the model, a player cannot 
form words. We have not done this in this work 
because we want to understand model behaviours. 
The game duration is the same as that used in experi-
ments, and a word corpus is used to determine valid 
words that agents form.

In this work, each simulation is comprised of 
niters ¼ 50 iterations, and results are presented as time 
point-wise averages over all 50 instances and as box-
plots that also account for the data of all 50 iterations. 
Fifty iterations provide mean results consistent with 
those for simulations between 30 and 50 iterations.

5.2. Simulation results

5.2.1. Basic time history results
Figure 9 shows variability in results across all 50 runs or 
instances of one simulation, for the CWM model and 
various values of group g and cluster c, i.e., [g, c]. The 
results are number of words formed by node (i.e., 
player) 5 as a function of game time. The four plots 
correspond to node 5 of the 4-clique network with 
behaviour models assigned according to ½g; c� ¼ ½2; 1�, 
[2, 2], [2, 3], and [2, 4], respectively, where g ¼ 2 
because node 5 has degree d � 3, i.e., d5 ¼ 3. In each 
plot, the 50 gray curves are results from the 50 runs, the 
magenta curve is the time point-wise average with �
one standard deviation, and the black curve is the time 
point-wise median value. The results show that the 
individual curves (i.e., simulation instance results in 
gray) across the 50 runs can vary considerably, with 
the largest variations occurring for ½2; 4� in Figure 9(d): 
the range in numbers of words at t ¼ 300 seconds is 
from 20 to 110 words. Also, the cluster-to-cluster dif-
ferences can be large, particularly when comparing with 
the behaviour of cluster 4. These ranges of variability 
can change with C and ½g; c�, i.e., with model M, and 
result from the variability in the data of Section 4.

5.2.2. Comparisons of time histories of similar 
nodes over all player actions
We focus on the K6 clique of the graph in Figure 8 and 
specifically, the behaviours of nodes 12 through 14. 
Figure 10 shows the time histories for the five types of 
events: number of letter replies received (replRec) in 
response to this player’s requests for letters from its 
neighbours; number of letter replies sent (replSent) in 
response to letter requests that it receives; the number 
of requests for letters that the node receives from neigh-
bours (reqRec); the number of requests for letters that 
this player sends to neighbours (reqSent); and the num-
ber of words (words) that this player forms. Each plot is 
data for one node. The first column of plots is for the 
CWM model Mμ ¼ ½C; g; c� ¼ ½Cμ; 2; 2�, and 

Figure 8. Network of four connected cliques (K3, K4, K5, and K6) 
used for simulations. Nodes are game players and edges 
represent communication channels that can be used to share 
letters. Nodes 0 and 1 are the only nodes with degree d � 2 so 
are in group g ¼ 1. All other nodes have degree d � 3 and 
hence are in group g ¼ 2.
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the second column of plots is the corresponding data 
for the CWUQ model Mβ ¼ ½C; g; c� ¼ ½Cβ; 2; 2�. (The 
two low degree nodes in the 4-clique graph use the 
same two models Mμ and Mβ, with ½g; c� ¼ ½1; 2�.)

Nodes 12 through 14 have the same properties and 
same connectivity (i.e., the same neighbours), so 
their behaviours should be the same, modulo sto-
chasticity. We see that for both models, the beha-
viours of these nodes can vary node-to-node. Nodes 
13 and 14 have differences in numbers of letter 
requests received (magenta, reqRec) and of letter 
replies sent (orange, replSent). The differences are 
greatest for node 12, in both models, where the 
magenta and orange curves are concave down; the 
corresponding curves for nodes 13 and 14 are less 
distinctive. Across all nodes, the time histories of 
letter requests sent (brown, reqSent) and letter replies 
received (blue, replRec) are similar. The average 
number of words formed varies between 11 and 24 
across nodes. These data indicate that variability in 
results can be generated due to the stochasticity of 

each behaviour model, per Section 4. However, the 
error bars cover these differences in average values. It 
is also observed that replies sent (in response to letter 
requests, orange) lags the letter requests received 
(magenta) for all nodes.

Examining general trends in the behaviours of all 
models and conditions, we observe the following. 
Players request letters throughout the game. They 
reply to letters throughout the game. That is, they do 
not request all neighbouring letters at the outset of 
a game, which is one strategy; the game data do not 
exhibit this behaviour and hence neither do our models. 
Generally, simulation results show that players request 
all neighbour letters during a game. In a game, the 
number of letter requests that can be made of neigh-
bours (reqSent) is bounded by the number of letters 
a player originally possesses and by the number of 
neighbours. This, in turn, affects all other sharing 
types of actions: letter requests received (by 
a neighbour), letter replies sent, and letter replies 
received. Hence, the variability in these quantities is 

Figure 9. Agent-based simulation results for node 5, for a game configuration of a 4-clique graph (see Figure 8). Plots are the 
number of words formed by this player as a function of game time. Each plot has 50 gray curves of numbers of words formed as 
a function of time; one curve for each simulation run or instance. The magenta curve is the time point-wise average over the 50 
instances, with error bars for � one standard deviation. The black curve is the median time point-wise average for the 50 
instances. In all simulations, the two degree d ¼ 2 nodes have C of CWM class and ½g; c� ¼ ½1; 2�. All 16 nodes with d � 3 use the 
same class C and ½g; c� according to: (a) ½2; 1�; (b) ½2; 2�; (c) ½2; 3�; and (d) ½2; 4�. These results demonstrate that the cluster c 
assigned to node 5 results in different behaviours.
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lesser than that for words formed. There is no practical 
limit on the number of words a player can form and 
hence variability is greater. This is why we focus on 
numbers of words formed in subsequent results.

5.2.3. Comparisons of time histories of nodes from 
cliques using models that incorporate behaviours 
from different clusters
In this section, we examine the time histories of 
numbers of words formed for eight nodes of the 
4-clique graph of Figure 8. For each of the four 

cliques, we chose two nodes: the unique node that is 
connected to two other cliques and one of the 
remaining nodes that is only connected to other 
nodes of the particular clique. Node IDs are given 
in the plot legends. Of the eight nodes, seven are high 
degree nodes, i.e., degree d � 3, and so are in group 
g ¼ 2; only node 0 is low degree, i.e., degree d � 2, 
and so is in group g ¼ 1. We intentionally select 
combinations of clusters for high and low degree 
groups to demonstrate wide range of behaviours 
that can be produced with the models.

Figure 10. Agent-based simulation results for game configuration of the 4-clique network. Curves are mean time point-wise data 
for nodes 12 through 14; all nodes are in the K6 clique. The first column of results are for the CWM model Mμ and the second 
column contains corresponding results for the CWUQ model Mβ. All nodes have ½g; c� ¼ ½2; 2�; g ¼ 2 since all degrees are d � 3. 
The magenta curves for (letter) requests received (legend: reqRec) must be greater than or equal to the orange curves for (letter) 
replies sent (legend: replSent), and similarly the brown curve must be greater than or equal to the blue curve because a player 
must send at least as many (letter) requests sent (legend: reqSent) as (letter) replies received (legend: replRec).
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Figure 11 provides time histories for the eight 
chosen nodes for different combinations of clusters 
for group g ¼ 1 low degree and group g ¼ 2 high 
degree nodes, for the CWM model Mμ. In the first 
plot, low degree (ld) nodes have ½g; c� ¼ ½1; 1�, while 
high degree (hd) nodes have ½g; c� ¼ ½2; 1�. The blue 
curve for node 0 is in mid-range compared to the 
curves for other nodes. In the second plot, 
Figure 11(b), the only change is that the lone group 
g ¼ 1 node is now assigned cluster 4 behaviour. The 
number of words formed by this node greatly 
increases (by 4�), while those for the high degree 
nodes remain similar to those in the first plot. In the 
third plot, Figure 11(c), the behaviour clusters for low 
degree and high degree nodes are 3 and 2, respec-
tively. The numbers of words formed by each node 
are greater than those in Figure 11(a). The last com-
bination of clusters in Figure 11(d) results in node 0 
forming as many words as it did in Figure 11(b), but 

now nodes 2 through 17 roughly form 2� to 3� the 
number of words that are formed by node 0.

These results indicate that the behaviours of 
agents can change markedly when the clusters 
assigned to low and high degree agents change. 
Further, it demonstrates the efficacy of clustering 
player behaviours, by engagement and by words in 
Section 3, to capture differences in player perfor-
mance. Clearly, heterogeneity in player behaviours 
is achieved.

5.2.4. Comparisons of time histories and end-of- 
game data between the CWM and CWUQ models
As noticed in Figure 10, the average curves are similar 
between the two models Mμ and Mβ. However, there 
are differences: ðiÞ the average number of words formed 
by each of nodes 12 and 13 are different between the two 
models; and ðiiÞ the variability of results (quantified by 

Figure 11. ABS results for the CWM model Mμ and the 4-clique network of Figure 8. In each plot, results for the same eight nodes 
are provided. Two nodes come from each of the four cliques, where one node is connected only to other nodes of the clique, and 
the other node is also connected to two other cliques in the overall network. The values plotted are mean time point-wise 
averages, � one standard deviation, of numbers of words formed across all 50 instances of a simulation. The results for nodes 2 
through 17 in each plot are similar (to within stochastic variation) because all of these nodes are in group g ¼ 2 since each has 
degree d � 3. Thus, as the cluster for the high degree nodes changes across plots, the cluster is constant for each plot, so all of 
these nodes are assigned the same behaviour model. Only node 0 is in group g ¼ 1 because it has degree d ¼ 2 � 2. The ½g; c�
pairs for low degree (ld) and high degree (hd) nodes are given under each plot. The plots show that different combinations of ½g; c�
for ld and hd nodes can have large effects on the number of words formed in the game. For example, compare the blue curve 
versus the high-degree node curves in each of (b) and (d).
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standard deviation) are greater for the CWUQ model 
Mβ. To the first point, in Figures 10(a,b), the average 
number of words formed are 14 and 24, respectively, for 
node 12. That is, Mβ generates more words than does 
Mμ. To the second point, in comparing these same two 
figures, the standard deviation is much greater for the 
Mβ model-generated results.

To examine the variability of median behaviours in 
numbers of words formed for nodes between the two 
models Mμ and Mβ, we continue to look at the eight 
nodes studied in Figure 11 for the 4-clique graph. The 
new results that we address here are provided in 
Figure 12 and we focus on high degree (i.e., group 
g ¼ 2) nodes. Each plot shows on the x-axis two values 
of each node ID. Red boxplots are for Mβ and blue 
boxplots are for Mμ. Again, because nodes 2 through 17 
all have degree d � 3 (i.e., are denoted hd for high 
degree nodes), they all correspond to group g ¼ 2 and 
hence are assigned the same behaviour model. In 
Figures 12(a,b), the clusters assigned to high degree 
(hd) and low degree (ld) nodes produce behaviours 
such that the red bars for Mβ show greater variability 

in median numbers of words formed across nodes 2 
through 17 than does Mμ.

However, note that not all combinations of clus-
ters generate more variability in median numbers 
of words formed in the CWUQ model. In 
Figure 12(c), Mμ and Mβ produce comparable 
variability in median values across nodes. In 
Figure 12(d), too, Mμ and Mβ generate similar 
median values that vary across nodes. The main 
result is that the CWUQ model (Mβ) produces at 
least as much variability as does the CWM 
model (Mμ).

Hypothesis tests are conducted to demonstrate 
the variability of CWM and CWUQ models (see 
results in Appendix C). First, we test if there is no 
difference between mean number of words formed 
by nodes with high degrees. The results in Table C1 
show that in Figures 12(a,b), nodes assigned the 
CWM model have no difference in the mean num-
bers of words formed, while nodes assigned the 
CWUQ model have significant differences in the 
mean numbers of words formed. In Figures 12(c,d), 

Figure 12. Simulation results of word counts for game configuration of a 4-clique graph. Results are provided for the same eight 
nodes (two nodes per clique) across all plots: one node in a clique that is only connected to other nodes in the clique, and the one 
unique node that is also connected to two other cliques. Each plot assigns to low degree (ld) and high degree (hd) nodes different 
clusters c as part of their behaviour models; the two clusters are fixed in each plot. The plots (a) and (b) have combinations of ½g; c�
for ld and hd nodes that result in greater variability in median values of numbers of words formed across nodes for the CWUQ 
model (Mβ, in red) compared to that for the CWM model (Mμ, in blue). However, there is not always such a difference. In (c), Mμ 

and Mβ produce similar variability. Similar variabilities between models are observed in (d). In all cases, there is always at least as 
much variability in numbers of words formed for Mβ as for Mμ.
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both CWM and CWUQ models show significant 
differences among mean numbers of words by 
nodes.

5.2.5. Comparisons of CWM and CWUQ model 
behaviours within and across cliques
Comparisons are now made between the two models, 
Mμ and Mβ, for all nodes of the 4-clique network and 
for all four clusters of behaviour for the high degree 
nodes. We focus on the number of words formed by 
each node at the end of the game, i.e., at time t ¼ 300 
seconds. Data for all 50 runs of a simulation are pre-
sented as boxplots. Data for the CWM model are 
provided in Figure 13 and the corresponding data for 
the CWUQ model are given in Figure 14. Plots are for 
different model clusters c, and the boxplots of nodes 
are colored for the clique to which they belong.

Figure 13 shows four plots of number of words 
formed for each of the 18 nodes. The change in the 
plots is the cluster c ¼ 1, 2, 3, and 4, assigned to the 16 
high degree nodes. The cluster, of course, changes the 
behaviour model for the nodes, and this is observed in 

the median values of numbers of words for all nodes, 
which increase as the cluster number increases from 1 
to 4. The variability for each node also increases as 
cluster number increases. The point of interest is the 
variability of these results within cliques and across 
cliques, viewing each plot separately. In Figure 13(a-c), 
it is seen that the median values do not change appre-
ciably within cliques, nor across cliques. For cluster 4, 
the last plot, there is variability in median values 
among nodes within K4 and within K5, but not across 
cliques. Note that we do not expect massive variability 
in this case because all nodes of all cliques K4, K5, and 
K6 use the same g ¼ 2 models; the increased degree of 
nodes in K6, compared to the degrees of nodes in K4, 
for example, play no discriminating role because this 
model holds for all nodes with degree d � 3. Hence, 
the conclusion is that the CWM model does not pro-
duce great levels of variability across nodes.

Also, it is observed that the 16 nodes with g ¼ 2 
have increasingly different behaviour from those of 
nodes 0 and 1, where degree d ¼ 2 and therefore 
g ¼ 1, as cluster c increases from 1 to 4. This again 

Figure 13. ABS results of final number of words formed per agent in the 4-clique network for the CWM behavioural model 
Mμ ¼ ½Cμ; g; c� (these are the number of words formed through the 300 second game). Each plot shows boxplots of words 
formed for every node in the network along the x-axis. The y-axis range varies across the plots. The difference across plots is the 
cluster used for the high degree (hd) node behaviour, which varies in ½g ¼ 2; c�: (a) ½2; 1�; (b)½2; 2�; (c) ½2; 3�; and (d) ½2; 4�. The low 
degree nodes—only nodes 0 and 1—are Mμ ¼ ½C; g; c� ¼ ½Cμ; 1; 1�. The boxes in each plot are color coded by the clique in which 
a node resides. The boxes of one color are nodes in one clique. We focus on cliques K4, K5, and K6 because each agent in each 
clique has the same model, so we can compare the node behaviours of each clique. There is little variability in the median values, 
within and across cliques, for clusters c ¼ 1, 2, and 3. There is greater variability within cliques for cluster 4, but there is little 
variability across cliques.
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points to the efficacy of partitioning game player 
behaviour into different clusters, to form separate 
models for them – this enables greater diversity of 
player behaviours in simulations.

Turning now to Figure 14 for the CWUQ model Mβ, 
the same four types of plots are shown as in Figure 13. 
Some of the same trends hold as in the previous plot: 
numbers of words formed increases as c increases, the 
differences between the behaviours of nodes with g ¼ 1 
and g ¼ 2 increases as c increases for the 16 g ¼ 2 
nodes, and the variability in results per node increases 
as c increases.

But there are differences between these two sets of 
plots. The variability in results across nodes in 
Figure 14(a) for Mβ is 18:6% greater compared to that 
in Figure 13(a) for Mμ. Figure 14(b) shows a 16% greater 
variability compared to Figure 13(b). The variability dif-
ference is reduced in comparing Figures 14(c) and 13(c), 
but it still exists. Both Figures 14(d) and 13(d) exhibit 
variability across nodes in cliques. Hence, we conclude 
that variability in behaviours, via node-by-node results 

comparisons, are greater for CWUQ model Mβ com-
pared to the CWM model Mμ.

6. Discussion

This work presents and evaluates two methods to quan-
tify uncertainty and build ABMs of human behaviour. 
Based on the data from group anagram games, the 
proposed methods provide a comprehensive uncer-
tainty quantification framework for agent-based mod-
elling and simulation. Such a frame is not limited to 
modelling anagram games, but can be widely applicable 
to other systems. Motivation, novelty, and contribu-
tions of our uncertainty quantification approach and 
ABMs are provided in Section 1. The methods work 
best when a data set can be partitioned along natural 
parameter dimensions as is the case in this work.

Through the comparison of model outputs via 
simulations of two networked GrAGs, we find that 
the CWUQ model can better quantify and generate 
uncertainty than the CWM model. Note that in 

Figure 14. ABS results of final number of words formed per agent in the 4-clique network for the CWUQ behavioural model 
Mβ ¼ ½Cβ; g; c� (these are the number of words formed through the 300 second game). Each plot shows boxplots of words 
formed for every node in the network along the x-axis. The y-axis range varies across the plots. The difference across plots is the 
cluster used for the high degree (hd) node behaviour, which varies in ½g ¼ 2; c�: (a) ½2; 1�; (b) ½2; 2�; (c) ½2; 3�; and (d) ½2; 4�. The low 
degree nodes—only nodes 0 and 1—are Mβ ¼ ½C; g; c� ¼ ½Cβ; 1; 1�. The boxes in each plot are color coded by the clique in which 
a node resides. We focus on cliques K4, K5, and K6 because each agent in each clique has the same model, so we can compare the 
node behaviours of each clique. The greatest variation of the median values of words generated for nodes in each cluster occurs 
for clusters 2 and 4. There is some variability in clusters 1 and 3.

JOURNAL OF SIMULATION 17



some cases, the uncertainty generated from the two 
models is comparable in Section 5. A possible 
explanation is that some results reported in 
Section 5 are based on averaging data over 100 
simulations at each time step of the 300-second 
game. The overall behaviour of the two models 
across many simulation instances could be end up 
being similar, indicating that the variability may be 
averaged over the entire game in the CWUQ 
model.

There are several directions for future research. Note 
that the multinomial logistic regression used in this 
work assumes a linear parametric form, which may 
not be satisfied in some sophisticated social experi-
ments. However, we can modify the parametric statis-
tical model (i.e., multinomial logistic regression) by 
some nonparametric statistical model such as general-
ised Gaussian process. Moreover, we can explore 
Bayesian approaches for modelling and uncertainty 
quantification (van de Schoot et al., 2021) to alleviate 
extreme value problems caused by data scarcity in the 
asymptotic normal distribution. The proposed method 
can also be extended beyond the situation of three-letter 
words by adjusting the word corpus to include words of 
varying lengths.
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