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ABSTRACT
In tissue-engineered scaffold fabrication, the degradation of scaffolds is a critical issue because it needs to
matchwith the rateofnewtissue formation in thehumanbody.However, scaffolddegradation is a very com-
plicated process, making degradation regulation a challenging task. To provide a scientific understanding
on the degradation of scaffolds, we propose a novel constrained hierarchical model (CHM) for the degrada-
tiondata. Theproposedmodel has two levels,with the first level characterizing scaffolddegradationprofiles
and the second level characterizing the effect of process parameters on the degradation. Moreover, it can
incorporate expert knowledge in the modeling throughmeaningful constraints, leading to insightful infer-
ence on scaffold degradation. Bayesianmethods are used for parameter estimation andmodel comparison.
In the case study, theproposedmethod is illustrated and comparedwith existingmethods usingdata froma
novel tissue-engineered scaffold fabrication process. A numerical study is conducted to examine the effect
of sample size on model estimation.

1. Introduction

The enormous need for tissue/organ grafts and the limita-
tions of current therapies such as the shortage of organ donors
have motivated the emergence of tissue engineering (TE) in
recent years. TE is an interdisciplinary field, which combines
the principles of polymer chemistry, engineering, and biolog-
ical sciences in an effort to develop biological substitutes to
repair/replace failing tissues and organs (Ikada, 2006; Fisher
et al., 2007). The basic concept of TE is illustrated in the left
panel of Fig. 1, which involves growing relevant cells in vitro into
a three-dimensional tissue/organ such as bone, skin, and heart
valves prior to implantation. As cells alone lack the ability to
grow in favored orientations similar to the native tissues, tissue
formation is achieved by seeding the cells onto porous matri-
ces known as scaffolds (Ma and Elisseeff, 2006; Laurencin and
Nair, 2008). Biological molecules such as adhesive proteins are
usually added to stimulate cellular growth. The scaffolds play a
critical role in the development of engineered tissues/organs as a
temporary substrate and microenvironment for cell accommo-
dation and proliferation. For this reason, scaffold fabrication has
become a major research area in biomanufacturing (Chu and
Liu, 2008; Tateishi, 2008).

The scaffold fabrication process, shown in Fig. 1, consists of
two steps: first, the scaffold material is synthesized. The mate-
rial must be biodegradable so that the scaffold will eventually be
replaced by the new tissues/organs in the human body (Fisher
et al., 2007). Then pores are constructed on the material to pro-
vide space for cell growth and flow transport of nutrients and
metabolic wastes. Various techniques have been developed for
pore construction, such as the widely used particulate leaching
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method (Liao et al., 2002) as illustrated in Fig. 1; the polymer
solution is firstmixedwith the porogen, usually sodium chloride
(salt), to form a slurry, and then the slurry is cast into amold and
kept in a heated oven for solvent evaporation and polymeriza-
tion. Finally, the dried composite is immersed in distilled water
where the salt particles leach out, leaving behind a porous struc-
ture. The properties of scaffold products are determined by the
setting of the parameters in the fabrication process such as the
ratio of compositions in material synthesis, and the particle size
of the porogen and polymerization conditions in pore construc-
tion, etc.

There aremany considerations in scaffold fabrication to yield
satisfactory products. A critical concern is the degradation of
scaffolds within the human body (Buchanan, 2008). Scaffold
degradation is a very complicated process caused by hydroly-
sis as illustrated in Fig. 2. In the human body, water molecules
penetrate into the scaffoldmatrix, causing swelling of thematrix
and triggering the breakdown of chemical chains that leads to
weight loss of the scaffold. This process continues until the scaf-
fold is completely dissolved. The rate of degradation is typi-
cally measured by degradation profiles shown in the right panel
of Fig. 2, where the x-axis denotes the duration of the scaffold
in the human body, and the y-axis denotes the corresponding
percentage loss in scaffold properties (e.g., weight, mechanical
strength, etc.). The degradation rate is crucial for tissue for-
mation; fast degradation may cause fragile support to the cells,
whereas slow degradationmay impede the growth of new tissue.
Therefore, it is important to appropriately regulate the degrada-
tion profile to match with the rate of new tissue formation in
specific applications (Tran et al., 2011). In the current scaffold
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Figure . The concept of TE and scaffold fabrication process.

fabrication practice, however, degradation regulation is mainly
done by trial-and-error experiments.

The key to the regulation of the degradation of a scaffold is
to model the relationship between degradation profiles and pro-
cess parameters. Such a model can be used to adjust the setting
of process parameters to produce scaffold products with desir-
able degradation properties. There are two critical considera-
tions in seeking propermodels: first, the estimatedmodel should
be easily interpretable in terms of the intrinsic effect of process
parameters on scaffold degradation. It can help researchers bet-
ter understand the creation of scaffold products and their fabri-
cation process. Since the physiochemicalmechanisms of scaffold
degradation are very complex, such insight is very important for
conducting research on tissue-engineered scaffolds and devel-
oping novel biomaterials for scaffold fabrication. Second, expert
knowledge on scaffold degradation (e.g., reasonable shapes of
the degradation profile) should be taken into account in the
modeling to make the results of any analysis practically mean-
ingful.

Generally, there are two types of methods for modeling the
scaffold degradation data: analytical methods based on phys-
iochemical models of the degradation process and data-driven
methods based on statistical models of degradation measure-
ments. In the first direction, Chen et al. (2011) develop mech-
anistic modeling methods based on differential equations gov-
erning the underlying physiochemical processes of degrada-
tion. Metters (2001) proposes probabilistic modeling methods
that describe state changes in polymer chains using stochastic
models. However, these methods assume that the degradation
mechanisms are known, which is not true in many applications
(Buchanan, 2008).

Among data-driven methods, the following approaches can
be potentially useful for modeling the degradation data:

(1) One approach is based on profile models in quality con-
trol (Woodall et al., 2004; Noorossana et al., 2011) since
the degradation profile can be considered as a special
type of quality profile data. However, the existing profile

models are mostly one-dimensional, and can only char-
acterize the relationship between degradation measure-
ments and a single factor (e.g., time).

(2) Another approach is to treat process parameters and the
degradation time as explanatory variables in surrogate
models such as Gaussian Process (GP) models and Arti-
ficial Neural Networks (ANNs; Chen et al. (2006)). How-
ever, the resultant models may not be easy to interpret
and it is difficult to incorporate expert knowledge.

(3) The third approach is the so-called Two-Step Regres-
sion (TSR) method for modeling dynamic responses in
designed experiments (Govaerts and Noël, 2005; Goh,
2014; He et al., 2015). It first builds a model for each
observed profile and then obtains a model between the
estimated parameters and design factors. Such a method
has an intuitive interpretation, but it may introduce
additional noise by using the estimated parameters as
response in the second step.

In this work, we develop a constrained hierarchical model-
ing method to quantify the effect of process parameters on the
degradation profiles of scaffold products. The proposed Con-
strained Hierarchical Model (CHM) has two levels, with the
first level modeling degradation profiles and the second level
modeling the effect of process parameters on the parameters of
level-1 models. Expert knowledge is incorporated in the model
through constraints. With limited data available on the scaffold
fabrication process, we adopt the Bayesian framework (Daniels
and Gatsonis, 1999; Gelman and Hill, 2007) for model estima-
tion and model comparison. Specifically, Markov Chain Monte
Carlo (MCMC) sampling procedures are used for estimating the
model, and a Bayes factor method is developed for model com-
parison. In a similar spirit to the TSR method, the proposed
method gives interpretable results. Moreover, it is easy to imple-
ment, flexible to incorporate expert knowledge, and has good
prediction performance.

Hierarchical modeling, also called multilevel modeling, is a
powerful tool to model data with complex structures. Special

Figure . Scaffold degradation and example of degradation profile.
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18 L. ZENG ET AL.

types of such models—e.g., mixed-effects models—have gained
considerable popularity recently in social sciences and medi-
cal research (Verbeke andMolenberghs, 2000; Gelman and Hill,
2007; Jang, 2007). However, the models in existing work are
unconstrained. This study will contribute by developing a sys-
tematic method to build constrained models including con-
straint formation based on expert knowledge and parameter
estimation using Bayesian methods. Moreover, our study will
also develop convenient Bayesian procedures formodel compar-
ison/selection of hierarchical models, which has not been con-
sidered in the literature.

The remainder of this article is organized as follows. Section
2 presents the proposed model. Section 3 formulates the tasks
involved in building the model and then describes the Bayesian
methods for parameter estimation and model comparison. Sec-
tion 4 reports results of a case study, where the proposedmethod
is applied to data from a novel tissue-engineered scaffold fabri-
cation process. We will illustrate the model building steps using
the proposed method and compare its prediction performance
with othermethods, including the TSRmethod, GPmodels, and
ANNs. A numerical study is conducted in Section 5 to exam-
ine the effect of sample size onmodel estimation. Section 6 con-
cludes the article and discusses open issues.

2. The proposed CHM

2.1. General form of the proposedmodel

Let y be the degradation measurement, t be the degradation
time, and z be the process parameter. For convenience, z is
assumed to be univariate in this study; the proposed method
can be easily extended to cases with multiple process parame-
ters. The basic idea of the proposed CHM is illustrated in Fig. 3.
The model consists of three elements:

� Level-1Model: A function h(t;β) is used to characterize the
relationship between degradation (y) and time (t), where β

is the parameter vector of this function.
� Level-2Model: A function g(z; c) is used to characterize the
relationship between the parameter of the level-1 model
(β) and the process parameter (z).

� Constraints: The models are subject to several constraints
that represent expert knowledge on scaffold degradation
(Buchanan, 2008). For example, an obvious constraint is
that the degradation must be monotonically increasing
over time or, in other words, the degradation rate is always
positive. For some types of scaffolds, the degradation rate
is supposed to be decreasing over time, or the acceleration

Figure . The basic idea of the proposed CHM. l

must be always negative. Examples of violations are given
in the right panel of Fig. 3.

The mathematical expression of the proposed CHM can be
written as follows:

Level-1Model
y = h(t;β)+ ε, ε∼N(0, σ 2)

Level-2Model
βi = gi(z; ci), i = 0, . . . , p− 1,

σ 2 = gσ (z; cσ )
Constraints

dh
dt
> 0,

dh2

dt2
< 0,

(1)

where β = [β0, β1, … , βp-1]
′ is a p-dimensional coefficient vec-

tor of the level-1 model and ε is the error term, which repre-
sents the overall effect of measurement errors and other ran-
dom errors in the scaffold fabrication process. Without loss of
generality we assume that ε follows a normal distribution with
zero mean and variance σ 2 that may depend on the process
parameter z. Note that there is no random error in the level-
2 models. The reason for this setup is given in Section 2.3. In
the “constraints” part, the two aforementioned constraints are
used for illustration. Other constraints may be used depending
on intended application.

The proposed CHM has two key features that make it appro-
priate for scaffold degradation data. First, the two-level model
structure separates the modeling of degradation profiles and the
modeling of the effect of process parameters on degradation,
which simplifies the modeling complexity as well as enables an
easy andmeaningful interpretation. Second, the constraints pro-
vide a convenient mechanism to accommodate expert knowl-
edge on scaffold degradation.

2.2. Level-1 and level-2models

Appropriate model forms should be chosen for the level-1 and
level-2 models in Equation (1) to fit given data. In this work, we
use polynomial models for them; that is,

h(t;β) = βp−1t p−1 + · · · + β0, (2)

gi(z; ci) = ci,qi−1zqi−1 + · · · + ci,0, (3)

gσ (z; cσ )or log[gσ (z; cσ )] = cqσ−1zqσ−1 + · · · + c0, (4)

where Equation (2) has order p− 1, Equation (3) has order qi − 1
and ci = [ci,qi−1, ci,qi−2, . . . ,ci,0]

′ , i= 0, … , p− 1, and Equation
(4) has order qσ − 1 and cσ = [cqσ−1, cqσ−2, . . . , c0]

′ . Logarith-
mic transformation of σ 2 may be used in the variance model for
better fit.

Polynomial models are widely used in practice due to their
convenience in data fitting, parameter estimation, and model
interpretation. Their parsimonious model forms are especially
suitable for the small-sample case of our problem as there are
only limited data available in scaffold degradation studies. This
situation is due to the lengthy degradation process (which may
take months or years in some cases) and costly measurement.
Nonetheless, it is worth pointing out that although we adopt
the models in Equations (2) to (4) in this work, the proposed
method is based on generic ideas and can be applied to other

D
ow

nl
oa

de
d 

by
 [

Pe
nn

 S
ta

te
 U

ni
ve

rs
ity

] 
at

 2
3:

32
 2

4 
M

ay
 2

01
6 



IIE TRANSACTIONS 19

Figure . Data collection procedure in scaffold degradation studies.

types of model forms such as spline models and nonlinear
models.

2.3. Comparisonwith similarmethods

From the perspective of two-levelmodeling, the proposedCHM
has some similarities to the TSR method mentioned in Section
1 andmixed-effect models (Jiang, 2007). However, it has the fol-
lowing unique characteristics.

First, the CHM simultaneously estimates parameters at the
two levels in orderto achieve best overall fitting, whereas the TSR
separately estimates model parameters at the two levels. That is,
it first finds β∧

i at level 1 by regressing y on t and then finds
c0,0 = 0 at level 2 by regressing β∧

i on z. Such separate estima-
tion deteriorates the performance of the overall fitting. As the
estimate of β i obtained in the first step is reused as a response
in the second step, it may also cause more uncertainty in the
estimation. Second, the CHM has a more general form of ran-
dom errors, which can be either homoscedastic or heteroscedas-
tic (i.e., independent of or dependent on process parameters),
whereas the TSR assumes a constant variance for random errors.
Third, the proposed CHM can flexibly incorporate constraints,
which is not straightforward for theTSRmethod ormixed-effect
models.

Compared with mixed-effect models, the CHM has a special
feature: level-2 models are free of random errors. There are two
reasons for such a setup. First, having random errors at level 2
would make it difficult to impose constraints as the term h(t; β)
in level-1 models will be random. Second, with random errors
at level 2, the CHMwill be non-identifiable using data collected
in scaffold studies. Figure 4 illustrates the data collection pro-
cedure in scaffold degradation studies. Typically, scaffold speci-
mens are put in phosphate-buffered saline (PBS; i.e., salt) solu-
tion and have their weight loss measured at predetermined time
points (Yang et al., 2004). For each measurement, a specimen
needs to be taken out of the solution and dried. It is then dis-
carded, meaning that we can only obtain one observation from
each specimen instead of the multiple observations required in
mixed-effectmodels. In such a case, randomerrors at level 2 can-
not be distinguished from those at level 1 (Frees, 2004).

3. Bayesianmethods for model estimation and
comparison

There are two tasks that need to be performed to build the CHM
in Equation (1) under the models in Equations (2) to (4):

Task I. Parameter estimation: Note that we only need to esti-
mate the level-2 parameters, {c0, c1, … , cp-1, cσ }. Once they are
determined, the level-1 parameters will also be determined.

Task II. Model comparison: To find a good model, we need to
address a few considerations:

(Q1) Is logarithmic transformation on the variance needed?
(Q2) Does the level-1 model have zero intercept; i.e., β0 = 0

in Equation (2)?
(Q3) Is the effect of the process parameter insignificant; i.e.,

ci = 0 in Equation (3)?
(Q4) Is the variance homoscedastic; i.e., cσ = 0 in Equation

(4)?

Answers to the above questions will not only help find an
optimal model but will also provide useful guidance to scaf-
fold degradation research. For example, the value β0 = 0 in
(Q2) implies that the degradation behavior in the observed
period may be consistent with that in the initial period, which
is typically not observed. Also, ci = 0 in (Q3) suggests that the
process parameter does not have significant effect on scaffold
degradation.

Section 3.1 will detail the proposed Bayesianmethod for Task
I. The considerations inTask II can be formulated asmodel com-
parison problems in the Bayesian framework. For example, (Q1)
can be solved by comparing the model with gσ (z; cσ) and that
with log[gσ (z; cσ)]. Bayesian methods for such comparisons
will be given in Section 3.2.

3.1. Bayesianmethod for parameter estimation

Assume that the dataset contains m independent observations
{(yj, zj, tj), j = 1, … , m}, where yj is the degradation measured
at time tj under the value, zj, of the process parameter. To avoid
risks of inappropriate priors, flat (i.e., noninformative) priors are
used in our study. In Bayesian statistics, the central task inmodel
estimation is to find the posterior of the parameters. For the pro-
posed CHM in Equations (1) to (4), the joint posterior distribu-
tion of parameters is

f (c0, c1, . . . , cp−1, cσ |data). (5)

As this distribution is analytically intractable, MCMC algo-
rithms (Robert and Casella, 2004) will be used to sample from it
(called posterior sampling later). Point estimates of the parame-
ters can be obtained using location estimates (e.g., mean) of the
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20 L. ZENG ET AL.

posterior sample. Prediction can also be found based on the pos-
terior sample. In the following, the method for posterior sam-
pling will be described first, followed by the method for getting
point estimates and prediction.

... Posterior sampling
In general, sampling from posteriors in a hierarchical model is a
challenging task due to the high dimension of the parameters. In
this study, a hybrid approach will be used, which integrates two
MCMC methods: the Gibbs sampler and the slice sampler. The
Gibbs sampler is a popular method for high-dimensional pos-
terior sampling (Gelman et al., 2004). Its basic idea is to divide
the parameters into subgroups and sample from the conditional
posterior of each subgroup given others. As the subgroups have
smaller dimensions and their conditional posteriors are sim-
pler than the joint posterior, the sampling can be more easily
implemented. This method is especially suitable for hierarchical
models, as the hierarchy in the models provides a natural way
to divide parameters (Gilks, 2005). In sampling the conditional
posteriors of subgroups, there are two cases: for standard condi-
tional posteriors such as a normal distribution, the sampling can
be done using random generators in software; for nonstandard
ones, the sampling will be done using the slice sampler. The slice
sampler is a novel MCMC algorithm that is a powerful method
to sample nonstandard posteriors (Neal, 2003). One important
advantage of this method lies in its convenience in implementa-
tion: it only needs the posterior to be sampled from and initial
values as inputs.

Figure 5 shows two strategies to divide parameters in Gibbs
sampling, where the dashed arrows indicate the order of sam-
pling. In the first strategy, cσ is one group and all of the other
parameters form another group, while in the second strategy,
each parameter forms a group.Generally, the first strategy can be
used in small-dimension cases, and the second strategy should
be used otherwise.

Posterior sampling procedures under the two strategies are
given below. Let

z = [z1, . . . , zm]′, y = [y1, . . . , ym]′, t = [t1, . . . , tm]′,

ε = [ε1, . . . , εm]′ , zqi−1 = [zqi−1
1 , . . . , zqi−1

m ]′,
Zi = [zqi−1, zqi−2, . . . , 1]′, Zσ = [zqσ−1, zqσ−2, . . . , 1]′,

gi(z; ci) = ci,qi−1zqi−1 + · · · + ci,0 = Zici,
gσ (z; cσ) = cqσ−1zqσ−1 + · · · + c0 = Zσ cσ ,
Vi(z; cσ) = diag(gσ (z; cσ ) • /t2i),
where “diag(v)” denotes the diagonal matrix with the vector v
being the diagonal elements, “•” is the dot product operator of
two vectors, and “•/” is the dot divide operator.
Posterior Sampling Procedure under Strategy I
Pre-step: Specify the initial value of cσ , denoted by c(0)σ .

Figure . Two strategies to divide parameters in Gibbs sampling.

Step 1: Generate a sample {c(1)0 , . . . , c
(1)
p−1} from the conditional

posterior of {c0, … , cp-1} given

f
(
c0, c1, . . . , cp−1

∣∣c(0)σ , y})
∝ N

(
y

∣∣∣∣∣
p−1∑
i=0

gi(z; ci) • ti,V0
(
z; c(0)σ

))
. (6)

Step 2: Generate a sample c(1)σ from the conditional posterior of
cσ given {c(1)0 , … , c(1)p−1}

f
(
cσ
∣∣c(1)0 , c

(1)
1 , . . . , c

(1)
p−1, y

)
∝ N

(
y

∣∣∣∣∣
p−1∑
i=0

gi
(
z; c(1)i

) • ti,V0(z; cσ )
)
. (7)

This will yield one sampling point {c(1)0 , . . . , c
(1)
p−1, c

(1)
σ }.More

sampling points can be generated by iterating Steps 1 and 2.
Posterior Sampling Procedure under Strategy II
Pre-step: Specify the initial values of the parameters,
{c(0)0 , . . . , c

(0)
p−1, c

(0)
σ }.

Step 1: Generate a sample c(1)0 from the conditional posterior of
c0 given {c(1)1 , . . . , c

(1)
p−1, c(0)σ }:

c0|c(0)1 , . . . , c
(0)
p−1, c

(0)
σ ,

y∼N
((
Z′
0(V0(z; c(0)σ ))−1Z0

)−1Z′
0
(
V0
(
z; c(0)σ

))−1u0,

× (
Z′
0
(
V0
(
z; c(0)σ

))−1Z0
)−1)

, (8)

where

u0 ≡ y −
p−1∑
i=1

gi
(
z; c(0)i

) • ti.

{c(1)1 , . . . , c
(1)
p−1}will be generated in sequence for 1� k� p− 1.

Step k+ 1: Generate a sample c(1)k from the conditional posterior
of ck:

ck
∣∣c(1)1 , . . . , c

(1)
k−1, c

(0)
k+1, . . . , c

(0)
p−1, c

(0)
σ , y

∼N
((
Z′
k
(
Vk
(
z; c(0)σ

))−1Zk
)−1Z′

k
(
Vk
(
z; c(0)σ

))−1uk,

× (
Z′
k
(
Vk(z; c(0)σ

))−1Zk
)−1)

, (9)

where

uk ≡
[
y −

k−1∑
i=0

gi
(
z; c(1)i

) • ti−
p−1∑

i=k+1

gi
(
z; c(0)i

) • ti
]

•
/

tk.

Step p+ 1: Generate a sample c(1)σ from the conditional posterior
of cσ in Equation (7):

f
(
cσ
∣∣c(1)0 , c

(1)
1 , . . . , c

(1)
p−1, y

)
∝ N

(
y

∣∣∣∣∣
p−1∑
i=0

gi
(
z; c(1)i

) • ti,V0(z; cσ )
)
.

In implementing the above procedures, initial values of the
parameters can be found in the following way: separately fit
a polynomial model to data under each setting of the process
parameter and then fit polynomial models using the parameter
estimates of those models as a response. The conditional pos-
teriors in Equations (6) and (7), which are proportional to the
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IIE TRANSACTIONS 21

normal likelihoods, are nonstandard distributions and will be
sampled using the slice sampler. Since the conditional posteri-
ors in Equations (8) and (9) are multivariate normal distribu-
tions, the sampling can be done using built-in routines in the
software. Proofs of Equations (6) and (7) are given in Appendix
A, and those of Equations (8) and (9) are given in Appendix B.

Note that there are several constraints in the proposed CHM
in Equation (1). Incorporating constraints in model estimation
is not trivial using conventional methods for estimation. Under
the Bayesian framework, such difficulty can be easily conquered
by discarding posterior samples that fall out of the constrained
space (Geweke, 1986; Gelfand et al., 1992). Specifically, when
each sample is drawn from the posterior, the constraints will be
checked. If the sample satisfies the constraints, it will be retained;
otherwise, it will be discarded. In this way, the output of the pos-
terior sampling will be within the constrained space.

... Point estimates and prediction
Let {c(w)0 , . . . , c(w)p−1, c

(w)
σ },w= 1,… ,W, be the generated sample

from the posterior sampling. When the posterior is symmetric,
the sample mean can be taken as a point estimate of the param-
eters. To be more robust, the median or mode should be used.
The sample mode can be obtained by first estimating the pos-
terior density through nonparametric methods, such as kernel
smoothing (Horova et al., 2012) and then finding the mode of
the estimated density through optimization.

From Equation (1), we can get y∼N(h(t; β), σ 2). Pre-
diction of degradation ŷ∗ under a given setting of the pro-
cess parameter z∗ and time point t∗ can be obtained based on
this expression. Specifically, for each item in the posterior sam-

ple, draw y∗(w) from N(h(t∗; β̂∗(w)), σ̂ 2∗(w)), where β̂
∗(w) =

[β̂∗(w)
0 , β̂

∗(w)
1 , . . . , β̂

∗(w)
p−1 ]

′, β̂∗(w)
i = gi(z∗; c(w)i ), i = 0, . . . , p−

1, and σ̂ 2∗(w) = gσ (z; c(w)σ ). This will produce a posterior sam-
ple of the prediction{y∗(1), . . . , y∗(w)}. The median of this sam-
ple can be used as the prediction ŷ∗.

3.2 Bayesianmethod formodel comparison

A popular Bayesian tool for model comparison is the Bayes Fac-
tor (BF), which can compare any two models regardless of their
forms (Kass and Raftery, 1995). The computation of BFs often
encounters challenges in cases of high-dimensional parameters.
In this study, we propose a newmethod to calculate the BF. This
section will first briefly review the BF and existing computation
methods and then describe the proposed method.

... The BF and computationmethods
The BF of two models,M1 andM2, is defined by (Gelman et al.,
2004)

BF12 = P(y|M1)

P(y|M2)
=
∫
π(θ1|M1) f (y|θ1,M1)dθ1∫
π(θ2|M2) f (y|θ2,M2)dθ2

, (10)

where θk is the parameter vector of model Mk, k = 1, 2. For
example, if M1 is the proposed model in Equations (1) to (4),
then the parameter θ1 = [c1, c2, . . . , cp−1, cσ ]′. Here π(θk|Mk)
denotes the prior under Mk, f(y|θk,Mk) is the likelihood, and

P(y|Mk) is the Marginal Likelihood (ML) under this model.
Being the ratio of theMLs, the BF has an intuitive interpretation.
For example, BF12 = 3means thatM1 is three timesmore plausi-
ble thanM2 according to the data. The following are widely used
cutoff values for the Bayes factor (Kass and Raftery, 1995):

BF 2log Evidence againstMj
1 ∼ 3 0 ∼ 2 Barely worth mentioning
3 ∼ 20 26 Positive
20 ∼ 150 6 ∼ 10 Strong
>150 >10 Very strong

Usually the BF is obtained by separately estimating the ML
of each of the competing models and then calculating their log-
arithmic difference (Han and Carlin, 2001):

log(BF12) = log(P(y|M1))− log(P(y|M2)).

Since the marginal likelihood under modelM can be written
as

P(y|M) =
∫

f (y|θ,M)π(θ|M)dθ = Eπ(θ|M)
[
f (y|θ,M)] ;

i.e., the average likelihood over the prior, the simplest estimator
of the ML is

P̂(y|M) = 1
W

W∑
w=1

f (y|θ(w),M),

where {θ(w): w = 1, … ,W} is a sample from the prior π(θ |M).
When a flat prior is used, most θ (w) have very small likelihood
values if the posterior is concentrated relative to the prior, so
that the sampling process is inefficient and the estimator has
large variance. Some estimators based on posterior sampling
have been proposed for better estimation, including the har-
monic mean estimator (Kass and Raftery, 1995):

P̂(y|M) = 1
W

{ W∑
w=1

[ f (y|θ(w),M)]−1

}−1

, (11)

where {θ(w): w = 1, … ,W} is a sample from the posterior f(θ |y,
M).

For the proposed CHM, there are two types of model com-
parison problems: non-nested and nested comparisons. Two
models are called nested if one model can be obtained when
some parameters of the other model take certain values. For the
first type of problems, the harmonicmean estimator in Equation
(11) will be used to calculate the BF. For the second type, we pro-
pose a new method to efficiently calculate the BF, which is now
described.

... The proposedmethod for calculating BFs
Let the two models to compare be Ml and Ms with parameters
θl and θs, and Ms is nested with Ml. Suppose θl = [θs ξ]′ with
unknown ξ , and ξ = ξ 0 in Ms. For simplicity, Ml is called the
largermodel andMs the smallermodel. In otherwords, the com-
parison is equivalent to determining if ξ = ξ 0. Theorem 1 gives
a simple formula for the BF.
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22 L. ZENG ET AL.

Figure . Data used in the case study: scaffold weight loss (y) under different settings of PEG percentage (z) measured at specified time points (t).

Theorem 1. Assuming (i) the priors of θs and ξ under Ml are
independent; i.e.,π(θ l|Ml)=π(θ s|Ml)π(ξ |Ml); (ii) the prior of θ s
underMl is the same as that underMs; i.e., π(θ s|Ml)= π(θ s|Ms);
and (iii) ξ follows a flat prior within [a, b] underMl, the BFr com-
paring Ml to Ms is

BFls = 1
(b− a) f (ξ0|y,Ml )

.

A proof of the theorem is given in Appendix C. Note that the
three assumptions in the theorem are standard settings of priors
in Bayesian analysis (Gelman et al., 2004).

This result is intuitive: f(ξ 0|y, Ml) in the denominator is the
marginal posterior density of ξ at ξ 0, which represents evidence
for ξ = ξ 0; i.e., the smaller model. Since BFls measures evidence
of the larger model against the smaller model, it has an inverse
relationship with f(ξ 0|y,Ml). A large f(ξ0|y,Ml) means that there
is strong evidence for ξ = ξ0 and thus the smaller model should
be chosen. Consistently, the BF is small, indicating that the larger
model is less supported by data and thus the smaller model is
preferred.

Based onTheorem 1, we obtain the following estimator of the
Bayes factor:

∧
BFls

= 1[
max1≤w≤W (ξ(w))− min1≤w≤W (ξ(w))

]× f̂ (ξ|y,Ml )
∣∣
ξ=ξ0

,

(12)

where {ξ (w): w = 1, … ,W} is a sample of ξ from the posterior
underMl. The maximum and minimum of this sample are used
to estimate (b−a); f̂ (ξ|y,Ml ) can be obtained by fitting this
sample using kernel smoothing methods; then f(ξ 0|y, Ml) can
be estimated by the value of this density function at ξ = ξ 0.

Compared with existing estimators, the new estimator in
Equation (12) provides considerable convenience in computa-
tion; the existing estimators calculate the ML under each model
to obtain the BF, which means that posterior sampling needs to
be done under both models. In contrast, the new estimator only
requires posterior sampling from the larger model. This sim-
plification is made possible by the use of the nested structure

of the models under comparison. Moreover, as the new estima-
tor only depends on one posterior sample, it is expected to have
a smaller variance than the existing estimators, which involve
two samples. This is validated by the results of the case study in
Section 4.3.

4. Case study

We apply the proposed method to a dataset from a novel tissue-
engineered scaffold fabrication process using urethaned-doped
polyester elastomers (CUPEs). The CUPEs is a new class of
biomaterials for scaffold fabrication. Unlike conventional scaf-
fold materials that are either stiff and incompliant or soft but
weak, the CUPEs is fully elastic and sufficiently strong, making
them potential scaffold materials to develop soft tissues such as
cardiac tissues and blood vessels (Yang et al., 2004; Dey et al.,
2008). Figure 6 displays the collected data containing scaffold
weight loss percentages (y) under one key process parameter (z),
the percentage of Polyethylene glycol (PEG) in scaffold material
synthesis. There are seven settings of z at 0, 0.25, 0.3, 0.4, 0.5, 0.6,
and 0.75. The weight loss was measured at five time points with
t = 3, 7, 14, 21, 28 days under each setting of z. Five replicates
were measured each time.

The level-1 and level-2 models in the CHM in Equation (1)
should satisfy the following requirements:

(R1) Good fitting of data. The level-1 models should fit the
degradation data well.

(R2) Good fitting of level-1 parameter estimates. The level-2
models should fit parameter estimates of level-1 models
well.

(R3) Easy interpretation. As mentioned in the Introduction,
models with easy interpretation are preferred. This is
especially needed for level-2models, which represent the
effect of process parameters.

Results on building/validating the proposed CHM are
reported as follows. Section 4.1 conducts somepreliminary anal-
ysis to determine the appropriate forms for the level-1 and level-
2 models based on the above requirements. With the chosen
model forms, Section 4.2 applies the proposed method in Sec-
tion 3.1 to estimate parameters of the CHM. The estimated
model is compared with results from the unconstrained version
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IIE TRANSACTIONS 23

Table . Parameter setting in the candidate model forms of the CHM.

Model

                   

y I I I I I II II II II II II III III III III III III III III III
p−                    
q−                    

of the CHM (called UnCHM later) and the TSR method. Sec-
tion 4.3 applies the method in Section 3.2 to compare possible
variants of the CHM. Section 4.4 checks residuals to validate
model assumptions. Section 4.5 compares the prediction perfor-
mance of the CHMwith UnCHM, TSR, GP, and ANNs through
cross-validation. Section 4.6 summarizes the findings in the case
study.

4.1. Preliminary analysis

Since degradation measurements are in percentages, logarith-
mic and logit transformation can be applied to the data, leading
to the following possible model forms:

Level-1 Model

(I) y = βp−1t p−1 + · · · + β0 + ε

(II) log(y) = βp−1t p−1 + · · · + β0 + ε ⇒
y = eβp−1t p−1+···+β0+ε

(III) logit(y) = log
(

y
1−y

)
= βp−1t p−1 + · · · + β0 + ε ⇒

y = eβp−1t
p−1+···+β0+ε

1+eβp−1t
p−1+···+β0+ε .

Level-2 Model

βi = ci,q−1zq−1 + · · · + ci,0, σ 2 = cq−1zq−1 + · · · + c0.

Here the level-1 model can take three forms: regular polynomi-
als (I), exponential polynomials (II), and logit polynomials (III).
The order of the polynomials is p − 1. For convenience, poly-
nomial models of order q − 1 are used at level 2. In addition,

to improve numerical stability in model fitting, values of z are
scaled by 20 (i.e., z/20 is used). Considering different settings of
polynomial orders at the two levels, 20 candidatemodel forms of
the CHM as listed in Table 1 are fitted to the data in Fig. 6 using
least squares methods. Specifically, the level-1 model is first esti-
mated for data under each value of z, and then the level-2 model
is fitted using level-1 parameter estimates as responses. The can-
didate models are compared in terms of the three abovemen-
tioned requirements.

The performance of candidate models in fitting the data (i.e.,
fitting at Level 1) is measured by Mean Squared Error (MSE),
Akaike Information Criterion (AIC), and Bayesian Informa-
tion Criterion (BIC). The MSE is an estimate of the random
error variance (i.e., σ 2) with a smaller value indicating better
fitting; the AIC/BIC measures trade-off between the goodness-
of-fit of the model and its complexity, with a smaller value
indicating better performance. Figure 7 shows the results of
MSE and AIC under each value of z (legends in the plots are
model indices). The results of BIC have similar patterns as AIC.
Some models share one curve in the figure as they use same
level-1 models. Note that the AIC values of the three groups
(i.e., form I, II, and III) are not comparable as their responses
(i.e., y, log(y), logit(y)) are different. Considering both perfor-
mance measures, models 2, 3, 4, 5 work similarly well in the
first group. Since the level-1 model of models 2 and 3 has a
lower polynomial order, they are chosen as the best in the first
group. Models 10 and 11 are the best in the second group, and
models 18, 19, 20 are the best in the third group. The best
models in the three groups have similar MSEs. Thus, in terms

Figure . Performance of level- models under form I (left), II (middle), and III (right).
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24 L. ZENG ET AL.

Figure . Performance of level- models in fitting parameter estimates of level- models.

of requirement (R1), models 2, 3, 10, 11, 18, 19, 20 are good
models.

The performance of candidate model forms in fitting level-1
parameter estimates is measured by the coefficient of determi-
nation (i.e., R2). Figure 8 shows results of this measure for the
three groups. Note that each point in the plot represents the R2

value of one model at level 2; if the candidate model contains
an order-1 model at level 1 (e.g., model 1), there will be three
level-2 models (β1, β0, and σ 2) and thus three points on the
curve. In the first group, models 1, 2, 3 have good fitting (R2

> 0.8) in all of the level-2 models, whereas models 4 and 5 are
relatively poorly fitted (R2 < 0.7) in some level-2 models; in the
second group,model 7 seems to be over-fitted in all level-2mod-
els (R2 > 0.98), whereas other models are relatively poorly fitted

in some level-2 models (R2 < 0.7); in the third group, models
13 and 14 are well fitted in some models and over-fitted in one
model, whereas other models are poorly fitted in some level-2
models (R2 < 0.5). Thus, in terms of requirement (R2), models 1,
2, 3 are good models.

Considering the above two aspects, models 2 and 3 perform
the best. Since model 2 has simpler level-2 models than model 3, it
is chosen as the bestmodel form for theCHM. This choice also sat-
isfies requirement (R3), as level-2 models in model 2 can be eas-
ily interpreted; the process parameter has a linear effect on the
shape and variability of scaffold degradation profiles. Figure 9
shows the fitted models using the chosen model form, where
the level-1 models (upper) are quadratic and the level-2 mod-
els (lower) are linear. Note that some level-1 models exhibit a

Figure . The chosen model forms: level- models (upper) and level- models (lower).
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IIE TRANSACTIONS 25

Figure . Normalized histograms and estimated density functions of the posterior sample.

decreasing trend at the right end. This will be corrected when
constraints are incorporated in model fitting as shown in Sec-
tion 4.2.

4.2. Parameter estimation

Based on results of the preliminary analysis and expert knowl-
edge on the studied scaffold material, the CHM for the given
dataset is as follows:

Level-1Model
y = β2t2 + β1t + β0 + ε, ε∼N(0, σ 2)

Level-2Model
β2 = c2,1z + c2,0, β1 = c1,1z + c1,0, β0 = c0,1z + c0,0
σ 2 = c1z + c0
Constraints
dy
dt

= 2β2t + β1 > 0,
dy2

dt2
= β2 < 0, c1z + c0 > 0,

(13)

where the three constraints represent positive degradation rate,
negative acceleration, and positive variance, respectively. The
parameters of the model are {c2,1, c2,0, c1,1, c1,0, c0,1, c0,0, c1, c0}.

Since the polynomial orders in Equation (13) are moder-
ate, we can use either of the sampling procedures in Section
3.1.1 for parameter estimation. Point estimates of parameters
are obtained using the mean, median, and mode of the poste-
rior sample. This analysis is performed in Matlab: the slicesam-
ple function with 500 000 iterations is used in posterior sam-
pling, the ksdensity function is used in posterior density esti-
mation, and the fmincon function is used to find the mode of
the estimated posterior density. Note that in imposing the first
constraint, t takes values in the range of 0–28 days, which is of
interest in this study. Since the first-order derivative is linear, we
actually only need to check t = 0 and t = 28.

Figure 10 shows the normalized histograms and correspond-
ing estimated densities of the posterior sample. Clearly, the his-
tograms and the estimated densities closely match. The poste-
riors of c2,0, c1,0, c1, and c0 exhibit some degree of skewness,
so median or mode estimates should be used. Also note that

the posterior of c2,0 is right-truncated (marked by the arrow in
Fig. 10) due to the effect of the constraints. Table 2 lists the point
estimates for each parameter. As expected, the estimates are very
close for c2,1, c1,1, c0,1, and c1,0 and differ considerably for the
skewed c2,0, c1,0, c1, and c0.

To evaluate the fitting performance of the CHM to the
data, Fig. 11 displays the fitted level-1 models from the CHM,
UnCHM, and TSR. It should be noted that the original TSR
method in the literature (He et al., 2015) assumes a constant
variance for random errors; the TSR method used here is actu-
ally a modified version that includes a linear model of the vari-
ance at level 2, as in the CHM, to better fit the data. Given the
limited data available, the fitting performance of the CHM is
acceptable. From the lower panel, we can see that the two uncon-
strained methods (i.e., UnCHM and TSR) have a similar fitting
performance in most cases, but the TSR behaves significantly
worse under z= 0. The fitting performance of the CHM is com-
parable to the UnCHM, but the decreasing trend of the UnCHM
under some settings of z (e.g., 0.5, 0.75) is corrected by the con-
straints in CHM. One point worth mentioning is that the fitting
of CHM in Fig. 11 appears to be not as good as that in the upper
panel of Fig. 9. The explanation for this observation is that the
fitted models in Fig. 9 are from separate regressions at level 1
and level 2. In contrast, the fitting of CHM in Fig. 11 is from the
overall estimation considering regression at both levels. Since
the CHM assumes linear relationships free of random errors at
level 2, it is reasonable that the level-1 fitting is not as good as in
the separate regression.

Table . Point estimates of the parameters obtained from the posterior sample.

Parameter

c, c, c, c, c, c, c c

Mean − . − . . . . − . . .
Median − . − . . . . − . . .
Mode − . − . . . . − . . .
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26 L. ZENG ET AL.

Figure . Fitted level- models: CHM (upper), UnCHM (lower, solid), and TSR (lower, dash).

4.3. Comparison of themodels

Based on the posterior histograms in Fig. 10, the following con-
cerns need to be addressed:
(Q1) Is logarithmic transformation on the variance needed?
(Q2) Does the level-1model have zero intercept; i.e., c0,1 = c0,0

= 0?
For (Q2), since there is compelling evidence that c0,1 > 0 (all

sampled values are positive in Fig. 10), we only need to deter-
mine if c0,0 = 0. The above concerns correspond to the following
model comparisons:
(Q1) M1: σ 2 = c1z + c0 vsM2: log(σ 2) = c1z + c0
(Q2) M1: c0,0 ∈ (−∞,∞) vsM2: c0,0 = 0
In this study, (Q1) is solved first, and then (Q2) is solved

based on the result of (Q1). Since the models in (Q1) are not
nested, the harmonicmean estimator in Equation (11) is used to

calculate theBF. For the twonestedmodels in (Q2), both the har-
monic mean estimator and the proposed estimator in Equation
(12) are used. To show the variation in BF estimation, 25 samples
are generated in the posterior sampling, each containing 20 000
iterations, and the BF for each sample is obtained. The results
are given in the left panel of Fig. 12.

Clearly, the BFs for (Q1) show considerable variation over the
samples, with an average of 5.16 (1.64 in log scale). This means
that M1 is about five times more plausible than M2. According
to the guidelines in Section 3.2.1, the evidence for M1 is pos-
itive. Thus, we declare that the logarithmic transformation is
not needed. For (Q2), the proposed estimator of the BF has a
much smaller variance than the harmonic mean estimator, with
an average of 1.32 (0.28 in log scale), which indicates barely
worth mentioning evidence for M1. This is consistent with the
results on theCredible Intervals (CIs), which is the Bayesian ver-
sion of confidence intervals. Using the posterior sample shown

Figure . Calculated BFs and AIC values in model comparison.
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IIE TRANSACTIONS 27

Figure . Residual plots under each value of the process parameter.

in Fig. 10, it is found that the 95% CI of c0,0 is [−5.39, 0.36],
which covers zero, whereas the 90% CI is [−4.92,−0.13], which
does not cover zero. This means that the evidence for c0,0 = 0
(i.e., against M1) can be significant or insignificant depending
on the level of confidence. To be conservative, we choose M1
and declare that c0,0 � 0. This analysis confirms that the pro-
posed CHM in Equation (13) is the best model for the data.

The AIC is also calculated for the two models in (Q1) and
(Q2). The results under each value of z are shown in the right
panel of Fig. 12. We can see that the models in (Q1) have appar-
ently different AIC values, and the AIC of M1 is considerably
smaller than that ofM2 in all cases. Thus,M1 should be chosen,
this is consistent with the decision based on the BF. For (Q2),
the two models have very similar AIC values except thatM1 has
a slightly smaller AIC under z = 0.M1 should be chosen in this

case, which is, again, consistent with the decision based on the
BF.

4.4. Residual analysis

To check the adequacy of the fitted CHM, residual plots under
each value of the process parameter are shown in Fig. 13. The
mode estimates of parameters in Table 2 are used to calculate
the residuals. There is no common pattern in the plots, indicat-
ing that the proposed model is reasonable for the data. Also, the
variances of the residuals under different values of z are similar,
which validates the adequacy of the variance model. Figure 14
shows theQ-Q (quantile-quantile) plots of the residuals. Clearly,
the deviations of residuals from normal distribution are trivial,
which verifies the normality assumption.

Figure . Q-Q plots of residuals under each value of the process parameter.
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28 L. ZENG ET AL.

Figure . Degradation predictions from the six methods using original data.

4.5. Prediction

To evaluate the prediction performance of the proposed CHM,
we adopt the leave-one-out cross-validation approach with
respect to values of the process parameter (z = 0, 0.25, 0.3, 0.4,
0.5, 0.6, 0.75). Specifically, for each value of z, data under other
values are used for model estimation, and data under this value
are used for prediction of degradation at the five specified time
points (i.e., t = 3, 7, 14, 21, 28 days). It should be noted that the
predictions under z= 0 and z= 0.75 are extrapolations, whereas
those under other values of z are interpolations.

We compare the prediction performance of the CHM with
five other methods, including the UnCHM, the TSR, the GP
model, a Feed-Forward Neural Network (FFNN), and a Radial
Basis Neural Network (RBNN). TheGPmodel used in this anal-
ysis follows a typical setup; i.e., with a constant mean, a Gaus-
sian correlation function, and a normally distributed random
error term with zero mean and constant variance (Ranjan et al.,
2011). The maximum likelihood estimates of parameters are
obtained by genetic algorithm for the GP model. For the ANNs,
there are two key parameters: the number of neurons (#neurons)
for FFNN and the upper bound of MSE in training (trainMSE)
for RBNN. In this study, different settings of these parameters
(#neurons = 3–20, trainMSE = 8–40) are considered, and the
settings that lead to best performance in training (for FFNN) or
convergence of prediction error (for RBNN) are chosen.

The predicted degradations from the six methods are dis-
played in Fig. 15, with the three two-level models in the
upper panel and the three surrogate models in the lower panel.

Table 3 reports the corresponding Root Mean Squared Predic-
tion Errors (RMSPEs). The following results are obtained.

(1) In the cases of interpolation (i.e., z = 0.25–0.6), the per-
formance of the proposed CHM is comparable to other
models except the GP model.

(2) In the cases of extrapolation (i.e., z = 0 and 0.75), the
CHM gives the best prediction among the six methods.
The prediction performance of the two ANNs are espe-
cially not promising in the cases of extrapolation (e.g.,
z = 0).

(3) Comparing the two groups, the two-level models gen-
erally perform better than the ANNs in most cases. For
the GP model in comparison with two-level models, it
has better prediction performance under z = 0.25 and
0.6 and comparable performance under z = 0, 0.3, 0.4,
and 0.5 but worse performance under z = 0.75.

It is worth pointing out that all of the six methods do not
produce good predictions for the case of z = 0.6. One poten-
tial reason lies in the large variability in the degradation data
under large values of z (recall that the random error variance σ 2

increases with z as shown in Fig. 9). The prediction under z =
0.75 is the most challenging case, due to the large variability and
inherent difficulty with extrapolation, whereas the CHMhas the
best prediction performance in this case. Another advantage of
theCHM is that the predicted degradations aremeaningful in all
cases. FromFig. 15, it is easy to see that the surrogatemodels can
yield predictions that are not practically reasonable, such as neg-
ative values (e.g., all of them under z = 0) and non-monotonic

Table . RMSPEs of the six methods using original data.

Methods z=  z= . z= . z= . z= . z= . z= .

Two-level models TSR . . . . . . .
UnCHM . . . . . . .
CHM . . . . . . .

Surrogate models GP . . . . . . .
FFNN . . . . . . .
RBNN . . . . . . .
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IIE TRANSACTIONS 29

Figure . Degradation predictions from the six methods using average data.

values (e.g., FFNN under z = 0.3, 0.6, 0.75; RBNN under z =
0.75). Such an issue also exists for the TSR and UnCHM (e.g.,
under z = 0, their predictions at t = 3 days are negative and
the prediction of TSR at t = 28 days is smaller than that at t =
21 days).

Note that there are five replicates at each time point in the
original data. In practice, bioengineers often average the repli-
cates for data analysis. To evaluate how this averaging procedure
affects the performance of these methods, we repeat the above
cross-validation study using the average data. The resulting pre-
dictions are shown in Fig. 16, and the corresponding RMSPEs
are listed in Table 4. We can see that the results have similar pat-
terns to those in Fig. 15, except that the prediction errors become
smaller due to the averaging. Again, the CHMperforms the best
in the cases of extrapolation, and its prediction error under z =
0.75 is particularly small. Also, predictions with negative values
and non-monotonic patterns are observed from other methods
(e.g., TSR andUnCHMunder z= 0, FFNNunder z= 0, 0.3, 0.4,
and RBNN under z = 0, 0.75).

4.6. Summary of findings

The case study validates the following advantages of the pro-
posed CHMmethod.

(1) Ability to incorporate constraints. The CHM is the only
method among the six methods compared in Section 4.5

that is able to take constraints into account. The inabil-
ity to incorporate constraints may make the results not
meaningful as shown in Figs. 15 and 16.

(2) Easy interpretability. The estimated CHM in the case
study indicates that the process parameter has a linear
effect on scaffold degradation profiles; and this effect is
on both the shape and variability of the degradation. This
is insightful information to scaffold researchers. In con-
trast, no such information can be obtained from the sur-
rogate models.

(3) Efficient model estimation. As shown in Fig. 11, the CHM
that simultaneously estimates the parameters at the two
levels is better fit to data than the TSR.

(4) Easy to implement. The CHM method is very easy to
implement as its model building (including model esti-
mation and comparison) and prediction are all done
using posterior samples that can be automatically gener-
ated. However, the use of the surrogate models has some
intrinsic issues: the ANNs require the specification of
some parameters, the appropriate values of which need
to be found through trial-and-error; the GP method is
likely to suffer numerical issues and become unstable
when replicates are used in the analysis. For example,
in the prediction study using original data in Section
4.5, the algorithms formodel estimation do not converge
55% of cases.

Table . RMSPEs of the six methods using average data.

Methods z=  z= . z= . z= . z= . z= . z= .

Two-level models TSR . . . . . . .
UnCHM . . . . . . .
CHM . . . . . . .

Surrogate models GP . . . . . . .
FFNN . . . . . . .
RBNN . . . . . . .

D
ow

nl
oa

de
d 

by
 [

Pe
nn

 S
ta

te
 U

ni
ve

rs
ity

] 
at

 2
3:

32
 2

4 
M

ay
 2

01
6 



30 L. ZENG ET AL.

Figure . Performance of parameter estimation on the simulated datasets.

(5) Good prediction. The CHM has the best prediction per-
formance in cases involving extrapolation, and its pre-
dictions are comparable to those advanced surrogate
models in other cases.

5. Numerical study

We note that the performance of the proposed method in
parameter estimation depends on the sample size of the data,
which is determined by three design parameters in the data col-
lection: the number of time points to measure degradation (nt),
the number of replicates measured at each time point (nr), and
the number of different settings of the process parameter (nz).
To further evaluate the performance of the proposed parame-
ter estimation method, a series of simulations are conducted by
varying these three parameters.

Let the range of t and z be the same as the data used in the case
study; i.e., t � [3, 28], z � [0, 0.75]. Three settings of the design
parameters are considered: nt = 5, 8, 10, 12, 15, 18 (nr = 3, nz =
4); nr = 3, 5, 8, 10, 15, 20 (nt = 5, nz = 4); and nz = 4, 6, 8, 10,
12, 15 (nt = 5, nr = 3). Under each setting, 30 datasets are simu-
lated from the CHM in Equation (13) with the (true) parameters
taking the values of the mode estimates in Table 2. Then param-
eter estimation is done for each simulated dataset using the pro-
posed method in Section 3.1 (median estimates are calculated
for convenience). A total of 4000 iterations are generated in the
posterior sampling to make simulation time affordable.

Results of the estimation for c2,1 are shown in Fig. 17 as an
example. Two measures are used to evaluate the performance of
the estimation, the relative bias (i.e., |c2,1 − ĉ2,1|/|c2,1|) and the
relative standard deviation (i.e., std(ĉ2,1)/|c2,1|). We can see that
as the design parameters get larger, the bias and variance of the
estimation get smaller, and the three design parameters exhibit
similar patterns. This suggests that the accuracy of parameter
estimation can be improved by increasing the number of scaffold
specimens used in the degradation study.

6. Conclusions

This study develops a novel statistical modeling method for
degradation data of tissue-engineered scaffolds. It can be
used to identify significant process parameters in the scaffold

fabrication process, predict scaffold degradation under given
settings of the process parameters, and guide the design of
experimental studies in practice. Results in the case study vali-
date that the proposed method is able to provide interpretable
and meaningful information regarding the effect of process
parameters on scaffold degradation. The comparative studywith
existing methods shows that the proposed method has a pre-
diction performance that is comparable to advanced surro-
gate models. The numerical study suggests that the accuracy of
model estimation depends on sample size.

As an initial exploration on the degradation regulation prob-
lem in scaffold fabrication, this study has left open many issues
that will be considered in our future research. First, in the poste-
rior sampling, the constraints are applied by simply discarding
samples that fall outside of the constrained space. This simple
method is not applicable when the constrained space has little
overlap with the high-density region of the posterior and thus
most samples will be discarded. Advanced sampling methods
for Bayesian-constrained estimation will be developed to solve
this problem. Second, when the shape of the degradation profiles
is complex, polynomial models may not be adequate to char-
acterize the profiles. One idea is to use the extended version of
polynomial models, the Piecewise Polynomial Models (PPMs;
Denison et al. (1998)), as a complex profile can always be bro-
ken into a number of pieces, in which the local behavior can
be approximated by a simple polynomial model. The intrinsic
connection between the PPMs and the polynomial models will
bring allow the extension of the Bayesian estimation methods
developed in this study to the new CHM using PPMs. Third,
this study separately fits a model for each parameter of the level-
1 model, which may miss some common information on the
parameters. A multivariate model will be explored in our future
study to enhance the models at level 2 of the hierarchical mod-
eling. Finally, models with multiple process parameters will also
be considered when required data become available.
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Appendices

Appendix A. proofs of equations (6) and (7)

By Equations (1) to (4):

y =
p−1∑
i=0

gi(z; ci) • ti + ε, ε∼N(0,V0(z; cσ )), (A.1)

thus the joint posterior of {c0, … ,cp-1, cσ } is

f (c0, c1, . . . , cp−1, cσ |y) ∝ π(c0, c1, . . . , cp−1, cσ )

·N
(
y|

p−1∑
i=0

gi(z; ci) • ti,V0(z; cσ )

)
,
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where π(·) is the prior. Since flat priors are used for all of the
parameters:

f (c0, c1, . . . , cp−1, cσ |y)

∝ N

(
y

∣∣∣∣∣
p−1∑
i=0

gi(z; ci) • ti,V0(z; cσ )

)
.

The conditional posteriors in Equations (6) and (7) can be
obtained from the joint posterior by conditioning on the given
quantities. �

Appendix B. proof of equations (8) and (9)

By Equation (A1):

y =
p−1∑
i=1

gi(z; ci) • ti + g0(z; c0)+ ε, ε∼N(0,V0(z; cσ )).

Given {c1, … ,cp-1, cσ }, the first term is a constant, so can be
moved to the left. Let

u0 ≡ y −
p−1∑
i=1

gi(z; ci) • ti;

thus,

u0 = g0(z; c0)+ ε = Z0c0 + ε, ε∼N(0,V0(z; cσ )). (A.2)

Equation (A2) can be viewed as a polynomial model of zwith
coefficient c0 and known variance–covariancematrixV0(z; cσ ).
According to Gelman et al. (2004, p. 374), under flat priors, the
conditional posterior of the coefficient of a linear model given
variance–covariance matrix is multivariate normal:

c0|c1, . . . , cp−1, cσ , y

∼N
((
Z′
0(V0(z; cσ ))−1Z0

)−1Z′
0
(
V0
(
z; cσ

))−1u0,

× (
Z′
0
(
V0
(
z; cσ

))−1Z0
)−1)

,

which gives Equation (8).
The conditional posterior of ck given {c1, … , ck-1,

ck+1, … ,cp-1, cσ }, 1 � k � p − 1, can be proved in a simi-
lar way. Specifically, by Equation (A1):

y =
k−1∑
i=0

gi(z; ci) • ti+
p−1∑

i=k+1

gi(z; ci) • ti + gk(z; ck) • tk + ε.

Let

uk ≡
[
y −

k−1∑
i=0

gi(z; ci) • ti−
p−1∑

i=k+1

gi(z; ci) • ti
]

•
/

tk,

then

uk = gk(z; ck)+ ε • /tk = Zkck + ε • /tk. (A.3)

Since ε∼N(0,V0(z; cσ )) = N(0, diag(gσ (z; cσ ))):
ε • /tk∼N(0, diag(gσ (z; cσ ) • /t2k)) = N(0,Vk(z; cσ )).

Thus, Equation (A3) can be viewed as a polynomial model
of z with coefficient ck and known variance–covariance matrix
Vk(z; cσ ). Thus,

ck|c1, . . . , ck−1, ck+1, . . . , cp−1, cσ , y

∼N
((
Z′
k
(
Vk(z; cσ

))−1Zk
)−1Z′

k
(
Vk
(
z; cσ

))−1uk,

× (
Z′
k(Vk

(
z; cσ

))−1Zk
)−1)

,

which gives Equation (9). �

Appendix C. proof of theorem 1.

From the definition of the BF in Equation (10):

BFls = P(y|Ml )

P(y|Ms)
=
∫
π(θl |Ml ) f (y|θl,Ml )dθl∫
π(θs|Ms) f (y|θs,Ms)dθs

.

By condition (i):

BFls =
∫ ∫

π(θs|Ml )π(ξ |Ml ) f (y|θl,Ml )dθsdξ∫
π(θs|Ms) f (y|θs,Ms)dθs

=
∫ [ ∫

π(θs|Ml ) f (y|θl,Ml )dθs∫
π(θs|Ms) f (y|θs,Ms)dθs

]
π(ξ|Ml )dξ.

Note that the denominator in the bracket—i.e.,∫
π(θs|Ms) f (y|θs,Ms)dθs—is a constant since the integrand

only depends on θs. The numerator
∫
π(θs|Ml ) f (y|θl,Ml )dθs

depends on ξ since the integrand,π(θs|Ml ) f (y|θl,Ml ), involves
θs and ξ (recall θ l = [θ s ξ ]

′). Thus, the quantity in the bracket is
a function of ξ .

Let

ψ(ξ) ≡
[ ∫

π(θs|Ml ) f (y|θl,Ml )dθs∫
π(θs|Ms) f (y|θs,Ms)dθs

]
,

then

BFls =
∫
ψ(ξ)π(ξ|Ml )dξ, (A.4)

which means that the BF is an average of ψ(ξ ) over the prior of
ξ underMl. By condition (iii):

π(ξ|Ml ) = 1
b− a

. (A.5)

The joint posterior with this prior is

f (θs, ξ|y,Ml ) = π(θs|Ml )π(ξ|Ml ) f (y|θs, ξ,Ml )

f (y|Ml )
,

which gives the marginal posterior of ξ :

f (ξ|y,Ml ) =
∫

f (θs, ξ|y,Ml )dθs

=
∫
π(θs|Ml )π(ξ|Ml ) f (y|θs, ξ,Ml )dθs

f (y|Ml )
.

Consequently,

f (ξ0|y,Ml ) =
∫

f (θs, ξ0|y,Ml )dθs

=
∫
π(θs|Ml )π(ξ0|Ml ) f (y|θs, ξ0,Ml )dθs

f (y|Ml )
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=
∫
π(θs|Ms)π(ξ0|Ml ) f (y|θs,Ms)dθs

f (y|Ml )
.

Thus,

f (ξ|y,Ml )

f (ξ0|y,Ml )
=
∫
π(θs|Ml )π(ξ|Ml ) f (y|θs, ξ,Ml )dθs∫
π(θs|Ms)π(ξ0|Ml ) f (y|θs,Ms)dθs

=
∫
π(θs|Ml ) f (y|θs, ξ,Ml )dθs∫
π(θs|Ms) f (y|θs,Ms)dθs

.

By the definition of ψ(ξ), we can get

ψ(ξ) = f (ξ|y,Ml )

f (ξ0|y,Ml )
. (A.6)

Plugging Equations (A5) and (A6) to Equation (A4) gives

BFls =
∫

f (ξ|y,Ml )

f (ξ0|y,Ml )
· 1
(b− a)

dξ

=
∫

f (ξ|y,Ml )dξ

(b− a) f (ξ0|y,Ml )
= 1
(b− a) f (ξ0|y,Ml )

,

so the theorem holds. �
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