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In modern manufacturing process scale-up, design of experiments is widely used to identify optimal process settings, followed by
production runs to validate these process settings. Both experimental data and observational data are collected in the manufacturing
process. However, current methodologies often use a single type of data to model the process. This work presents an innovative
method to efficiently model a manufacturing process by integrating the two types of data. An ensemble modeling strategy is proposed
that utilizes the constrained likelihood approach, where the constraints incorporate the sequential nature and inherent features of the
two types of data. It therefore achieves better estimation and prediction than conventional methods. Simulations and a case study in
wafer manufacturing are provided to illustrate the merits of the proposed method.
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1. Introduction

A product realization cycle contains several important
steps, including (i) product design; (ii) manufacturing pro-
cess design; (iii) manufacturing operation planning; and (iv)
quality inspection and control. Finally, products are deliv-
ered to customers through supply chain systems. The needs
of a highly dynamic market require modern manufacturing
to produce customized products with high quality and in a
timely manner. Therefore, it is crucial to shorten the lead
time of the product realization cycle to effectively improve
the performance of manufacturing systems. In order to do
so, it is important to shorten the time period involved in
the scale-up of a manufacturing process.

Manufacturing scale-up is an important step in product
realization. It transfers a pilot operation at an experimental
scale to manufacturing production at a large scale (Parker,
2002). It is generally time-consuming to fulfill such a scale-
up effort because it requires multiple rounds of adjustment
technology, equipment, process settings, and so on. In man-
ufacturing scale-up efforts, a typical problem is to opti-
mize the process settings on the large manufacturing scale,
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given that existing manufacturing equipment is running
normally. For example, for a wafer manufacturing scale-up
process, a designed experiment was conducted to identify
the optimal settings of the process to improve quality in a
lapping process, as shown in Fig. 1 (Ning et al., 2012). Pro-
duction runs were then conducted after the experiments to
validate the optimized settings; i.e., the optimal settings or
the settings in the neighborhood of the optimal settings ob-
tained from the experiments which were used to evaluate the
quality performance. Such an experiment–validation pro-
cess may take several rounds until the quality requirements
of wafers are satisfied. The whole process can take several
weeks to finish and requires a large amount of materials
and energy. This motivates the investigation of methods to
accelerate the scale-up efforts and at the same time reduce
the cost and time, while improving the performance of the
manufacturing process.

Motivated by the wafer manufacturing scale-up exam-
ple, one research objective is to quickly obtain an adequate
quality–process model that can be used to quantify the re-
lationship between product quality and process variables.
This model can then be used to optimize process settings,
thus improving the product quality. In general, construct-
ing such a quality–process model is expensive in terms of
two aspects. First, the process needs both designed exper-
iments and validation production runs, which are time-
consuming. Design of Experiments (DOE) is conducted
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2 Jin and Deng

Fig. 1. A diagram of the lapping process. Wafers are lapped be-
tween the upper and lower plates. Details described in Section 4
(Ning et al., 2012, with authors’ permission).

to identify important process variables and determine the
optimized initial recipe. After DOE, validation production
runs are performed to get observational (OBS) data to val-
idate the manufacturing process settings. In most cases, the
initial recipe from the DOE is used in the validation runs.
The actual settings of the process variables in the valida-
tion can vary in the neighborhood of the initial recipe due
to various reasons. For example, depending on the control
precision of the manufacturing equipment, the real values
of process variables may not always be identical to the tar-
geted settings. Instead, the real values can fluctuate around
the targeted settings of the initial recipe. Second, it often
needs several rounds of DOE and validation production
runs to obtain an adequate model for process optimiza-
tion. Nominal-the-best or smaller-the-better objectives are
usually adopted to determine the optimal process settings.
Although both DOE and OBS data are collected, current
research mainly focuses on analyzing a single type of data.
In particular, the DOE data are used for modeling and op-
timization, whereas the OBS data are used for validation.
If models are obtained based on the two types of data sepa-
rately, the resulting models may fail to consistently describe
the quality–process relationship. The model from the DOE
data may have different significant variables and parame-
ter estimations than the model from the OBS data, even
if both types of data come from the same manufacturing
process. A model based on one type of data can have poor
prediction performance on another type of data. This phe-
nomenon is observed in the simulations and case studies
reported later in this article. Consequently, it requires an
additional trial-and-error approach and to conduct more
DOE studies and production runs to optimize the manu-
facturing process settings, which significantly increases the
lead time and cost for product realization.

In the literature, the two types of data are com-
monly used to model a manufacturing process, respectively.
Regression models based on the DOE data have been de-
veloped under different perspectives. Various process op-

Table 1. Characteristics of DOE data and OBS data

Data type Sample size Uncertainty Range

DOE Small Low Large
OBS Large High Small

timizations and controls have been performed to reduce
the variation of quality variables and to improve the yield,
such as the Robust Parameter Design (RPD) approach
(Wu and Hamada, 2009), RPD-based feedforward or feed-
back controls (Joseph, 2003; Dasgupta and Wu, 2006),
and DOE-based automatic process control (Jin and Ding,
2004; Zhong et al., 2010). These methods have been widely
used in discrete part manufacturing, nanostructured ma-
terial fabrications (Basumallick et al., 2003; Dasgupta et
al., 2008), and other applications. Although DOE has been
successfully applied to manufacturing processes, the high
cost of physical experiments prohibits a large number of
runs for modeling and optimization purposes (Shi, 2006).
OBS data from production runs are also widely used to
model manufacturing systems. For example, in quality en-
gineering, regression-based variation analysis using OBS
data (Fong and Lawless, 1998) has been used to model
the quality–process relationship. Shi (2006) used stream-
of-variation theory to construct state space models that
link the quality variables with both process and upstream
variables. The OBS data were further used to estimate
and calibrate the model parameters. Recently, data min-
ing approaches were utilized to model and improve manu-
facturing processes (Jin and Shi, 2012). Although models
based on OBS data have demonstrated success in various
applications, they are not directly applicable to unstable
testing production systems, where the data contain high
uncertainties.

Table 1 summarizes the characteristics of the two types of
data. For the DOE data, they are usually collected in well-
designed settings and a well-controlled production environ-
ment, which reduces the collinearity of the factors as well as
the impact of noise factors. The ranges of factors are usu-
ally approperly selected to explore possible combinations
of the settings. However, the sample size is often limited,
which can result in inaccurate estimation of parameters.
For the OBS data, it can have a large sample size but can
contain high uncertainty due to the uncontrolled covariate
factors. The covariates can be intermediate quality vari-
ables or environmental variables that cannot be controlled
but still play an important role in the final process per-
formance. Process variables are usually constrained into a
small neighborhood of the manufacturing process settings
and thus the corresponding model may not work well in
extrapolated regions. Thus, the estimated optimal settings
based on the OBS data can be a local optimum.

As both types of data are readily available in manufac-
turing scale-up efforts, it is natural to integrate both types
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Data fusion in manufacturing scale-up 3

of data in an appropriate manner. Using DOE and OBS
data, we propose an ensemble modeling strategy to model
manufacturing processes. This approach can outperform
models estimated from a single type of data and has the
following attractive features. First, the proposed method
enables the use of DOE data to better identify significant
factors, while integrating OBS data to enhance the model
estimation and prediction. Second, a meaningful variable
selection is achieved by incorporating the sequential nature
and inherent features of two types of data. The sequential
nature refers to the fact that the two types of data are usu-
ally collected sequentially. Following the DOE, the OBS
data are obtained by conducting validation runs with the
process settings based on the optimal recipe obtained from
the DOE data. The inherent features refer to the point
that significant predictors in modeling the DOE data are
expected to keep their significance in modeling the OBS
data. The proposed method adopts the constrained likeli-
hood approach, where the constraints address the sequen-
tial nature and inherent features of the two types of data
in variable selection. Therefore, when obtaining a more
appropriate model with better prediction and variable se-
lection performance, we can reduce the number of rounds
of experiments and validation production runs in the scale-
up, leading to significant savings in terms of both time and
cost.

The remainder of the article is organized as follows. Sec-
tion 2 describes the proposed ensemble modeling method.
The statistical property of the estimation is also discussed.
A simulation study to show the effectiveness of the pro-
posed method is reported in Section 3. A case study of a
wafer manufacturing process is used to elaborate the pro-
posed method in Section 4. Finally, Section 5 concludes
this work.

2. Ensemble modeling

In this section, we consider jointly estimating two models,
one for the DOE data and the other for the OBS data. The
term DOE model refers to the model based on the DOE
data, and the OBS model refers to the model based on the
OBS data. Several assumptions are made in developing the
proposed method.

1. The two types of data are collected from the same man-
ufacturing process with the same process input variables
and quality response variable. The first data set is col-
lected from the DOE and the second data set is collected
from the validation production runs after the DOE.

2. The manufacturing process is static in the modeling
effort, which indicates that the underlying model will
remain unchanged for the significant variables and co-
efficients. This assumption implies that additional un-
certainty in the OBS data is introduced by uncontrolled
noise factors.

3. The significant variables identified from the DOE model
are suggested to be significant in the OBS model. This
assumption implies that a DOE model usually has a bet-
ter capability than the OBS model to identify significant
variables. We incorporate this assumption as constraints
in the proposed method.

Let us denote the DOE data as (z(1)
i , y(1)

i ), i =
1, . . . , n1 where z(1)

i = (z(1)
i1 , . . . , z(1)

i p ), and the OBS data are

(z(2)
j , y(2)

j ), j = 1, . . . , n2 where z(2)
j = (z(2)

j1 , . . . , z(2)
j p ). Here

y(k), k = 1, 2 is the univariate response. To model the
quality–process relationship, we consider linear models
with the main effects and two-factor interaction effects act-
ing as predictors. Here we only consider the two-factor
interaction effects as most optimization problems, such as
RPD, mainly emphasize control-noise (control–covariates)
interactions. Other interaction terms can be easily adopted
in our framework. Specifically, we model DOE data and
OBS data respectively as follows:

y(1)
i = x(1)′

i β(1) + ε
(1)
i , ε

(1)
i ∼ N

(
0, σ 2

1

)
, (1)

y(2)
j = x(2)′

j β(2) + ε
(2)
j , ε

(2)
j ∼ N

(
0, σ 2

2

)
, (2)

where ε
(1)
i and ε

(2)
j are independent and identically dis-

tributed random errors. The predictor vector x(m)
i , m =

1, 2 is written as x(m)
i = (x(m)

i1 , . . . , x(m)
i p , x(m)

i1 x(m)
i2 , . . . , x(m)

i,p−1

x(m)
i p )′. The β(m) = (β (m)

1 , β
(m)
p , β

(m)
12 , . . . , β

(m)
p−1,p)′ is the corre-

sponding vector of parameter coefficients. This means that
the predictor variables in the model includes the main effect
xk, k = 1, . . . , p and their two-factor interactions xkxl . In
this model formulation, we assume that the DOE model
and the OBS model can have different structures and pa-
rameters. This does not imply that the underlying true
model varies for the generation of the DOE and OBS data.
We assume that the underlying model is static and remains
unchanged for the whole process. The model structures
in the DOE and OBS models reflect different information
from the two types of data. The DOE model intends to
capture the significant predictors from the DOE data. The
OBS model attempts to enhance the parameter estimation
using the OBS data, while preserving the significant vari-
ables from the DOE model. Recall that the OBS data are
collected from the validation production runs after con-
ducting the experimental designs. For the significance of
predictors in both models, Assumption 3 indicates that
when the kth predictor variable is significant in the DOE
model, we expect that it should also be significant in the
OBS model. This means that if the kth predictor vari-
able is not significant in the OBS model, then we expect
that it is also not significant in the DOE model. How-
ever, if the kth predictor variable is not significant in the
DOE model, it is possible that it becomes significant in the
OBS model. The significance relationship of the predictors
will be reflected through the constraints in maximizing the

D
ow

nl
oa

de
d 

by
 [

V
ir

gi
ni

a 
T

ec
h 

L
ib

ra
ri

es
] 

at
 1

2:
37

 0
3 

N
ov

em
be

r 
20

14
 



4 Jin and Deng

likelihood function. For the proposed method, the OBS
model structure will be used as the final model structure for
the manufacturing process, which leads to the final manu-
facturing process settings.

2.1. The proposed method

To incorporate the sequential nature and inherent features
of the two types of data sets, we propose a novel regular-
ized approach to estimate the model parameters. Specifi-
cally, we adopt a nonnegative garrote to achieve the joint
variable selection and estimation. The original nonnegative
garrote estimator was introduced by Breiman (1995); it can
be viewed as a scaled version of least squares estimation.
Theoretical properties of nonnegative garrote can be found
in Yuan and Lin (2007). The key idea behind a nonnegative
garrote is to reparameterize the coefficients in Equations
(1) and (2) as

β
(m)
k = θ

(m)
k β̃

(m)
k , β

(m)
kl = θ

(m)
kl β̃

(m)
kl , m = 1, 2,

where β̃
(m)
k and β̃

(m)
kl are least squares estimates. The θ

(m)
k ≥ 0

and θ
(m)
kl ≥ 0 are shrinkage coefficients, which will be esti-

mated from the data. Note that when θ
(m)
k = 1 and θ

(m)
kl = 1,

the estimation from the nonnegative garrote method be-
comes the least squares estimation.

Now we can define the transformed data points
x̃(m)

i = Bx(m)
i , m = 1, 2 for DOE and OBS data, where

B = diag(β̃ (m)
1 , . . . , β̃

(m)
p , β̃

(m)
12 , . . . , β̃

(m)
p−1,p). Defining θ(m) =

(θ (m)
1 , . . . , θ

(m)
p , θ

(m)
12 , . . . , θ

(m)
p−1,p)′, then the DOE and OBS

models in Equations (1) and (2) can be rewritten as

y(1)
i = x̃(1)′

i θ(1) + ε
(1)
i , ε

(1)
i ∼ N

(
0, σ 2

1

)
, (3)

y(2)
j = x̃(2)′

j θ(2) + ε
(2)
j , ε

(2)
j ∼ N

(
0, σ 2

2

)
. (4)

Such a parameterization creates the flexibility to allow
various constraints to be imposed when estimating param-
eters. The negative log-likelihood function based on the
above models can be written as

n1

[
log σ 2

1 + 1
n1

n1∑
i=1

(
y(1)

i − x̃(1)′
i θ(1))2

σ 2
1

]

+ n2

⎡
⎣log σ 2

2 + 1
n2

n2∑
j=1

(
y(2)

j − x̃(2)′
j θ(2))2

σ 2
2

⎤
⎦ , (5)

up to some constant. Note that both the DOE and the
OBS models contain main effects and two-factor interac-
tions. In engineering practice, the significant relationships
for main effects and two-factor interactions commonly fol-
low the heredity principle (Wu and Hamada, 2009). The
weak heredity principle states that a two-factor interaction
xkxl is significant only if at least one of its parents {xk, xl} is
significant, whereas the strong heredity principle requires

both parents to be significant to allow a significant two-
factor interaction.

To accommodate the heredity principle, we impose ap-
propriate linear constraints on the shrinkage coefficients
when minimizing the negative log-likelihood function. In-
corporating the heredity structures for variable selection
through nonnegative garrote was originally developed in
Yuan et al. (2009). In this article, we focus on the weak
heredity properly in the proposed method. The constraint
for the weak heredity effect is θ

(m)
kl ≤ max{θ (m)

k , θ
(m)
l }, m =

1, 2. However, such a constraint for the weak heredity effect
is not convex. To circumvent this difficulty, we consider a
relaxed version of the linear constraint

θ
(m)
kl ≤ θ

(m)
k + θ

(m)
l .

For the strong heredity effect, one can formulate the con-
straints as θ

(m)
kl ≤ θ

(m)
k , θ

(m)
kl ≤ θ

(m)
l . Heredity structures for

variable selection have been used in support vector ma-
chines (Wu et al., 2008) and in hierarchical modeling (Choi
et al., 2010).

Moreover, Assumption 3 implies that if one significant
variable is identified from the DOE model, it is very likely
to be significant in the OBS models as well. We formulate
such information as the following constraints:

θ
(1)
k ≤ θ

(2)
k , ∀k = 1, . . . , p,

θ
(1)
kl ≤ θ

(2)
kl , ∀k 	= l.

Therefore, we propose to estimate the shrinkage coeffi-
cients by using constrained likelihood estimation. Specifi-
cally, the estimation problem can be formulated as

min

{
n1

[
log σ 2

1 + 1
n1

n1∑
i=1

(
y(1)

i − x̃(1)′
i θ(1))2

σ 2
1

]

+ n2

[
log σ 2

2 + 1
n2

n2∑
j=1

(
y(2)

j − x̃(2)′
j θ(2))2

σ 2
2

]}
,

s.t.
p∑

k=1

θ
(1)
k +

p∑
k=1

θ
(2)
k ≤ M,

θ
(1)
k ≥ 0, ∀k, θ

(2)
k ≥ 0, ∀k,

θ
(1)
k ≤ θ

(2)
k , k = 1, . . . , p,

θ
(1)
kl ≤ θ

(2)
kl , ∀k 	= l, k, l = 1, . . . , p,

θ
(1)
kl ≤ θ

(1)
k + θ

(1)
l , ∀k 	= l, k, l = 1, . . . , p,

θ
(2)
kl ≤ θ

(2)
k + θ

(2)
l , ∀k 	= l, k, l = 1, . . . , p, (6)

where M ≥ 0 is a tuning parameter. The first two con-
straints are used to encourage a general variable selection
for both models, and the remaining constraints accommo-
date the sequential nature and the weak heredity principle
of the DOE and OBS data. Note that the optimization
in model (6) is a constrained convex program. It can be
solved efficiently with a global optimal solution (Boyd and
Vandenberghe, 2004).
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Data fusion in manufacturing scale-up 5

2.2. Computational algorithm

The decision variables in model (6) are σ 2
1 , σ 2

2 , and
θ(1)

, θ(2). Although the optimization may not be solved
straightforwardly in terms of the whole parameter set
{σ 2

1 , σ 2
2 ,θ(1)

,θ(2)}, they can be solved in an efficient fashion
by iteratively estimating σ 2

1 , σ 2
2 and θ(1)

,θ(2). The proce-

dure is to first optimize θ̂
(1)

, θ̂
(2)

by fixing σ̂ 2
1 , σ̂ 2

2 , and then

estimate σ̂ 2
1 , σ̂ 2

2 by given θ̂
(1)

, θ̂
(2)

that have closed-form
solutions.

Given θ̂
(1)

, θ̂
(2)

, the solution to σ 2
1 , σ 2

2 can be obtained
explicitly; that is,

σ̂ 2
1 = 1

n1

n1∑
i=1

(
y(1)

i − x̃(1)′
i θ̂

(1))2
, (7)

σ̂ 2
2 = 1

n2

n2∑
i=1

(
y(2)

i − x̃(2)′
i θ̂

(2))2
. (8)

Given σ̂ 2
1 , σ̂ 2

2 , the solution of θ(1) and θ(2) can be solved
through quadratic programming with linear constraints;
that is,

min

⎧⎨
⎩
[

n1∑
i=1

(
y(1)

i − x̃(1)′
i θ(1))2

σ̂ 2
1

]
+
⎡
⎣ n2∑

j=1

(
y(2)

j − x̃(2)′
j θ(2))2

σ̂ 2
2

⎤
⎦
⎫⎬
⎭ ,

s.t.
p∑

k=1

θ
(1)
k +

p∑
k=1

θ
(2)
k ≤ M,

θ
(1)
k ≥ 0, ∀k, θ

(2)
k ≥ 0, ∀k,

θ
(1)
k ≤ θ

(2)
k , k = 1, . . . , p,

θ
(1)
kl ≤ θ

(2)
kl , ∀k 	= l, k, l = 1, . . . , p,

θ
(1)
kl ≤ θ

(1)
k + θ

(1)
l , ∀k 	= l, k, l = 1, . . . , p,

θ
(2)
kl ≤ θ

(2)
k + θ

(2)
l , ∀k 	= l, k, l = 1, . . . , p. (9)

Because of quadratic programming, the solution can be ef-
ficiently obtained with global optimal convergence. Specif-
ically, the iterative algorithm is described as follows:

Algorithm 1.

Step 1: Set initial estimates σ 2
1 > 0, σ 2

2 > 0.

Step 2: Obtain the estimates θ̂
(1)

, θ̂
(2)

by solving the opti-
mization in Equation (9).

Step 3: Obtain the estimates σ̂ 2
1 , σ̂ 2

2 by plugging θ̂
(1)

, θ̂
(2)

obtained in Step 2 into Equations (7) and (8).
Step 4: Check if both ‖σ̂ 2

1 − σ 2
1 ‖2

2 and ‖σ̂ 2
2 − σ 2

2 ‖2
2 are less

than a pre-specified positive tolerance value. Otherwise,
set σ 2

1 = σ̂ 2
1 , σ 2

2 = σ̂ 2
2 , and go back to Step 2.

2.3. Selection of tuning parameters

Note that M in model (6) is a tuning parameter, which needs
to be specified based on the data. The common methods

to select tuning parameters include cross-validation and
information criterion approaches such as Akaike informa-
tion criterion, Bayesian Information Criterion (BIC), and
Cp criterion (Burnham and Anderson, 2002). In this work,
we use the BIC for finding an optimal value of the tun-
ing parameter M. The BIC for the proposed model can be
written as

BIC(M) = n1 log σ̂ 2
1 + n2 log σ̂ 2

2 + q log(n1 + n2), (10)

where q is the number of non-zero estimates of parameters;
that is,

q =
2∑

m=1

[ p∑
k=1

I
(
θ̂

(m)
k 	= 0

)+
∑
k<l

I
(
θ̂

(m)
kl 	= 0

)]
.

Here θ̂
(m)
k , θ̂ (m)

kl , σ̂ 2
1 , and σ̂ 2

2 are parameter estimates in model
(6) given the value of M. Specifically, we can generate a
grid for M such that the value of M ∈ C = {m1, . . . , mt}.
For each grid point m j in C, we evaluate the corresponding
BIC score and find the optimal choice of M that has the
minimal value of BIC among all grid points in C.

2.4. Statistical properties

To obtain more insight for the proposed method, we study
the statistical properties for parameter estimation of β in
Equations (1) and (2). Assume that the mechanism of the
true data satisfies the weak heredity principle as well as As-
sumption 3. Then we can show that the proposed method
can have root-n consistency for the non-zero components
of β, and the zero components of β can be estimated by
zeros with probability 1 as the sample size goes to infin-
ity. Let us denote I (1) = { j : β

(1)
j 	= 0} as the indices of the

non-zero components in β(1) for the DOE model in Equa-
tion (1) and I (2) = { j : β

(1)
j 	= 0} as the indices of the non-

zero components in β(2) for the OBS model in Equation (2).

Define β̂
(1)

and β̂
(2)

to be the coefficient estimates from the
proposed method. Note that the corresponding shrinkage

coefficients θ̂
(1)

and θ̂
(2)

from model (6) can be obtained
from an equivalent formulation by minimizing

n1

[
log σ 2

1 + 1
n1

n1∑
i=1

(
y(1)

i − x̃(1)′
i θ(1))2

σ 2
1

]

+ n2

⎡
⎣log σ 2

2 + 1
n2

n2∑
j=1

(
y(2)

j − x̃(2)′
j θ(2))2

σ 2
2

⎤
⎦

+ λn

( p∑
k=1

θ
(1)
k +

p∑
k=1

θ
(2)
k

)
,

s.t.

θ
(1)
k ≥ 0, θ

(2)
k ≥ 0, θ

(1)
k ≤ θ

(2)
k , θ

(1)
kl ≤ θ

(2)
kl ,
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6 Jin and Deng

Table 2. A summary of the models and 27 simulation scenarios in three examples

Control Covariate Interaction σ1 σ2/σ1 n1 n2/n1 RDOE ROBS/RDOE

Example 1 4(3) 1(0) 10(5) 2 1, 5, 10 24 1, 3, 5 [−1, 1] 1, 0.5, 0.3
Example 2 6(4) 4(3) 45(15) 2 1, 5, 10 64 1, 3, 5 [−1, 1] 1, 0.5, 0.3
Example 3 6(4) 4(3) 45(15) 2 1, 5, 10 64 1, 3, 5 [−1, 1] 1, 0.5, 0.3

and

θ
(1)
kl ≤ θ

(1)
k + θ

(1)
l , θ

(2)
kl ≤ θ

(2)
k + θ

(2)
l

for some λn ≥ 0.

Proposition 1. Suppose (1/n1)
∑n1

i=1 x(1)
i x(1)′

i → �1 as n1 →
∞ and (1/n2)

∑n2
i=1 x(2)

i x(2)′
i → �2 as n1 → ∞. Both �1 and

�2 are positive definite. Assume that the true model satisfies
the weak heredity principle as well as the engineering knowl-
edge described in Assumption 3. Let n = min(n1, n2). When
λn → ∞ with rate λn = o(

√
n) as n → ∞, we have

1. ∀ j /∈ I (1), β̂
(1)
j = 0 with probability 1, and ∀ j ∈

I (1), β̂
(1)
j − β

(1)
j = Op(1/

√
n).

2. ∀k /∈ I (2), β̂
(2)
k = 0 with probability 1, and ∀k ∈

I (2), β̂
(2)
k − β

(2)
k = Op(1/

√
n).

The proof of Proposition 1 closely follows the proof of
Theorem 1 in Yuan et al. (2009); thus it is omitted here.

3. Simulation

To demonstrate the effectiveness of the proposed method,
we evaluate the performance of the prediction and variable
selection through several simulated data sets. The following
three examples are considered for generating the data in
each simulation run. For each example, we consider p main
factors and p(p − 1)/2 two-factor interactions in the full
model with the underlying true model as follows:

Example 1: Let p = 5. The model follows the weak hered-
ity principle:

y = 2.88x1 + 2.32x2 + 3.22x3 + 1.30x1x2 + 1.85x1x3

+ 2.63x1x4 + 2.84x1x5 + 2.23x4x5 + ε. (11)

Example 2: Let p = 10. This model follows the strong
heredity principle:

y = 2.44x1 + 2.82x2 + 2.20x3 + 3.67x4 + 4.37x7

+ 2.34x8 + 3.80x9 + 0.60x1x2 + 2.22x1x3

+ 3.29x1x4 + 3.71x1x7 + 1.95x1x8 + 3.68x1x9

+ 3.59x2x3 + 3.77x2x4 + 1.67x2x7 + 2.49x2x8

+ 4.17x2x9 + 2.30x3x4 + 3.67x7x8 + 4.23x7x9

+ 2.87x8x9 + ε. (12)

Example 3: Similar to Example 2, but the model follows a
weak heredity principle:

y = 1.60x1 + 4.01x2 + 3.51x3 + 2.36x4 + 1.40x7

+ 1.93x8 + 2.48x9 + 4.66x1x2 + 3.78x1x3

+ 2.34x1x4 + 3.33x1x7 + 4.85x1x8 + 2.87x1x9

+ 1.45x2x3 + 3.40x2x4 + 3.34x2x7 + 5.20x2x8

+ 1.89x2x9 + 2.33x3x4 + 1.97x7x8 + 4.91x8x9

+ 2.44x8x10 + ε. (13)

The detailed settings of these three examples are sum-
marized in Table 3, with the parentheses containing the
number of significant variables. Take Example 1 for illus-
tration. There are four controllable variables x1−x4, one
covariate x5, and 10 two-factor interactions of the control-
lable variables and the covariate. The controllable variables
can be changed during the DOE, whereas the covariate x5
is uncontrollable but measurable. To generate the data, we
considered 27 different scenarios by varying the settings of
the uncertainty (i.e., standard deviation of the errors), sam-
ple size, and range. Specifically, the standard deviation σ1
was set to be two in the DOE model, and we varied σ2 = 2,
10, and 20, respectively, in the OBS model (corresponding
to σ2/σ1 = 1, 5, 10). A 24−1 fractional factorial design with
levels −1 and 1 was constructed for the four controllable
variables, and the DOE data set had the sample size n1 = 24
(three replications for each DOE setting). The sample size
of the OBS data set was varied as n2 = 24, 72, and 120, re-
spectively (corresponding to n2/n1 = 1, 3, 5). The range of
predictors for the DOE data was RDOE = [−1, 1], and the
range for the OBS data ROBS varied from [−1, 1], [−0.5,
0.5], to [−0.3, 0.3], respectively (corresponding to the range
shrinkage RDOE/ROBS = 1, 0.5, 0.3).

In Examples 2 and 3, the predictor variables include 10
factors with six controllable variables x1−x6 and four co-
variates x7−x10, and their 45 two-factor interactions. A
26−2 factional factorial designs with levels −1 and 1 were
used as the design matrix for control factors in both Ex-
amples 2 and 3, where the DOE data set had a sample size
n1 = 64 (four replications for each DOE setting). For all
models in Examples 1 to 3, the range of the covariates in
the DOE data was [−1, 1]. The coefficient values of the sig-
nificant predictors were generated randomly from a normal
distribution N(3, 1).

We generated 50 simulation replicates for each scenario
of the simulation. In the simulation, the underlying true
models remained unchanged in each scenario. They were
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Data fusion in manufacturing scale-up 7

used to construct the DOE data and the OBS data. Specif-
ically, in each replicate of every example, we generated a
training set for the DOE model and a training set for the
OBS model, respectively. When merging the two sets, we
denoted it as a combined training data (CBD) set. For the
test set, we generated a data set with the value of predic-
tor variables uniformly distributed on the same range as
the variables for the DOE data ([−1, 1]). We compared the
proposed Ensemble Model (EM) with three benchmark re-
gression models for the prediction based on the testing set:
(i) the regression model from the training set of the DOE
model with variables selected using the BIC (denoted as
BMDOE); (ii) the regression model based on the training
set of the OBS model with the variables selected using the
BIC (denoted as BMOBS); and (iii) the regression model
based on the CBD with variables selected using the BIC
(denoted as BMCBD). Then all of the models were evalu-
ated based on the test data. Tables 3 to 5 report the average
of the Root-Mean-Squared Prediction Error (RMSPE) and
standard error in parentheses based on 50 simulation repli-
cates of the test data. Each table contains the result for 27
scenarios under different ratios of sample size n2/n1, uncer-
tainty σ2/σ1, and range ROBS/RDOE. We further evaluated
the variable selection performances based on the training
data set; the results are shown in Tables 6 to 8.

From the results in Tables 3 to 5, the proposed EM
method has the best prediction performance in most sce-
narios. For the situation of σ1/σ2 = 1 and ROBS/RDOE = 1,
the OBS data have similar levels of information as in the
DOE data. In this case, the results from the EM approach
generally have a comparable prediction performance to
that of BMCBD. When the ratio σ1/σ2 becomes larger and
the range of OBS data ROBS shrinks, the proposed EM
method significantly outperforms BMCBD and other meth-
ods. Note that BMCBD is obtained by simply combining
two sets of training data, without addressing the sequen-
tial nature and inherent features of the two types of data.
The proposed EM method considers the precedence struc-
ture of two data sets, hence leading to a better prediction
performance. In the real manufacturing scale-up environ-
ment as described in Table 1, the differences in the sample
size, uncertainty, and range often become large. In these
cases, these reported simulation shows that the proposed
EMmethod achieves a better prediction performance com-
pared with other methods. For some scenarios in Example
2 such as n2/n1 = 1, ROBS/RDOE = 0.3, σ2/σ1 = 5, the pro-
posed EM may have slightly larger prediction error than
BMCBD. This is probably because Example 2 follows the
strong heredity principle, which violates the weak heredity
assumption used in the proposed method. It is also worth

Table 3. Averages and standard errors of testing RMSPE from 50 simulation runs for Example 1

ROBS/RDOE = 1 ROBS/RDOE = 0.5 ROBS/RDOE = 0.3

n2/n1 Method σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10 σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10 σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10

1 BMDOE 3.57 2.67 2.99 2.98 3.10 3.69 2.66 3.64 3.15
(0.37) (0.24) (0.27) (0.22) (0.27) (0.41) (0.22) (0.34) (0.19)

BMOBS 7.67 28.29 54.75 26.95 124.11 198.70 56.34 315.42 557.63
(0.48) (2.80) (5.31) (2.27) (11.15) (22.99) (7.28) (34.52) (74.77)

BMCBD 1.61 3.58 5.90 2.51 2.51 4.53 2.10 3.13 5.26
(0.07) (0.33) (0.79) (0.20) (0.40) (0.41) (0.16) (0.12) (0.34)

EM 1.69 1.79 2.93 2.04 1.78 2.98 1.79 2.59 2.68
(0.05) (0.14) (0.20) (0.05) (0.17) (0.27) (0.11) (0.13) (0.15)

3 BMDOE 4.00 3.71 3.09 3.56 3.02 2.99 3.30 3.11 3.22
(0.33) (0.51) (0.29) (0.35) (0.31) (0.28) (0.29) (0.24) (0.26)

BMOBS 3.45 11.90 16.96 9.53 34.49 65.28 22.30 110.37 189.93
(0.12) (1.01) (2.11) (0.76) (3.81) (8.50) (2.56) (14.61) (26.18)

BMCBD 1.70 3.45 4.34 2.42 3.34 4.00 2.17 3.23 4.11
(0.08) (0.19) (0.58) (0.10) (0.17) (0.19) (0.18) (0.06) (0.03)

EM 2.04 2.02 2.60 2.23 1.85 2.48 1.95 1.78 2.48
(0.06) (0.05) (0.21) (0.06) (0.05) (0.29) (0.05) (0.09) (0.25)

5 BMDOE 3.63 2.94 3.51 3.58 3.33 2.66 3.81 3.45 2.73
(0.29) (0.23) (0.33) (0.35) (0.32) (0.24) (0.44) (0.32) (0.21)

BMOBS 2.85 7.38 12.10 5.66 21.26 50.93 11.52 43.95 60.67
(0.10) (0.60) (1.23) (0.45) (2.80) (6.11) (1.75) (7.96) (13.98)

BMCBD 1.37 3.34 4.73 2.27 3.81 3.61 2.33 3.66 3.63
(0.07) (0.12) (0.52) (0.12) (0.60) (0.18) (0.19) (0.15) (0.02)

EM 1.79 2.45 3.78 2.34 2.00 2.71 2.17 2.09 2.07
(0.05) (0.12) (0.39) (0.06) (0.11) (0.24) (0.14) (0.05) (0.27)
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8 Jin and Deng

Table 4. Averages and standard errors of testing RMSPE from 50 simulation runs for Example 2

ROBS/RDOE = 1 ROBS/RDOE = 0.5 ROBS/RDOE = 0.3

n2/n1 Method σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10 σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10 σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10

1 BMDOE 12.53 11.38 11.84 11.72 12.87 11.23 12.04 10.39 11.19
(0.77) (0.64) (0.66) (0.60) (0.81) (0.55) (0.75) (0.62) (0.71)

BMOBS 18.43 74.43 125.71 70.39 255.12 509.31 192.33 713.10 1715.36
(0.99) (5.63) (9.10) (5.45) (18.38) (41.39) (14.61) (55.29) (99.95)

BMCBD 2.89 7.38 10.41 3.98 5.14 6.26 5.14 4.49 5.34
(0.12) (0.38) (0.64) (0.24) (0.19) (0.28) (0.31) (0.06) (0.04)

EM 3.47 5.67 7.09 4.30 5.02 6.21 4.66 4.64 5.39
(0.10) (0.24) (0.48) (0.14) (0.16) (0.36) (0.13) (0.13) (0.28)

3 BMDOE 11.27 12.08 11.68 13.03 12.61 12.24 10.70 12.77 12.43
(0.88) (0.68) (0.56) (0.97) (0.76) (0.66) (0.57) (0.78) (0.72)

BMOBS 4.36 13.18 21.17 10.60 36.71 72.78 23.37 93.38 177.44
(0.11) (0.63) (1.49) (0.57) (3.16) (6.34) (1.95) (8.15) (17.80)

BMCBD 2.08 6.71 9.67 2.79 5.52 6.89 4.36 5.01 6.71
(0.05) (0.33) (0.49) (0.16) (0.24) (0.39) (0.24) (0.15) (0.09)

EM 2.47 4.43 6.14 3.48 5.00 4.51 3.94 4.54 5.44
(0.05) (0.15) (0.23) (0.15) (0.16) (0.22) (0.09) (0.15) (0.13)

5 BMDOE 11.50 11.10 11.46 11.41 11.21 11.61 12.52 11.88 11.67
(0.57) (0.55) (0.62) (0.55) (0.68) (0.63) (0.66) (0.58) (0.81)

BMOBS 3.39 9.99 14.62 7.59 23.05 53.25 15.29 52.72 104.10
(0.06) (0.33) (0.92) (0.27) (2.00) (4.52) (1.07) (5.91) (12.20)

BMCBD 1.68 5.84 8.33 3.40 5.19 6.49 4.46 5.26 6.28
(0.05) (0.19) (0.37) (0.20) (0.11) (0.33) (0.23) (0.20) (0.08)

EM 2.20 4.83 6.09 3.69 4.80 4.05 3.91 4.75 4.40
(0.06) (0.08) (0.09) (0.10) (0.06) (0.07) (0.06) (0.13) (0.14)

Table 5. Averages and standard errors of testing RMSPE from 50 simulation runs for Example 3

ROBS/RDOE = 1 ROBS/RDOE = 0.5 ROBS/RDOE = 0.3

n2/n1 Method σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10 σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10 σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10

1 BMDOE 11.96 11.99 10.58 11.95 11.82 11.49 10.62 11.40 12.49
(0.93) (0.61) (0.54) (0.60) (0.70) (0.63) (0.53) (0.66) (0.73)

BMOBS 19.54 66.92 142.64 72.10 316.06 541.61 180.67 819.63 1569.76
(1.02) (5.00) (11.88) (5.60) (21.37) (39.24) (11.47) (54.90) (131.05)

BMCBD 2.81 7.09 12.23 4.67 5.49 6.86 5.17 5.84 5.83
(0.09) (0.35) (0.79) (0.32) (0.26) (0.42) (0.30) (0.48) (0.04)

EM 3.50 6.24 8.36 4.47 5.18 5.70 4.70 5.75 5.70
(0.10) (0.25) (0.43) (0.19) (0.25) (0.32) (0.15) (0.18) (0.21)

3 BMDOE 11.37 10.83 12.99 11.38 11.63 11.46 12.01 12.05 12.42
(0.68) (0.55) (0.58) (0.63) (0.67) (0.61) (0.61) (0.59) (0.72)

BMOBS 4.39 10.90 18.47 10.78 38.23 72.78 27.26 73.52 189.51
(0.11) (0.58) (1.38) (0.59) (3.59) (6.65) (1.81) (8.64) (18.98)

BMCBD 1.97 5.25 8.33 3.49 5.51 6.45 4.97 5.03 5.97
(0.07) (0.23) (0.42) (0.21) (0.31) (0.17) (0.29) (0.05) (0.08)

EM 2.56 4.05 5.09 3.65 4.27 4.85 4.69 4.52 4.82
(0.06) (0.13) (0.09) (0.12) (0.06) (0.15) (0.13) (0.05) (0.08)

5 BMDOE 12.69 11.25 13.06 12.59 10.67 11.55 11.63 11.98 11.73
(0.90) (0.68) (0.76) (0.75) (0.49) (0.72) (0.57) (0.64) (0.63)

BMOBS 3.48 8.41 14.56 7.89 22.92 47.88 13.48 60.87 100.21
(0.07) (0.36) (1.06) (0.31) (1.81) (5.03) (1.13) (6.41) (12.34)

BMCBD 1.62 4.98 8.97 3.61 4.66 7.21 3.97 5.09 6.85
(0.06) (0.16) (0.40) (0.15) (0.22) (0.41) (0.28) (0.09) (0.11)

EM 2.02 4.16 5.99 3.72 3.80 5.28 3.39 4.44 4.93
(0.07) (0.07) (0.20) (0.10) (0.06) (0.20) (0.06) (0.07) (0.08)
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Data fusion in manufacturing scale-up 9

Table 6. The number of false selection for Example 1, average of 50 simulation replicates

ROBS/RDOE = 1 ROBS/RDOE = 0.5 ROBS/RDOE = 0.3

n2/n1 Method σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10 σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10 σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10

1 BMDOE 3.72 3.58 3.48 3.72 3.54 3.66 3.72 3.16 3.66
BMOBS 6.96 7.52 7.40 7.38 7.64 7.78 7.74 7.76 7.58
BMCBD 2.76 5.34 7.84 2.80 5.86 8.00 3.06 5.00 7.74

EM 4.02 3.32 4.14 4.00 4.02 3.40 3.52 3.14 3.28
3 BMDOE 3.98 3.62 3.70 3.58 3.42 3.68 3.58 3.72 3.80

BMOBS 5.22 7.52 7.82 6.50 7.66 7.80 7.24 7.86 8.26
BMCBD 1.86 5.14 7.86 2.26 5.70 7.96 2.24 7.12 8.00

EM 3.14 2.96 4.56 2.62 2.88 4.28 2.94 2.98 3.96
5 BMDOE 4.12 3.46 3.48 3.50 3.96 3.48 3.46 3.60 3.96

BMOBS 4.22 7.46 7.98 6.54 8.08 8.14 7.64 7.92 7.90
BMCBD 1.50 5.68 8.10 2.34 5.84 8.02 2.46 6.38 8.00

EM 2.72 3.20 4.90 4.04 3.70 3.74 2.74 2.78 3.46

Table 7. The number of false selection for Example 2, average of 50 simulation replicates

ROBS/RDOE = 1 ROBS/RDOE = 0.5 ROBS/RDOE = 0.3

n2/n1 Method σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10 σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10 σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10

1 BMDOE 22.70 21.68 22.68 22.76 22.74 21.74 21.52 20.58 21.90
BMOBS 26.32 27.66 26.26 27.00 26.74 27.58 27.58 26.84 28.48
BMCBD 6.74 14.26 20.10 7.64 14.54 20.00 9.24 13.20 21.72

EM 11.04 15.88 15.76 13.74 13.40 16.10 14.74 13.92 15.16
3 BMDOE 20.98 22.02 21.82 22.38 21.66 23.68 20.78 22.06 22.04

BMOBS 13.10 21.74 22.30 20.06 22.28 22.62 20.38 22.06 22.36
BMCBD 5.16 13.94 20.70 6.00 14.80 21.00 7.56 14.64 20.48

EM 8.08 11.56 14.76 9.86 12.56 11.80 10.48 12.16 13.08
5 BMDOE 21.70 21.32 21.92 22.54 21.68 22.70 22.92 22.72 21.74

BMOBS 9.30 20.50 21.86 15.90 21.88 22.52 18.92 22.10 22.10
BMCBD 2.94 12.64 21.30 5.90 14.76 21.52 7.72 14.10 21.24

EM 5.06 10.68 16.66 9.06 12.78 12.82 10.08 11.36 12.38

Table 8. The number of false selection for Example 3, average of 50 simulation replicates

ROBS/RDOE = 1 ROBS/RDOE = 0.5 ROBS/RDOE = 0.3

n2/n1 Method σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10 σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10 σ2
σ1

= 1 σ2
σ1

= 5 σ2
σ1

= 10

1 BMDOE 22.68 23.00 20.32 22.84 22.64 22.22 21.24 20.40 23.04
BMOBS 26.90 26.76 27.86 27.26 28.88 26.90 27.28 27.12 27.18
BMCBD 5.78 13.00 19.68 8.06 14.78 20.16 9.42 13.56 21.32

EM 11.24 13.76 16.08 13.76 14.88 14.76 14.68 15.84 14.96
3 BMDOE 21.86 21.74 24.18 20.72 22.24 21.60 22.24 23.02 22.30

BMOBS 13.30 21.74 22.18 17.62 22.46 22.28 20.74 22.12 22.62
BMCBD 4.76 15.42 21.08 6.08 16.08 20.24 8.20 17.34 20.98

EM 7.90 13.24 13.12 8.36 13.78 13.26 11.68 14.64 12.04
5 BMDOE 22.50 21.96 23.12 21.52 21.82 21.56 21.84 21.98 20.52

BMOBS 11.18 21.36 21.94 16.24 21.66 22.32 19.36 22.16 22.16
BMCBD 4.10 16.52 21.10 5.50 15.50 21.90 8.32 15.42 21.60

EM 7.06 13.44 13.34 7.42 12.38 12.88 10.68 11.52 12.30
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10 Jin and Deng

Table 9. Measured variables in the lapping process

Variable type Variable name Physical meaning

Controllable process variables Pressure (N/m2) The high pressure between the upper and lower plates
Rotation (rpm) The rotation speed
LowPTime (s) The time at low pressure
HighPTime (s) The time at high pressure

Covariates CTHK0 (µm) Central thickness of the wafers
TTV0 (µm) Total thickness variation of the wafers
TIR0 (µm) Total indicator reading of the wafers
STIR0 (µm) Site total indicator reading of the wafers
BOW0 (µm) Deviation of local warp at the center of the wafers
WARP0 (µm) Maximum of local warp of the wafers

Quality response CTHK1 (µm) Central thickness of the wafers after lapping

noting that the standard errors of RMSPE in parentheses
for EM are generally smaller than those in the other meth-
ods. This implies that the proposed EM provides a reliable
and stable prediction performance.

Moreover, Tables 6 to 8 examine the performance of vari-
able selection in the three examples. Here we compare the
number of false selection; i.e., the summation of the num-
ber of variables that are false positive and false negative. A
smaller number for a false selection indicates a more accu-
rate selection. Note that Examples 1 to 3 have 15, 55, and 55
predictors, respectively. The results show that the proposed
EM generally has a better variable selection accuracy than
the other three methods. When n2/n1 becomes larger, the
variable selection accuracy is improved for all four mod-
els. However, a change in ROBS/RDOE gives comparable
variable selection performances for all four models. When
σ2/σ1 is small, BMCBD has the best variable selection perfor-
mance. However, when σ2/σ1 becomes larger, the proposed
EM method provides a more accurate variable selection
than BMDOE in Examples 2 and 3 and has a comparable
variable selection performance as BMDOE in Example 1. In
all of the scenarios, the proposed EM method has better
variable selection performance than BMOBS. This finding
indicates that the EM can adopt the strength of variable
selection from the DOE data set.

4. Case study: wafer manufacturing

To further demonstrate the effectiveness of the proposed
method, a real wafer manufacturing situation is now stud-
ied and discussed (Ning et al., 2012). Recall the lapping
process described in Section 1. In the wafer manufactur-
ing scale-up, the lapping process is an important step to
reduce the thickness variation of wafers. As shown in Fig.
1, the wafers are placed on the lower plate, the upper plate
presses against the lower plate and the plates rotates in op-
posite directions. At the same time, abrasive slurry is fed
between the plates and removes material from the surface

of the wafer. The lapping process is a key operation to re-
duce variations in the geometric variables of wafers, which
are treated as major quality measures in wafer manufac-
turing. Thus, it is important to identify the process settings
that result in reduction in variations. In this case study, the
thickness of the wafers after the lapping process (CTHK1)
is considered as the quality response of the model, which is
predicted based on 10 factors. Details of these factors are
summarized in Table 9. Among the 10 factors, four process
variables can be controlled and affect CTHK1. These four
controllable process variables can be adjusted during the
DOE and validation production runs. There are also six
covariates, which are the quality variables of wafers from
the upstream production. These covariates are automati-
cally measured before the lapping process but cannot be
adjusted during the manufacturing process.

In this scale-up effort, first, an experiment with 24−1 frac-
tional factorial designs at levels −1 and 1 with two center
points at zero were planned for the controllable process
variables. For each run, there were 10 replicates, resulting
in 100 samples for the DOE data. After the DOE, further
validation production runs were carried out, and 231 sam-
ples of the OBS data were used to validate the initial process
setting. The initial process setting was optimized to change
the values of the four controllable variables based on the co-
variates (quality measurements from the upstream stages).
Then in the validation production runs, the values of the
process variables were in the neighborhood of the initial
process setting of the DOE. For the controllable variables
in the OBS data, the ranges for Pressure, Rotation, and
LowPTime were in [−0.2, 0.2], and the range for HighP-
Time was in [−0.9, 0.3]. For the covariates, their ranges
were in [−3, 3] for both DOE and OBS data.

The proposed EM method was compared with the
three benchmark regression models, BMDOE, BMOBS, and
BMCBD, which follow the same definitions in Section 3. The
three benchmark models were estimated using BIC vari-
able selection. The data were randomly partitioned into
a training set and a test set with equal sample sizes. The
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Data fusion in manufacturing scale-up 11

Table 10. Comparison of the testing RMSPE for the lapping
process case

Dtr Dts Otr Ots Ctr Cts

BMDOE 1.167 3.847 13.701 20.495 11.467 17.241
BMOBS 3.950 3.466 3.892 7.475 3.910 6.525
BMCBD 2.461 2.656 4.102 6.270 3.684 5.435
EM 2.461 2.677 4.348 3.764 3.877 3.471

training set was used for variable selection and parame-
ter estimation, and the test set was used to evaluate the
model performance. All of models in the comparison were
evaluated on six different data sets: the training and test
sets from DOE data (Dtr and Dts), the training and test
set from the OBS data (Otr and Ots), and the training and
test set from the combined data (Ctr and Cts). The per-
formance comparison of the RMSPE is summarized in
Table 10.

From the comparison results, the proposed EM method
has a comparable prediction performance to that of BMCBD
for the DOE test set Dts (2.677 versus 2.656). In contrast,
the proposed EMmethod provides a better prediction than
BMOBS for the OBS test set Ots (3.764 versus 6.270). For the
combined test data Cts, the proposed EM method has the
best prediction performance among all four models. This
shows that the proposed EM method, obtained through
the effective fusion of DOE and OBS data, achieves the
best prediction performance compared with the other three
benchmark models.

Figure 2 demonstrates the variable selection results of the
four models. In the figure, each row and each column rep-
resents one variable, respectively. The order of the variables
(from left to right, and from top to bottom) follows the
order of predictors listed in Table 9. The diagonal blocks
represent the main effects of the variables, and the off-
diagonal blocks represent their two-factor interactions. The
dark color indicates that the corresponding predictor is sig-
nificant. Comparing the patterns from Fig. 2(a) and Fig.
2(b), we note that the BMDOE and BMOBS are not consis-
tent in terms of significant predictor variables. In contrast,
BMCBD has a very similar variable selection performance to
that of BMOBS shown in Fig. 2(b) and Fig. 2(c). This can be
due to the fact that the sample size of the OBS data is more
than twice that of the DOE data. The variable selection
could be more influenced by the OBS data set. In this case,
none of the first four controllable process variables for the
DOE factors are identified as significant variables. A possi-
ble explanation for this behavior is that the BMCBD model
overlooks the sequential nature and inherent features of the
two types of data. As shown in Fig. 2(d), the proposed EM
successfully identifies some significant variables from DOE
in EM, illustrating the effectiveness of variable selection in
our proposed EM strategy.

Fig. 2. Variable selection on the wafer data for (a) BMDOE; (b)
BMOBS; (c) BMCBD; and (d) EM. The order of predictors are Pres-
sure, Rotation, LowPTime, HighPTime, CTHK0, TTV0, TIR0,
STIR0, BOW0, and WARP0.

5. Conclusions and discussion

Manufacturing scale-up is an important, yet time-
consuming and expensive process in product realization. It
involves both experiments and validation production runs
of a manufacturing process in order to obtain an adequate
model. In this paper, we propose an EM strategy that in-
tegrates both DOE and OBS data for the manufacturing
scale-up. The proposed method can provide an accurate
model, in which the selected significant variables reflect the
sequential nature and inherent features of the two types
of data. Thus, variable selection from the propose method
is more meaningful in terms of reflecting a manufacturing
process. This helps us to more quickly identify an ade-
quate model for manufacturing scale-up. As a result, fewer
rounds of data collection and modeling are expected. It
should be noted that the proposed EM method is not only
suitable for quality-process modeling but can also be ap-
plied to improve yield and reduce cost, where regression
analysis can be generally used. The proposed method there-
fore can significantly reduce lead time in the manufacturing
scale-up.

In the proposed method, we consider the frequentists’
likelihood estimation approach, with constraints to encour-
age the significant predictors in the DOE model to also be
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12 Jin and Deng

significant in the OBS model. It relies on the correctness
and completeness of the DOE data to identify significant
predictors. In addition to the likelihood approach, one can
also consider Bayesian analysis (Reese et al., 2004) to inte-
grate two types of data, where the findings from DOE serve
as the prior information for modeling the OBS data. On
the other hand, if additional engineering knowledge is use-
ful to identify some significant predictor variables and/or
their interactions, we can extend the proposed method by
adding more constraints into the optimization problem (9),
enabling an engineering-driven data fusion framework.

In this work, we treat the quality response as a contin-
uous variable, and a linear model is used to link the qual-
ity response and predictor variables. When the response is
binary or categorical, the proposed method can be gener-
alized by using more flexible models such as generalized
linear models (McCullagh and Nelder, 1989). Besides us-
ing the nonnegative garrote for variable selection, a future
research direction would be to investigate other variable se-
lection methods (Hastie et al., 2009) for the efficient fusion
of different data sets.

Another future research direction would be to advance
the improvement on modeling DOE data and OBS data
for maximizing the overall prediction accuracy. When the
DOE is poorly designed, the DOE data cannot provide an
adequate model for significant predictors. In addition, if
the OBS data contain a very high uncertainty, it may not
improve the overall modeling accuracy. Efforts are needed
to make the overall ensemble modeling accuracy satisfy the
manufacturing scale-up requirements.
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