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A Spatial Calibration Model for Nanotube Film
Quality Prediction

Xin Wang, Su Wu, Kaibo Wang, Xinwei Deng, Liang Liu, and Qi Cai

Abstract—A carbon nanotube (CNT) film, which is drawn from
a CNT array, is a spatially distributed thin film with unique and
appealing properties. Novel devices have been developed based on
CNT films. The anisotropy of a CNT film, which is a spatially dis-
tributed quality index, is difficult to measure in practice due to
metrology and cost constraints. As the anisotropy is highly corre-
lated with the height of the CNT array and the height can be mea-
sured in a much easier and more cost-effective way, we propose a
spatial model for predicting the anisotropy using the height. The
model takes the spatially distributed two-dimensional (2-D) height
as an input and provides a predicted anisotropy distribution in a
2-D space. If the anisotropy measures are obtained, the model can
provide a more accurate prediction. The performance of the pro-
posed model is verified by both a simulation study and real data
samples.

Note to Practitioners—Timely and accurate measurement of key
product features is essential in scale-up nanomanufacturing pro-
cesses. Even though a fast growth ofmetrology technology has been
seen in recent years, some variables of nanoscale products are still
hard to measure, either too costly or too time consuming, in high-
speed large-scale production. However, physical mechanisms may
suggest that a hard-to-measure variablemay be correlatedwith an-
other easy-to-measure variable. In such a case, a spatial calibration
model could be constructed, based on which the prediction of the
hard-to-measure variable is achievable given measures of the easy-
to-measure variable. Such a calibrationmodel provides an effective
alternative to physicalmetrology tools in large-scale nanomanufac-
turing processes in which metrology technology is not fully ready
yet.

Index Terms—Calibration model, Gaussian process, kriging,
nanomanufacturing, spatial correlation.
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Fig. 1. SEM images of the CNT array on the silicon wafer in a side view.

I. INTRODUCTION

D UE to the fast development of nanotechnology, the
requirement for high-precision and cost- effective

metrology devices is extremely urgent. Certain quality char-
acteristics are inherently difficult to measure due to their
fragile physical structures. Some newly developed metrology
devices are sensitive to noise, and high precision is difficult
to achieve. Certain metrology procedures are destructive and
cost inefficient. To tackle the physical bottleneck of metrology
technology, in this paper, we seek a statistical solution to the
metrology problem. It is found from engineering practice and
statistical analysis that certain quality variables are highly
correlated. Therefore, if an appropriate statistical model is
traceable, it is potentially possible to replace the metrology
procedure with the model and predict difficult-to-measure
variables using easy-to-measure variables.
In this research, we focus on a nanomanufacturing process

that produces carbon nanotube (CNT) films. CNTs have been
considered a potential substitute for many traditional materials
due to their excellent photoelectric properties, mechanical
strength and flexibility [1]. Continuous and large-scale CNT
films, which are drawn from a super-aligned CNT array syn-
thesized on silicon wafers using the chemical vapor deposition
(CVD) method [2], have been developed to produce novel
products such as touch panels, LCDs and other optoelectronic
devices [3], [4]. The CNT array (see Fig. 1), which is essen-
tially a forest of tall and super-aligned CNTs, is synthesized
by a CVD process on a wafer basis. When the CNT arrays are
drawn from one side away from the wafer (see Fig. 2), a thin
film is formed naturally due to the unique adhesion properties
of the CNTs.

1545-5955 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 2. Schematic drawing of the cut lines.

Fig. 3. Diagram of the mechanism for transforming the CNT array to filmwhen
drawing from one side of the array.

The quality of devices made from CNT films is highly de-
pendent on the quality of the films being used. Among other
factors, the anisotropy of the CNT film is one of the most impor-
tant quality characteristics and is determined by the resistances
of the film along two perpendicular directions: the horizontal
resistance parallel to the pulling direction and the vertical resis-
tance perpendicular to the pulling direction. The anisotropy of
a CNT film directly affects the sensitivity and usability of the
touch screen made from it. To measure the anisotropy, a small
film sample must be torn away from the large film, that is, mea-
suring anisotropy is destructive, and in practice, it can only be
measured at very limited locations for each CNT array. In addi-
tion, measuring resistance involves connecting the small piece
of CNT film in an electrical circuit. As the resistance value is
relatively small, it is easily affected by the node of the electrical
circuit, the positioning of the film in a fixture by different oper-
ators, the pressure applied to fix the film, and other noise factors
in the measurement process.
It is first noticed from a statistical analysis of massive pro-

duction data that the height and the anisotropy are linearly and
positively correlated. Fig. 4 shows a scatter plot of the height
and the anisotropy; the anisotropy increases as the height in-
creases. Further discussion with the nanoscientists suggests an
explanation for this phenomenon. The parallel resistance of the
film is mainly driven by the resistance of the conjunctions be-
tween adjacent CNTs. See Fig. 3 for the formation of a film from
an array. As the height of the CNT array increases, the number
of conjunctions in the CNT film and its parallel resistance de-
crease. As the vertical resistance is independent of the height
and the anisotropy is calculated as the ratio of the vertical and
horizontal resistances, the anisotropy is therefore positively cor-
related with the height of the CNT array. Fortunately, the height
of a CNT array can be measured easily in a nondestructive way
with a very high accuracy.
In light of the above findings, in this work, we intend to de-

velop a spatial statistical model to link the anisotropy with the

Fig. 4. Scatter plot of the height and anisotropy for the given measurement
location in the CNT array.

Fig. 5. Diagram of the basic idea in this research.

measured height. Based on this model, by using the height map
of a CNT array, the spatially distributed anisotropy map can be
predicted (see Fig. 5).
The remainder of this paper is organized as follows.

Section II presents a review of the related literature.
Section III proposes the spatial hierarchical model, parameter
estimation, and prediction procedures. Section IV verifies the
effectiveness of our method by simulation and is followed
by the case study that is used to evaluate the performance of
the proposed method by a comparison with two conventional
methods in Section V. The last section concludes this work.

II. LITERATURE REVIEW
Recently, as one approach for precise uncertainty quantifi-

cation and modeling, engineering knowledge-guided statistical
approaches have been applied successfully in certain nanotech-
nology applications, such as experimental design, process mod-
eling and control for the synthesis [5]–[8], and characterization
of nanomaterials [9]–[13]. However, the spatial metrology is-
sues in nanomanufacturing are not discussed in these works.
When two variables are correlated, and one variable is easy

to measure precisely while the other requires much more ef-
fort or expense, a statistical calibration model can be devel-
oped to relate the quantities of interest [14]. Eisenhart [15] pro-
posed two models to tackle such calibration problems. In one of
the models, the author suggested treating the easily measured
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quantity as a response and the other as an explanatory vari-
able and building a model to link the two variables together.
More recently, a wide spectrum of research has been described
that compares and analyzes the method using different criteria
in different scenarios, such as prediction interval calculation
[15]–[19] and sample size determination [20]. Parker et al. [21]
provided a general guideline for practitioners on how to choose
the calibration method according to a specific application. All
the works mentioned above are essentially based on univariate
linear regression. However, the major challenge in this research
lies in building an effective model for linking two spatial sur-
faces on the nanoscale, which can be considered an extension
of the traditional calibration problem to spatial data and an ap-
plication in nanotechnology.
Kriging (or Gaussian process) [22] is a popular technique for

handling spatial data. One of the most popular models, known
as universal kriging, is given as

(1)

where is a stochastic process, ,
and is a weak stationary stochastic

process with mean 0 and covariance matrix . The
is a set of pre-specified functions, and

is the corresponding parameters. Under
the stationary assumptions, the predictor which minimizes the
mean square error can be derived as [23], [24]

(2)

where , is
the design matrix, .
The conventional kriging methods perform poorly if the

assumptions are violated [25]. Hence, some extension, such
as blind kriging [25] and the composite Gaussian process [26]
have been proposed to make the model more flexible and robust
for different real applications. However, these kriging-based
methods cannot be used to build models between two spatial
variables directly because of the computational issue resulting
from the high dimensionality, especially when the spatial data
collection uses a very high sampling rate [27]. To address
this issue, techniques such as wavelet decomposition [28],
principal component analysis [29], [30], and the Kronecker
products-based method [27] have been applied instead.
Shi et al. [31]–[33] developed a Gaussian process functional

regression model, with the mean structure modeled by a func-
tional regression and the covariance structure described by a
Gaussian process, for modeling the relationship between two
types of functional data. Recently, Zhang et al. [34] developed
a bivariate spatial model to predict a surface property of a
nanomaterial using another surface property, which opened a
new route for the improvement of precision and the resolution
of material characterization without enhanced instrumenta-
tion capabilities. The bivariate spatial model can be easily
extended to the model for multiple samples that is presented in
Section V, although it is developed based on only one sample.
However, these models cannot deliver accurate predictions for
our problem, as they do not consider the spatial correlation of

TABLE I
REGRESSION PARAMETERS FOR THE ANISOTROPY AND

HEIGHT VALUES FROM DIFFERENT LOCATIONS

Note: Est stands for “Estimated Value”

the relationship between two characteristics, which is a key
feature of our problem.

III. SPATIAL CALIBRATION MODEL FOR
ANISOTROPY PREDICTION

A. Investigation of Spatial Correlations Equations
To achieve a better understanding of the relationship between

the anisotropy and the height in a spatial domain, we first col-
lect measurements of the two variables at 13 locations across 17
CNT array samples, treat the anisotropy as a response variable
and the height as an explanatory variation, and fit a linear regres-
sion model. The details of the data collection scheme are pre-
sented in Section V. The estimated slope and intercept param-
eters as well as their estimated standard deviations are shown
in Table I. Because the measurement process is destructive, it is
difficult to get numerous CNTs array samples, thus the standard
deviation of some parameters are relatively large. In kriging
analysis, the semivariogram is one tool for studying spatial vari-
ations and correlations. Considering the location information of
each estimated parameter, we further draw the semivariograms
of the fitted slopes and intercepts based on Table I using the fol-
lowing equation:

(3)

where is the number of location pairs with the distance of
and is the regression parameter at location . If ,
it represents the intercept; otherwise, it refers to the slope. The
calculated semivariogram is further used to fit a semivariogram
model of the Gaussian correlation structure as follows:

(4)
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Fig. 6. Sample and fitted semivariogram for intercept.

Fig. 7. Sample and fitted semivariogram for slope.

The fitted correlation models as well as their 95% confidence
intervals are given in Figs. 6 and Fig. 7. It is observed that the
semivariogram curves of the two regression parameters rises
as the distance increases, and most of the calculated semivar-
iogram values are located within the 95% confidence intervals.
Hence, the relationship, represented by the regression parame-
ters, possesses certain spatial correlations that can be character-
ized by the Gaussian correlation structure.
Therefore, a model is required to characterize not only the

spatial properties of the two quantities but also the spatial cor-
relation of the relationship between them. This point makes our
research different from the methods mentioned in the previous
section, such as those described by Shi et al. [31]–[33], which
mainly focus on modeling the differences between replications
instead of locations.

B. Spatial Model Development
As mentioned before, both the height and the anisotropy are

considered to be spatial variables that are obtained bymeasuring
the same quality characteristic at multiple locations of the CNT
array. The measurement locations are denoted as

. Let be the height at loca-
tion of the th CNT array and denote
the anisotropy of location at the th CNT array. Based on

the explanation and notation above, we propose using a hierar-
chical spatial model of two levels. The first level mainly focuses
on capturing the general trend and the spatial property of the
anisotropy:

(5)

where is the response (anisotropy) at location given
the corresponding height of , is a set of known func-
tions. In this application, as engineering knowledge suggests a
linear relationship between the height and the anisotropy at any
given location, is a vector, which has been illustrated
and explained from both physical and statistical perspective in
Section I.

represents the correlation structure of anisotropy at
different locations (the local variation) and is also assumed to
follow a Gaussian process model:

(6)

where is the covariance structure with the th ele-
ments being , , is the variance.

are the independent and normally distributed random errors
that correspond to measurement errors at different locations and
satisfy

(7)

where is the variance and is an identity matrix.
are the coefficients of for a

given location , and its spatial property can be characterized
by a second level model as follows:

(8)

(9)

where and are the means structures of
and respectively, are a set of pre-

specified functions, and are the corresponding
coefficients, the covariance structures are and
with th elements of , and

, , respectively, and and
are the variances of the constant term and the slope term,

respectively.
In summary, we proposed a two-level spatial model for pre-

dicting the anisotropy using the height, the hierarchical structure
of which is illustrated in Fig. 8. In this model, the variability in
the response can be divided into two parts, the first is the gen-
eral trend, which is captured by , and the second is
the local variation, which is characterized by . Accord-
ingly, the parameters are estimated separately and iteratively in
the next subsection.
It is noted that is different from the defined

above. is a function between the response (anisotropy)
and the covariates (height and location), while is the
measurement result of anisotropy at a given location in the
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Fig. 8. Hierarchical structure of the proposed model.

th CNTs array. For the th replicate (or CNTs array), we
denote

...
...

...
...

It is also worth noting that the proposed model is similar to
the widely used Bayesian hierarchical model in the spirit of
pursuing the hierarchical structure. Compared with the usual
Bayesian hierarchical model, the proposed method has the fol-
lowing advantages.
1) The parameters in the proposed method have better inter-

pretability. Instead of using statistically necessary parame-
ters and hyper-parameters, the parameters used in the pro-
posed model have explicit engineering implications.

2) The parameters in the Bayesian hierarchical model often
need to be estimated via MCMC, which can be computa-
tionally intensive and may not have closed form.

However, the Bayesian method can take advantage of the
prior knowledge to improve the model, for example, Huang
[7] integrated the Bayesian hierarchical modeling with phys-
ical knowledge. The combined use of Bayesian hierarchical
models and engineering knowledge in solving real problems
is a promising method that deserves more attention in further
research.

C. Parameter Estimation
Based on the hierarchical model (5)–(9), the unknown param-

eters that need to be estimated include

(10)

Before estimating the parameters in (10), a training data set
needs to be collected as

(11)

where .

We assume the production and measurements of each repli-
cate (or CNT array) are independent of each other; hence

(12)

where is the density function of joint distribution
for and is the density function of the mar-
ginal distribution for .
For each replicate, the density function of the marginal dis-

tribution is

(13)

Hence, based on (12) and (13), the corresponding log-likeli-
hood function is as

(14)

where .
After certain algebraic transformations, the log-likelihood

function becomes

(15)

where , is the design matrix. Hence, we
reorganize the parameters in (10) as , where

, .
The unknown parameters can be obtained by maximizing the
likelihood function. As the total number to unknown param-
eters to be estimated is large, a simultaneous estimation of
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all unknown parameter is slow. Therefore, we here design an
iterative procedure for faster parameter estimation according to
the following three steps.
Step 1) We first estimate based on the assumption that the

values of are known. For the iteration, when ,
can be found directly from the previous iteration, which is

denoted as . When , the initial values of can be
randomly selected within some pre-specified intervals or chosen
based on experience.
Based on the above assumption, the log-likelihood with re-

spect to can be reconstructed as

(16)

where

. . . . . .

Given , the MLE of can be derived by taking the
derivative of the log-likelihood with respect to as

(17)

Setting (17) to 0, we obtain

(18)

Equivalently

(19)

where can be considered to be the estimation of based only
on (5) and can be considered to be the estimation based on
(8) and (9). is the weight matrix between and , which is

(20)

The estimation of is independent of the third term in the
log-likelihood function in (16), which can be neglected. The rest
can be considered to be a log-likelihood function of a universal
kriging with a nugget effect of . Hence, the MLE of the is

(21)

where .
Substituting these values into the log-likelihood function in

(16), we obtain the maximum of (16) over and as

(22)
which only depends on . Hence, the MLE of can
be obtained by

(23)

Substituting the back into (18) and (21), we can ob-
tain estimations of and . Then, the can be found for
the th iteration.
Step 2) Now, we estimate based on . By safely ig-

noring the terms in (15) that are independent of , the log-like-
lihood function becomes

(24)
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Similarly, the MLEs of and are

(25)

(26)

and the MLEs of and are

(27)

(28)

Substituting these values into the log-likelihood function in
(24), the log-likelihood function can be divided into two parts
as follows:

(29)

(30)

The two parts depend on and respectively. Hence, the
MLEs of and can be obtained by

(31)

(32)

By substituting the back into (25)–(28), we can
obtain an estimate of . Hence, the can
be found for the iteration and used to estimate in the
next iteration.
Step 3) Iterate steps 1 and 2 until a stop criterion is met.

D. Prediction
After the training data in (11) have been acquired and the pa-

rameters in (10) have been estimated, we focus on the predic-
tion of a new sample. In this subsection, two types of predic-
tions, which can be distinguished according to whether there is
anisotropy measured (or extra information) in the new sample,
are taken into account. If there is no anisotropy measured in any
location of the new sample, it is called an “Unobserved sample
prediction” otherwise, it is called a “Partially observed sample
prediction.”
Each type of prediction defined above can be further divided

into two subclasses. The first one represents the case where
is predicted at given its height ,
while the second one refers to the case where is predicted at

given its height . Intuitively, the dif-
ference between these two subclasses is that the and
of have been available for the first subclass, while they need
to be predicted for the second subclass. As a result, the entire

TABLE II
FOUR SCENARIOS FOR THE PREDICTION

TABLE III
SUMMARY OF THE PREDICTION PROCEDURES

prediction part can be grouped into four scenarios that are pre-
sented in Table II. The prediction procedures for each scenario
are presented in two steps and are summarized in Table III.
Step 1) For the given , we predict and as

(33)

(34)

where

and
It is noted that for the Scenario I and Scenario III pre-

dictions, Step 1 can be skipped because and ,
which have been estimated in the estimation procedure, do not
need to be predicted.
Step 2) For the “Unobserved sample prediction,” the of

the test point is predicted as

(35)

For the “Partially observed sample prediction,” there is the po-
tential to improve the prediction of by taking this extra in-
formation into consideration as

(36)

where
,

...
...

is the design matrix, and is the number of measured locations
in the new sample.
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IV. PERFORMANCE STUDY VIA SIMULATION

Here, a simulation study is used to verify the effectiveness
of the estimation algorithm and the accuracy of the prediction.
The simulation study can be divided into three parts, the first
part is the general simulation to verify the effectiveness of the
proposed method, which are followed by the uncertainty anal-
ysis and sensitivity analysis of the algorithm in the second and
third part respectively.

A. General Simulation
The size of the training sample, denoted as , is assumed to

be 20. On each CNT array (each sample), there are
measurement locations.
For the parameter settings, the are assumed to

be and ,
, , ,

, , , , which means that
. It is noted that we assume the covariance structure

is heteroscedastic. In addition, it is observed that CNTs near
the center area are usually lower than that near the edge area,
which forms an approximated quadratic surface with the vertex
at the center of the wafer. Therefore, in this simulation study,
the height function is assumed as a quadratic surface with the
vertex at the center of the surface such that the interaction term
is neglected in the .
The following Gaussian correlation function is used to char-

acterize the correlation structure:

(37)
Based on the parameter settings, the training data are gener-

ated using the following steps:
Step 1) Generate the height value at each measurement loca-

tion for the CNT arrays as

(38)

where, in this simulation, ,
, , and .

Step 2) Generate and for each measurement loca-
tion according to (8) and (9) as well as the related
parameter settings given above.

Step 3) Generate the anisotropy data
according to (5).

Now, we have a complete training data set as defined in
(11). The simulation proceeds according to the algorithm in
Section III. The initial values of are se-
lected randomly under the constraints of
and The initial values of are set
to 80% of their true values. The changes in the log-likelihood
value with increasing iterations are shown in Fig. 9. There are
two types of stopping rules in the proposed algorithm. The first
is that the average reduction of the likelihood function value
within steps is lower than , which is formulated as

(39)

where is the Log-Likelihood function value in the th it-
eration, is a pre-specified number of steps and assumed to

Fig. 9. Changes of the log-likelihood versus the number of iterations.

TABLE IV
ESTIMATION RESULTS OF ,

be ten in our simulation study. is the pre-specified value and
assumed to be 0.01 in our simulation study.
The second stopping rule is that the iteration reach a pre-spec-

ified number of steps , in our simulation the is assumed
as 500.
The estimated parameters are given in Tables IV–VI. It can

be seen that most of the parameters can be estimated accurately
while the estimation errors of and are relatively larger.
This happens mainly due to the inconsistence of the variance
parameter estimation in a GP model [35].
Theparameters estimated above are used to predict the charac-

teristics of the new sample. The prediction comprises four parts
that correspond to the four scenarios defined in Section III-D).
Four new samples are generated in the same way as the 20
training samples for the four scenarios, respectively. The mea-
surement locations in the predicted samples are identical to those
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TABLE V
ESTIMATION RESULTS OF

TABLE VI
ESTIMATION RESULTS OF AND

TABLE VII
MSE OF THE PREDICTION RESULTS

of the training samples for Scenario I and Scenario III, while they
are different for Scenario II and Scenario IV. In addition, Sce-
nario III and Scenario IV, which are for the “Partially observed
sample prediction,” are further grouped into four situations
according to the number of locations that have been measured in
the predicted sample, which are 2, 4, 8, and 12, respectively. It is
noted that themeasured locations of the situationswith relatively
fewer points are a subset of those in situations with more points.
For each situation, the characterization of interest of every lo-
cation except for the measured locations is predicted using the
procedure illustrated in Table III. The mean square error (MSE)
is calculated and is presented inTable VII. As can be seen, on one
hand, the “Partially observed sample prediction” can provide
better results than the “Unobserved sample prediction”, and its
accuracy can be improved by increasing the number ofmeasured
locations in the new sample. On the other hand, the predictions
for Scenario I and Scenario III are more accurate than those for

TABLE VIII
ESTIMATION RESULTS OF ,

TABLE IX
ESTIMATION RESULTS OF

Scenario II and Scenario IV, respectively, which agrees with our
intuitive understanding.

B. Uncertainty Analysis
Here, we study the uncertainty of the estimates via more ex-

tensive simulations; the parameters are set exactly the same as
that in Section IV-A, and the training samples are also gener-
ated according to the procedure described in Section IV-A. The
estimation algorithm is repeated 50 times with different training
samples such that the uncertainty of the estimates can be calcu-
lated; the corresponding results are presented in Tables VIII–X.
Since the training samples used for each run are different, the
true values of and are also different. Therefore, only
the MSEs of estimated and are calculated and listed in
Table VIII.
From the simulation results, it is can be seen that most of the

parameters can be estimated accurately except the and .
The inaccurate estimation of and , which is caused by
the limited sample points, has little influence on the prediction
in practice.

C. Sensitivity Analysis
Here, we analyze the sensitivity of the initial value and

sample size respectively. For the first part, the initial value of
are given a bias, which are from 20% to 180%, and

the simulation results are shown in Tables XI and XII. In order
to make the results of different parameters comparable, we used
the relative estimation error as the criterion which is defined as

(40)
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TABLE X
ESTIMATION RESULT OF AND

TABLE XI
SENSITIVE ANALYSIS OF THE INITIAL VALUE (PART ONE, FOR , AND )

TABLE XII
SENSITIVE ANALYSIS OF THE INITIAL VALUE (PART TWO, FOR )

It is noted that some of true value of are 0, hence, (40)
cannot be used. In this case, we used as the criterion
for . As can be seen from Tables XI and XII, when the bias
is between 80% and 120%, the estimation result is relatively
acceptable (the estimation error are within 20%). The are still
difficult to estimate very accurately as mentioned before.
The prediction results for different initial values are shown

in Table XIII, in which the MSE are used as criterion. From
the result in Table XIII, the initial value has great influence on
the prediction accuracy. However, the algorithm can deliver ac-
ceptable when the bias locates between 80% and 120%, which
is similar with results of parameter estimation.
For the second part, we analyzed the sensitivity of the sample

size from two factors, the number of the CNTs arrays and the
number of points in each CNTs array. The number of the CNTs
arrays are categorized into five levels (10, 20, 30, 40, and 50),
while the number of points has three levels (9, 16. and 25). We

TABLE XIII
PREDICTION RESULTS FOR DIFFERENT INITIAL VALUE (CRITERION: MSE)

TABLE XIV
FULL FACTORIAL DESIGN FOR THE SENSITIVITY ANALYSIS OF SAMPLE SIZE

TABLE XV
SENSITIVE ANALYSIS OF THE SAMPLE SIZE (PART ONE, FOR , AND )

investigated the effect of these two factors by full factorial de-
sign shown in Table XIV.
The results of parameter estimation are shown in

Tables XV and XVI (the order is corresponding to the com-
bination of factors shown in Table XIV), the criterion is the
same as the sensitivity analysis for initial values. It can be
seen that the accuracy of the parameter estimation increases
with the increase of the number of CNTs array, however, the
accuracy changes slightly when the number of CNTs array
is larger than 20. Compared with the number of CNTs array,
the number of points has less influence on the accuracy of
parameter estimation.
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TABLE XVI
SENSITIVE ANALYSIS OF THE SAMPLE SIZE (PART TWO, FOR )

The prediction results for different sample size are shown in
Table XVII, in which the MSE are used as criterion. Clearly,
both factors of sample size has great influence on the prediction
accuracy, the prediction accuracy increases with the rise of two
factors as expected.

V. APPLICATION TO A REAL EXAMPLE

In this section, we use the real data collected from 17 CNT
arrays to evaluate the performance of the proposed method. On
each CNT array, the anisotropy and the height are measured at
13 pre-specified locations, as shown in Fig. 10. The contours
of the height and anisotropy of the CNT array are presented in
Figs. 11 and 12, respectively. As can be seen, the height near
the edge is usually higher than the height near the center, and the
anisotropy surface basically resembles the corresponding height
surface.
To determine the function form of the in (8) and (9),

a linear regression function is fitted using data from each mea-
surement location. Then, we obtain the coefficients of the linear
models representing the relationship between the height and the
anisotropy at different locations, which are used to estimate the
coefficients at other locations by interpolating. The contours of
the intercept term (see Fig. 13) and the slope term (see Fig. 14)
show that a quadratic function seems appropriate for describing
the mean parts of (8) and (9). In addition, the result of the linear

TABLE XVII
PREDICTION RESULTS FOR DIFFERENT SAMPLE SIZE (CRITERION: MSE)

Fig. 10. Diagram of the 13 measurement locations.

regression is used as the initial value of the proposed method in
this case study.
The first part of this case study mainly focuses on verification

of the proposed model using real data. We randomly select one
sample from the 17 CNT arrays to be a testing sample and use
the rest as training samples. The situations are still categorized
according to the number of measured locations in the predicted
sample, which are 0, 2, 4, 8, and 12. It is noted that “0” cor-
responds to the “Unobserved sample prediction” and the others
constitute the “Partially observed sample prediction” in this case
study. The prediction results are presented in Fig. 15 for Scenario
I and Scenario II and in Fig. 16 for Scenario III and Scenario IV.
As can be seen, although the situation with more measured lo-
cations can provide better results, the predicted values for the
“Unobserved sample” (Scenario I and Scenario III) are already
very close to the true value, which verifies the effectiveness of
the proposed method for two types of prediction. In addition to
the graphical illustration, we calculate the MSE of the predicted
result, which decreases from 60.2 to 3.3 for the Scenario II pre-
diction and from 102.3 to 5.4 for the Scenario IV prediction as
the number of measured locations increases from 2 to 12.
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Fig. 11. Contour of the surface height for the CNT array, taking the first CNT
array as an example.

Fig. 12. Contour of the anisotropy surface for the CNT array, taking the first
CNT array as an example.

Fig. 13. Contour of the intercept term.

The second part of this section aims to illustrate the superi-
ority of the proposed method for the application of nanomate-
rial surface characterization. For this purpose, two conventional

Fig. 14. Contour of the slope term.

Fig. 15. Scenarios I and II prediction results, where “0” corresponds to the
Scenario I prediction and the others correspond to the Scenario II prediction.

Fig. 16. Scenarios III and IV prediction results, where “0” corresponds to the
Scenario III prediction and the others correspond to the Scenario IV prediction.

methods are chosen as the benchmarks to compare with the pro-
posed method. The first method involves applying the linear re-
gression directly for each measurement location as

(41)
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where the coefficients are estimated as

(42)
where is the design matrix for the th measurement location,
and the anisotropy at in the new CNT array can be predicted
as

(43)
The second benchmark is the extension of the bivariate spatial

model proposed by Zhang et al. [34] to multiple replicates, of
which the model should be

(44)

Its log-likelihood is

(45)

where .
By maximizing the log-likelihood function, the MLE of pa-

rameters can be easily obtained, and the anisotropy can be pre-
dicted as

(46)
It is unrealistic to measure the anisotropy at more than two

locations for each CNT array in real manufacturing, and, as
a result, only two locations are selected to be measured for
anisotropy in most of the produced CNT arrays. Therefore, we
compared the proposed method with two traditional methods
under the “Partially observed sample prediction” with two
measured locations, which correspond with Scenarios III and IV
(defined in Section III-D). For the 17 CNT arrays, one sample
at a time is selected as the test sample, and the rest are training
samples. Then, three methods are applied such that the predicted
value is obtained for each location for each of the different
methods. We iterate this process until every sample has been
used as the predicted sample. After that, the MSE of prediction
for each sample is calculated as shown in Table XVIII. It is noted
that, for the Scenario IV prediction, the predicted location should
be deleted from the training sample. Therefore, themethod based
on linear regression cannot be used for this scenario, and only
two methods are applied for the Scenario IV prediction.
From the results in Table XVIII, the proposed method can

deliver more accurate predictions than the other two traditional
methods for both scenarios. The reason for this phenomenon
can be explained as follows. The LR method assumes that the
anisotropy at different locations is independent, while the BSM
method neglects the relationship differences between two char-
acteristics at each location. However, the proposed method not
only considers the spatial correlation of the characteristics but
also uses a Gaussian process to model the coefficients; such a
representation presents the relationship between two character-
istics at each location and forms a hierarchical model that has
the potential to deliver better performance.

TABLE XVIII
COMPARISON OF THE RESULTS OF THREE METHODS

USING AN MSE CRITERION

Note: “HSM” Refers to the Proposed Hierarchical Spatial Model, “LR”
Refers to the Method Based on Linear Regression, and “BSM” Refers to
Simple Extension of the Bivariate Spatial Model

Practitioners should be fully aware that, compared with
LR and BSM, HSM estimates parameter iteratively, and thus
is more computational demanding. In most of our simulated
scenarios, the HSMmethod can finish estimation within several
minutes on a normal personal computer, which guarantees the
practical usefulness of the proposed method.

VI. CONCLUSION
As one of the critical quality indices of CNT film, anisotropy

has a great influence on the performance of devices made from
CNT film. However, the anisotropy cannot be measured accu-
rately at a reasonable cost because the measurement process
is destructive and extremely sensitive to environmental distur-
bance. At the same time, the anisotropy has been found to be
closely correlated with the height of the CNT array, which is
another spatial quality characteristic that can be obtained accu-
rately and inexpensively. This research proposes a hierarchical
spatial model consisting of two levels. The first level mainly
focuses on capturing the general trend and the spatial property
of the anisotropy, while the second level is used to characterize
the spatial property of the relationship between the two quality
indices. After that, an iterative MLE-based algorithm is devel-
oped to estimate the related parameters. A prediction procedure
is also derived for different prediction scenarios, and its effec-
tiveness is verified by a simulation study. Finally, a case study
is utilized to evaluate the performance of the proposed method,
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which illustrates that the proposed method has the ability to de-
liver better results for the prediction of anisotropy compared
with two conventional methods.
Considering the many challenges facing nanotechnology re-

search and complexity of different novel processes, the pro-
posed method can be extended to other situations with sim-
ilar metrology needs. Although the change of real applications
may lead to a change of the model format and potentially incurs
new technical difficulties, we believe the adoption of statistical
methods in scaling-up nanotechnology research and production
is a promising area for future research.

ACKNOWLEDGMENT

The authors would like to thank the associate editor and two
anonymous referees for their valuable comments, which have
helped improve this work greatly.

REFERENCES
[1] M. Kumar and Y. Ando, “Chemical vapor deposition of carbon

nanotubes: A review on growth mechanism and mass production,” J.
Nanosci. Nanotechnol., vol. 10, pp. 3739–3758, 2010.

[2] K. L. Jiang, Q. Q. Li, and S. S. Fan, “Nanotechnology: Spinning contin-
uous carbon nanotube yarns—Carbon nanotubes weave their way into
a range of imaginative macroscopic applications,”Nature, vol. 419, pp.
801–801, 2002.

[3] C. Feng, K. Liu, J.-S. Wu, L. Liu, J.-S. Cheng, and Y. Zhang et
al., “Flexible, stretchable, transparent conducting films made from
superaligned carbon nanotubes,” Adv. Functional Mater., vol. 20, pp.
885–891, 2010.

[4] K. Jiang, J. Wang, Q. Li, L. Liu, C. Liu, and S. Fan, “Superaligned
carbon nanotube arrays, films, yarns: A road to applications,” Adv.
Mater., vol. 23, pp. 1154–1161, 2011.

[5] X. Wang, S. Wu, and K. Wang, “A run-to-run profile control algorithm
for improving the flatness of nano-scale products,” IEEE Trans. Autom.
Sci. Eng. vol. 12, no. 1, pp. 192–203, Feb. 2015.

[6] Q. Huang, L.Wang, T. Dasgupta, L. Zhu, P. K. Sekhar, and S. Bhansali
et al., “Statistical weight kinetics modeling and estimation for silica
nanowire growth catalyzed by pd thin film,” IEEE Trans. Autom. Sci.
Eng., vol. 8, no. 2, pp. 303–310, Apr. 2011.

[7] Q. Huang, “Physics-driven Bayesian hierarchical modeling of the
nanowire growth process at each scale,” IIE Trans., vol. 43, pp. 1–11,
2011.

[8] T. Dasgupta, C. Ma, V. R. Joseph, Z. L. Wang, and C. F. J. Wu, “Sta-
tistical modeling and analysis for robust synthesis of nanostructures,”
J. Amer. Stat. Assoc., vol. 103, pp. 594–603, 2008.

[9] L. J. H. Xu and Q. , “EM estimation of nanostructure interactions with
incomplete feature measurement and its tailored space filling designs,”
IEEE Trans. Autom. Sci. Eng., vol. 10, no. 3, pp. 579–587, Jun. 2013.

[10] L. J. Xu and Q. Huang, “Modeling the interactions among neighboring
nanostructures for local feature characterization and defect detection,”
IEEE Trans. Autom. Sci. Eng., vol. 9, no. 5, pp. 745–754, Oct. 2012.

[11] F. Wang, Y. Hwang, P. Z. G. Qian, and X. Wang, “A statistics-guided
approach to precise characterization of nanowire morphology,” ACS
Nano, vol. 4, pp. 855–862, 2010.

[12] W. Mai and X. Deng, “The applications of statistical quantification
techniques in nanomechanics and nanoelectronics,” Nanotechnology,
vol. 21, 2010.

[13] X. Deng, V. R. Joseph, W. Mai, Z. L. Wang, and C. F. J. Wu, “Statis-
tical approach to quantifying the elastic deformation of nanomaterials,”
Proc. Nat. Acad. Sci. USA, vol. 106, pp. 11845–11850, 2009.

[14] H. Scheffe, “Statistical-theory of calibration,” Ann. Statistics, vol. 1,
pp. 1–37, 1973.

[15] C. Eisenhart, “the interpretation of certain regression methods and their
use in biological and industrial research,” Ann. Math. Statist, vol. 10,
p. 162, 1939.

[16] V. Centner, D. L. Massart, and S. de Jong, “Inverse calibration predicts
better than classical calibration,” Fresenius J. Anal. Chemistry, vol.
361, pp. 2–9, 1998.

[17] K. R. Eberhardt and R. W. Mee, “Constant-width calibration intervals
for linear-regression,” J. Quality Technol., vol. 26, pp. 21–29, 1994.

[18] R. G. Krutchko, “Classical and inverse regression methods of calibra-
tion in extrapolation,” Technometrics, vol. 11, p. 605-&, 1969.

[19] R. W. Mee, K. R. Eberhardt, and C. P. Reeve, “Calibration and simul-
taneous tolerance intervals for regression,” Technometrics, vol. 33, pp.
211–219, 1991.

[20] J. Tellinghuisen, “Inverse vs. classical calibration for small data sets,”
Fresenius J. Anal. Chemistry, vol. 368, pp. 585–588, 2000.

[21] P. A. Parker, G. G. Vining, S. R. Wilson, J. L. Szarka, and N. G.
Johnson, “The prediction properties of classical and inverse regression
for the simple linear calibration problem,” J. Quality Technol., vol. 42,
pp. 332–347, 2010.

[22] C. N, Statistics for Spatial Data. New York, NY, USA: Wiley, 1993.
[23] T. J. Santer, B. J. Williams, and W. I. Notz, The Design and Analysis

of Computer Experiments. New York, NY, USA: Springer, 2003.
[24] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Ma-

chine Learning. Cambridge, MA, USA: MIT, 2006.
[25] V. R. Joseph, Y. Hung, and A. Sudjianto, “Blind kriging: A new

method for developing metamodels,” J. Mech. Design, vol. 130, p.
031102, Mar. 2008.

[26] S. Ba and V. R. Joseph, “Composite Gaussian process models for
emulating expensive functions,” Ann. Appl. Statistics, vol. 6, pp.
1838–1860, Dec. 2012.

[27] Y. Hung, V. R. Joseph, and M. S. N. , “Analysis of computer ex-
periements with functional response,” Technometrics, vol. 57, pp.
35–44, 2015.

[28] M. J. Bayarri, J. O. Berger, R. Paulo, J. Sacks, J. A. Cafeo, and J.
Cavendish et al., “A framework for validation of computer models,”
Technometrics, vol. 49, pp. 138–154, May 2007.

[29] K. T. Fang, R. Li, andA. Sudjianto, Design andModeling for Computer
Experiments. Boca Raton, FL, USA: CRC, 2006.

[30] J. O. Ramsay and B. W. Silverman, Functional Data Analysis, 2nd
ed. New York, NY, USA: Springer, 2005.

[31] J. Q. Shi and B. Wang, “Curve prediction and clustering with mixtures
of Gaussian process functional regression models,” Statistics and Com-
puting, vol. 18, pp. 267–283, Sep. 2008.

[32] J. Q. Shi, B. Wang, R. Murray-Smith, and D. M. Titterington,
“Gaussian process functional regression Modeling for batch data,”
Biometrics, vol. 63, pp. 714–723, Sep. 2007.

[33] J. Q. Shi, B.Wang, E. J. Will, and R.M.West, “Mixed-effects Gaussian
process functional regression models with application to dose-response
curve prediction,” Statistics in Medicine, vol. 31, pp. 3165–3177, Nov.
20, 2012.

[34] Q. Zhang, X. Deng, P. Z. G. Qian, and X. Wang, “Spatial modeling
for refining and predicting surface potential mapping with enhanced
resolution,” Nanoscale, vol. 5, pp. 921–926, 2013.

[35] H. Zhang, “Inconsistent estimation and asymptotically equal interpo-
lations in model-based geostatistics,” J. Amer. Stat. Assoc., vol. 99, pp.
250–261, 2004.

Xin Wang received the B.S. degree from Xi Dian
University, Xi'an, China, in 2009. He is currently
working toward the Ph.D. degree at Tsinghua Uni-
versity, Beijing, China.
His general research interests include statistical

modeling, process control and experiment design for
nano manufacturing.
Mr. Wang is a member of the Institute for Op-

erations Research and the Management Sciences
(INFORMS).

Su Wu received the Ph.D. degree in mechanical en-
gineering from Tsinghua University, Beijing, China,
in 1994.
He is currently a Professor with the Department of

Industrial Engineering, Tsinghua University, Beijing,
China. He is a member of the Editorial Board for
International Journal of Production Economics. His
research focus on manufacturing and service quality
control, manufacturing technology, reliability, and
maintenance.
Prof. Wu is an associate member of China High

Technology Industrialization.



WANG et al.: SPATIAL CALIBRATION MODEL FOR NANOTUBE FILM QUALITY PREDICTION 917

Kaibo Wang received the B.S. and M.S. degrees in
mechatronics from Xi'an Jiaotong University, Xi'an,
China, and the Ph.D. degree in industrial engineering
and engineering management from the Hong Kong
University of Science and Technology, Hong Kong.
He is an Associate Professor with the Department

of Industrial Engineering, Tsinghua University, Bei-
jing, China. He has published papers in journals such
as Journal of Quality Technology, IIE Transactions,
Quality and Reliability Engineering International,
International Journal of Production Research, and

others. His research focuses on statistical quality control and data-driven
complex system modeling, monitoring, diagnosis and control, with a special
emphasis on the integration of engineering knowledge and statistical theories
for solving problems from real industries.
Dr. Wang is a member of INFORMS, IIE, and a senior member of ASQ.

Xinwei Deng received the B.S. degree in mathe-
matics from Nanjing University, Nanjing, China, in
2003, and the Ph.D. degree in industrial and systems
engineering from Georgia Institute of Technology,
Atlanta, GA, USA, in 2009.
From 2009 to 2011, he was a Visiting Assistant

Professor with the Department of Statistics, Uni-
versity of Wisconsin-Madison. Since 2011, he has
been an Assistant Professor with the Department of
Statistics, Virginia Polytechnic Institute and State
University, Blacksburg, VA, USA. His research in-

terest includes interface between design of experiments and machine learning,
model and analysis of high-dimensional data, and statistical approaches to
nanotechnology.
Mr. Deng is a member of the American Statistical Association, the Institute

for Operations Research, and the Management Sciences (INFORMS).

Liang Liu received the B.S. degree in physics, M.S.
degree in acoustics, and Ph.D. degree in condensed
physics from Tsinghua University, Beijing, China, in
1996, 1999, and 2005, respectively.
From 2005 to 2009, he was a Postdoctoral Re-

search Assistant with the Department of Chemistry,
Tsinghua University, Beijing, China. From 2009 to
2012, he was the General Manager of the Beijing
Funate Innovation Technology Co. Since 2012, he
has been the R&D Director of the Tianjin Funa
Yuanchuang technology. Co. Ltd., Tianjin, China.

He is the author of more than 40 articles and the inventor of more than 90
patents. His research interests and working focus include mass production and
quality control of the super-aligned carbon nanotube arrays, films and yarns,
facility and automation development for carbon nanotube production quality
inspection, and applications of carbon nanotubes in touch panels, batteries,
field emission devices, and other area.

Qi Cai received the B.S., M.S., and Ph.D. degrees
in materials science and engineering from Anhui
University, Hefei, Anhui, China, in 2001, 2004, and
2007, respectively.
From 2008 to 2011, he was a Research Assistant

with the Department of Physics, Tsinghua Uni-
versity, Beijing, China. Since 2012, he has been a
Senior R&D Engineer with the R&D Department,
Tianjin Funayuanchuang Technology Co., Ltd.,
Tianjin, China. His research interests include carbon
nanotube paste and large scale production of super-

aligned arrays of carbon nanotubes.


