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ABSTRACT
Additive manufacturing (AM) has advantages in terms of production cycle time, flexibility, and pre-
cision compared with traditional manufacturing. Spatial data, collected from optical cameras or in
situ sensors, are widely used in various AM processes to quantify the product quality and reduce
variability. However, it is challenging to extract useful information and features from spatial data
for modeling, because of the increasing spatial resolutions and feature complexities due to the
highly diversified nature of AM processes. Motivated by the aerosol jetVR printing process in
printed electronics, we propose a smooth spatial variable selection procedure to extract meaning-
ful predictors from spatial contrast information in high-definition microscopic images to model the
resistances of printed wires. The proposed method does not rely on extensive feature engineering,
and has the generality to be applied to a variety of spatial data modeling problems. The perform-
ance of the proposed method in prediction and variable selection through simulations and a real
case study has proven to be both accurate and easy to be interpreted.
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1. Introduction

The challenges in Additive Manufacturing (AM) processes
relate to product quality quantification, monitoring and con-
trol, all of which impede its broader application. Extensive
efforts have been made in recent years on quality modeling of
AM using in situ process information (Rao et al., 2016).
Among these efforts, spatial data has been widely collected and
analyzed for various AM processes (Huang et al., 2015).
However, due to the increase in spatial resolution and feature
complexity, it is still a challenge to efficiently use spatial data
in AM quality engineering (Schabenberger and Gotway, 2017).
More investigations are thus needed to improve the modeling
and interpretation of spatial data in AM quality control. In this
article, we focus on quality modeling of additive-manufactured
electronics with spatial data to reflect process conditions.

Along with this direction, our research is motivated by
an aerosol jetVR printing (AJP) process, which is a direct
write type of AM for flexible electronics printing. The basic
procedures of the AJP process are as follows:

1. Nanoparticle silver ink is atomized into droplets (mists)
by an atomizer.

2. The mist is delivered by carrier gas to the nozzle.
3. The mist is pushed out of the nozzle at a high velocity

onto the surface that is being printed.

More details of the process can be found in Sun
et al. (2017).

In the AJP process, high-resolution microscopic images
are taken of the surfaces of the printed electronics, as shown
in Figure 1(a), as an indirect measure of their quality. As
the microscope takes the images in a non-contact manner, it
can prevent potential damage and human errors in measure-
ments caused by traditional contact-based measuring tools,
such as multi-meters (Mahajan et al., 2013). These micro-
scopic images, reflecting the distribution of the silver inks
on the printed electronics, have been proven to strongly cor-
relate with the resistance and other electronic properties of
the investigated samples (Sun et al., 2017).

However, there is lack of efficient and systematic ways to
identify interpretable features from the raw images to model
electronic properties. Instead of performing the complex
engineering-driven feature extractions requiring domain
knowledge as shown on the right of Figure 1(b), we intend
to use a spatially correlated predictor that is generated from
an image pixel or mesh to directly predict the quality
response, as shown on the left of Figure 1(b). Here, a mesh
consists of multiple pixels from an area in an image with its
intensity calculated by the mean intensity of all pixels in the
mesh. Specifically, we focus this study on generation and
variable selection methods for spatially correlated predictors
(i.e., images in the AJP process) to help identify interpret-
able features for predicting the resistance properties of con-
ducting wires. Note that wires with missing segments and
infinite resistances are treated as outliers and removed from
the modeling study.
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In the literature, there are various papers that use spa-
tially correlated predictors for variable selection and model-
ing. Note that these methodologies are different from spatial
statistics, which typically emphasize the modeling and ana-
lysis of spatially correlated responses (Ripley, 2005). Here
our focus is on “spatial-data-in-scalar-out” types of regres-
sion, which are also known as the “scalar-on-image” (Kang
et al., 2016) regressions for image data. Two of the most
commonly used methodologies are feature-extraction-based
modeling, and direct modeling (e.g., treat the intensity of
each pixel as a predictor). For feature-extraction-based mod-
eling, wavelet analysis (Bukkapatnam et al., 1999), homolo-
gous features (Li et al., 2015), and Fourier transforms (Li,
Ledo, Delgado, Cerrada, Pacheco, Cabrera, S�anchez, and de
Oliveira, 2017), etc., can be used to extract features from
raw spatial data. Then, regression models can either use the
extracted features as input variables or employ feature
reduction (Bai et al., 2018) before performing variable selec-
tion and prediction. Kernel-based models are also widely
adopted, such as kernel-ridge regression (Vovk, 2013), rele-
vance vector regression (Zheng and Fang, 2015), etc. The
kernel-based model transforms the original data sets into
dual forms of various kernel spaces, in order to reduce the
modeling complexity and change the model linearity for bet-
ter performance. One potential drawback of the methods

mentioned above is that sufficient domain knowledge on the
corresponding manufacturing processes and a large amount
feature engineering are often needed to generate high-quality
predictors. As a result, a strategy to directly select individual
variables without complex feature extraction procedures or
kernel function selection is more useful to directly identify
important features, which is called the direct modeling
method in this article.

For the direct modeling method, popular approaches
include tensor regressions (Li et al., 2013), matrix regression
(Zhou and Li, 2014), deep learning (Chen et al., 2014),
Gaussian Process (GP) models (Kang et al., 2016), which
have been re-engineered to handle “scalar-on-image” regres-
sion based on traditional GP models (Colosimo et al., 2015),
etc. However, many tensor and matrix regressions are usu-
ally built under the assumption of low-rank approximations
(Zhou and Li, 2014), which might not always be adequate
for the spatial data sets collected in AM processes (Sun
et al., 2017). The models used in deep learning, such as con-
volutional neural network (CNN), are relatively complex
and require large sample sizes of input data (Luo, 2017).
However, in a highly flexible AM process, the sample size
can become very small (e.g., measured at most in tens or
hundreds), since AM often produces a “one-of-a-kind”
design of products to satisfy personalized needs.

Figure 1. (a). Optomec aerosol jetVR system (left), the printing process (middle), and the resistance measurement on printed electronics using a multi-meter and a
microscopic image of the printed electronics (right) and (b) two distinct ways of generating variables for resistance prediction: spatial predictor extraction with an
example of contrast between a pixel and its 8-Connected neighborhoods (defined in Adams and Bischof (1994) (left) and engineering-driven feature extraction (Sun
et al., 2017) (right).
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Furthermore, complex model structures produced by deep
learning can be difficult to use to generate interpretable fea-
tures for further diagnosis on product quality (Lou et al.,
2012). The use of GP models also involves high computa-
tional costs and large sample size requirements, making it
difficult for data modeling with a large number of variables
and limited sample sizes in AM processes (Tripathy
et al., 2016).

In this article, we focus on using spatial data to study the
resistance variation of printed wires due to missing ink
spray defects (black pinholes/regions in the image of Figure
2(b)). It has been shown that an increase in the number of
such defects significantly increases the resistance of a printed
wire (Zhao et al., 2012). It is worth mentioning that, not
only in the AJP process, various other printing processes for
flexible electronics, including flexographic printing (Krebs,
2009), inkjet printing (Haverinen et al., 2010), and gravure
printing (Kang et al., 2012), also suffer from quality issues
due to missing ink spray defects, such as short circuits, high
energy loss, etc. In this article, we propose to generate and
select spatial predictors that directly allow accurate quality
prediction and good interpretability. The proposed approach
is to encourage similar-but-non-identical effects among
neighborhood predictors, pursuing the smoothness among
neighborhood parameters during variable selection. The
underlying motivation is that predictors in a neighborhood
are spatially correlated, and thus would take similar roles
(e.g., either all be significant or insignificant) in affecting the
response. Thus, the parameter value changes among spatially
adjacent predictors are expected to be smooth. For example,
in microscopic images of printed wires, the parameter values
would gradually decay as the corresponding predictors are
far away from the defect regions, which are strongly associ-
ated with the response. We refer to such a phenomenon as
the neighborhood effect. Such an effect is inherent to many
spatially adjacent predictors in spatial data modeling (Kang
et al., 2016). In the AJP process, the spatial contrast infor-
mation generated from the microscopic images can directly
predict the resistances of conducting wires through the pro-
posed spatial modeling framework.

For predictor generation, three different types of spatial
contrast information (Adams and Bischof, 1994) will be used
to form spatial predictors: (i) contrast (difference) between
each mesh’s intensity and the overall image’s mean intensity;
(ii) contrast (difference) between each mesh’s intensity and its
8-Connected neighborhood meshes’ mean intensity; and (iii)
contrast (difference) between each mesh’s intensity and the
largest row-wise mean intensity among the image. Comparing
with the past AJP-related quality quantification work (Sun
et al., 2017), an advantage of using spatial predictors is that it
requires neither heavy feature engineering nor manually
labeled quality indices (e.g., silver ink over-spray) for product
quality quantification. An example of spatial predictors from
the microscopic images is shown in Figure 2, which is moti-
vated by the work of Adams and Bischoff (1994) to reflect
local intensity variation.

In summary, we remark that the proposed model,
Smooth Spatial Variable Selection (SSVS), is easy to

interpret since the spatial predictors are directly generated
from the spatial data, such as the contrast information
among pixels. Both one-dimensional (1-D) and two-dimen-
sional (2-D) simulations show that SSVS better identifies
inherent structures among model parameters, by encourag-
ing their smoothness. The case study on a real system shows
that given the highly personalized nature of AM processes,
SSVS under small training sample sizes offers smaller pre-
diction errors on testing data and yields meaningful variable
selection results. This gives SSVS the potential to be widely
adopted for quality modeling in various AM processes and
spatial data modeling problems.

The remainder of this article is organized as follows. In
Section 2, the proposed modeling framework, SSVS, and the
estimation algorithm are introduced. In Section 3, simula-
tion studies for SSVS comparing with benchmark models
are introduced. The benchmark models in this research
mainly include Lasso, fused Lasso, and matrix regression,
where Lasso is known for its variable selection under sparse
model parameter spaces, fused Lasso and matrix regression
are known for their ability to recover certain types of model
parameter structures. Details of these models and their com-
parisons with the proposed method will be discussed later.
Section 4 presents a case study that uses SSVS to investigate
the AJP process. Finally, Section 5 summarizes the proposed
methodology and discusses future work.

2. Smooth spatial variable selection for models with
spatial predictors

2.1. Model formulation

Without loss of generality, we consider a linear regression
between a single response variable y; such as the resistance
of a wire, and 2-D spatial predictors

X ¼
X 1;1 � � � X 1;m

..

. . .
. ..

.

X l;1 � � � X l;m

0
BB@

1
CCA;

a l�m matrix, where each predictor can correspond to a
pixel or a mesh location for microscopic images of conduct-
ing wires. Given that each predictor in the matrix X ; such
as X i;j; is spatially located by its index ði; jÞ in a 2-D space,
we can vectorizie X and the corresponding l �m model
parameter matrix B without losing their spatial information.
Specifically, tr XTBð Þ defines the summation of the pair-wise
multiplication of the corresponding elements in matrices X
and B: Therefore, if one vectorizies X and B; by appending

Figure 2. The 8-Connected neighborhoods of the underlying mesh are its sur-
rounding meshes.
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the columns sequentially into x ¼ x1;1; :::; xl;mð ÞT and b ¼
b1;1; :::; bl;m
� �T ; into ðlmÞ � 1 vectors, each pair of elements
in X and B to be multiplied remain unchanged. As a result,
the summation of pair-wise multiplication defined by
tr XTBð Þ remains equivalent to performing vector-wise
multiplication xTb: Thus, we can present the 2-D model for-
mulation in a 1-D format:

y ¼ tr XTBð Þ þ e ¼ xTbþ e; (1)

where e�N 0; r2ð Þ is an independent and identically distrib-
uted (i.i.d) error term. It should be noted that such an
indexing of predictors can be easily generalized to data
organized in a higher-dimensional format, such as three-
dimensional (3-D) colored image data and even four dimen-
sional spatial-temporal video data (Yan et al., 2015), where
the neighborhood effect can be enforced among spatially
adjacent model parameters.

In order to conduct the selection of variables for model
(1), various methods are proposed in the literature, such as
Lasso (Tibshirani, 1996), which is a commonly used method,
but not designated for spatial variable selection (Tibshirani
et al., 2005). Tibshirani et al. (2005) introduced fused Lasso
to penalize the difference between model parameters, and
this encourages the smoothness of variables. The applica-
tions of fused Lasso for 2-D spatial data sets are discussed
in the work of generalized Lasso (Tibshirani and Taylor,
2010), which can enforce model parameter structures using
designated penalty matrices. Both fused Lasso and general-
ized Lasso mainly focus on piece-wise constant variable
selection, that is, the similarity of two adjacent model
parameters is encouraged by penalizing their differences in
the model. Furthermore, the generalized Lasso does not
enforce the overall sparsity of model parameters, which is
not suitable for high-dimensional modeling under the spars-

ity assumption of model parameters. In the spirit of both
fused Lasso and generalized Lasso, we propose SSVS to
encourage the similarity and smoothness of spatially adja-
cent model parameters. For elaboration, we denote the par-
ameter of a predictor X i;j in X as bi;j; and define the

r-neighborhoods of bi;j as the set of parameters

bo;u :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i�oð Þ2 þ j�uð Þ2

q
� r

� �
; where the distance of any

two parameters is measured by the Euclidean distance. The
SSVS encourages that if the value of bi;j is non-zero (i.e., the

i; jth predictor is important), the parameters bo;u in its
r-neighborhoods also tend to have non-zero values.

Furthermore, the magnitudes of bo;u gradually decay (less
significant) as the locations of the corresponding predictors
become further away from xi;j: The proposed SSVS does not
only enforce the similarity among neighborhood model
parameters, but also makes the similarity tunable through
adjusting the value of r in model estimation (see Section
2.2). The larger the value of r considered for the variable
selection, the smoother the changes among neighbor-
hood parameters.

2.2. The smooth variable selection estimator

Suppose that y ¼ y1; :::; ynð ÞT is an n� 1 response vector
observed for the y in model (1), containing resistances of n
printed wires, and

X ¼
x1; 1;1ð Þ � � � x1; l;mð Þ

..

. . .
. ..

.

xn; 1;1ð Þ � � � xn; l;mð Þ

0
BB@

1
CCA

is a n� lm predictor matrix observed for x in model (1),
containing the values of the spatial predictors from n micro-
scopic images of printed wires. By incorporating SSVS, the
model estimation in model (1) can be solved by minimizing:

min
1
2

y�Xbj jj j22 þ k1 bj jj j1 þ k2 Sbj jj j1; (2)

where

S ¼
S 1;1ð Þ; 1;1ð Þ � � � S 1;1ð Þ; l;mð Þ

..

. . .
. ..

.

S l;mð Þ; 1;1ð Þ � � � S l;mð Þ; l;mð Þ

0
BB@

1
CCA

is an lm� lm weight matrix with its component being

Here the smoothness is achieved by penalizing the differ-
ence between weighted parameter S i;jð Þ;ði;jÞbi;j; and the sum of

its weighted neighborhood parameters
P

o6¼i

P
u 6¼jS i;jð Þ;ðo;uÞbo;u;

which are no more than a distance r away from bi;j measured

in terms of the Euclidean distance. The weights are determined
by the normalized exponential distance weighting function

exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i�oð Þ2 þ j�uð Þ2

q� �
Pr

z¼1 exp �zð Þ ;

which ensures that the weight on each neighborhood param-
eter is in [0,1] with the denominator/normalizing factor

S i;jð Þ; o;uð Þ ¼ �
exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i�oð Þ2 þ j�uð Þ2

q� �
Pr

z¼1 exp �zð Þ
0

�P
o6¼i

P
u 6¼jS i;jð Þ; o;uð Þ

8 o; uð Þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i�oð Þ2 þ j�uð Þ2

q
� r; i 6¼ o; j 6¼ u

� �

8 o; uð Þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i�oð Þ2 þ j�uð Þ2

q
>r; i 6¼ o; j 6¼ u

� �

o ¼ i; u ¼ j

:

8>>>>><
>>>>>:
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Pr
z¼1 exp �zð Þ: The same r is considered for all predictors

when estimating the model parameters. It is important to
point out that when there is only one neighborhood consid-
ered (r ¼ 1) for the estimator, Sbj jj j1 only penalizes the dif-
ferences of two consecutive model parameters, which are
one distance away from each other. Hereafter, SSVS with
only one neighborhood is the same as the fused Lasso
approach. Also, for spatial predictors from image data, the
matrix S can further enforce the smoothness on predictors
arranged in irregular grids. For example, we can use the
adjacency information, such as a 0-1 binary indicator,
instead of 2-D Euclidean distances among predictors to cal-
culate S i;jð Þ;ðo;uÞ:

2.3. Parameter tuning and model estimation

In model (2), we consider using the Extended Bayesian
Information Criterion (EBIC) (Chen and Chen, 2012) to
select tuning parameters r; k1; and k2: Here, EBIC is used
because traditional model selection criteria, such as the
Bayesian information criterion (Schwarz, 1978) and the
Akaike information criterion (Akaike, 1998) do not have
consistent and satisfying model selection when the number
of variables is much larger than the sample size. EBIC lever-
ages both the number of unknown parameters to estimate
and the resulted model complexity for model selection. As a
result, it has been shown that EBIC can yield more accurate
and consistent modeling performance for high-dimensional
modeling under small sample sizes (Chen and Chen, 2012).

The objective function in model (2) is a quadratic func-
tion, which can be solved by standard quadratic program-
ming algorithms, such as Newton’s method and the interior
point method. However, for a modeling problem with a
high dimension of predictors, taking the second derivation
required by some optimization methods is computationally
intensive. To address this issue, we adopted the split
Bregman algorithm, which is a type of alternating direction
method of multipliers algorithm, which will quickly con-
verge under l1 norm (Ye and Xie, 2011).

Ye and Xie (2011) proposed a general framework for
solving the constrained optimization problem:

min V bð Þ þ k1 aj jj j1 þ k2 bj jj j1;

subject to : a ¼ b; b ¼ Sb;

which has the augmented Lagrangian function of the form
of

L b; a; b; u; vð Þ ¼ V bð Þ þ k1 aj jj j1 þ k2 bj jj j1 þ u; b�ah i
þ v; Sb�bh i þ l1

2
b�aj jj j22 þ

l2
2

Sb�bj jj j22;

where V bð Þ is a convex function, �; �h i is the inner product
of two vectors, u and v are dual variables corresponding to
the two linear constraints, and l1 and l2 are positive aug-
mented Lagrangian parameters controlling the speed of opti-
mization. The convergence of the algorithm is guaranteed.

3. Simulation studies

In the simulation studies, we consider two simulations, one
with a 1-D format of predictors and one with a 2-D format
of predictors to systematically evaluate the prediction and
variable selection performance of the proposed SSVS estima-
tor. The SSVS estimator will be compared with three bench-
mark models, including Lasso, fused Lasso, and nuclear-
norm-based matrix regression (for the 2-D dataset). Other
models, such as CNN and GP models, were not selected as
benchmark models, due to their large sample size require-
ments in model estimation (Tripathy et al., 2016).

3.1 A 2-D simulation study of SSVS

We created a simulation study with 2-D spatial predictors to
illustrate the benefits of SSVS on 2-D data sets. To ensure
the generality of the simulation results and showcase the
importance of having a smoothness-tunable variable selec-
tion process, we assumed that model parameters, and the
mean values and covariance of the predictors all had varying
spatial correlations across different replications, respectively.
Furthermore, we intentionally designed the generation of
the parameter smoothness to make the decay pattern of
model parameters different from the weights assigned in the
smoothing matrix S of Equation (2). As a result, a random
decay pattern on model parameters will be chosen for each
replication of the simulation.

To generate the spatially correlated covariance of the spatial
predictors, we defined the covariance between variable xi;j and
xo;u on a 2-D space with an exponential decay function

ri;j;o;u ¼ cov xi;j; xo;uð Þ ¼
1

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i�oð Þ2þ j�uð Þ2

p ;

where the covariance shrinkage parameter (s) had a value of
five. In this way, the covariance of variables, which were
spatially close to each other, had larger correlations.
Similarly, to generate the means of variables, we first ran-
domly selected five predictors as the centers of the defects,
which were bounded by radius u following a discrete uni-
form distribution of {3, 4, 5} to simulate defects with differ-
ent sizes. Then the spatially correlated mean of each
predictor within the defect area having the center at pre-
dictor xi;j was defined as,

lo;u ¼ 255 1� 1

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i�oð Þ2þ j�uð Þ2

p
� �

8 o; uð Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i�oð Þ2 þ j�uð Þ2

q
� u; o 6¼ i; u 6¼ j

� �
;

where the shrinkage parameter (x) followed a discrete uni-
form distribution of {1.1, 1.2, 1.3, 1.4, 1.5}. Here, we define
defect areas, which have significantly lower intensities in
microscopic images (Figure 1), as the regions that were not
uniformly sprayed with silver ink in the printing process.
Different values of x can be used to simulate defect areas
with different intensity shrinkage rates from the centers of
the defects. For predictors outside of the defect area, the
means were simply defined as

IISE TRANSACTIONS 5



lo;u ¼ 255 8 o; uð Þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i�oð Þ2 þ j�uð Þ2

q
> u; o 6¼ i; u 6¼ j

� �
:

Such a mean value generation approach ensured that the
means of predictors within defect areas, which were darker
than non-defect areas, were assigned with values smaller
than 255. For the means of predictors not within the defect
areas, they were assigned with 255 (the largest value/bright-
est color in a gray-scale image). As result, each predictor
xo;u within each image sample followed i.i.d. Nðlo;u; ri;j;o;uÞ;
with one defect area existing. We repeatedly used such

methods to generated image samples containing five defect
areas selected previously.

To generate spatially correlated model parameters, we
assumed that only predictors within the defect areas had
non-zero values. Here, we used the same five predictors
select previously as the centers of the five defect areas and
the following equation was used to generate the parameters
of variables within the defect areas

bo;u¼
c

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i�oð Þ2þ j�uð Þ2

p 8 o;uð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i�oð Þ2þ j�uð Þ2

q
�u;o 6¼ i;u 6¼ j

� �
;

Figure 3. (a) An example of 2-D predictors simulated, (b) the 2-D model parameters simulated (underlying true parameters), (c) variable selection result using
matrix regression, (d) variable selection result using Lasso, (e)-(i) variable selection result using SSVS considering one to five neighborhoods (two being
the optimal).
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where the defect center’s parameter value (c) followed a dis-
crete uniform distribution of {1, 2, 3, 4, 5}. As the variable
within the defect area was further away from the defect cen-
ter, it had a smaller parameter value. For parameters outside
of the defect areas, they were assigned with zeros

bo;u¼0 8 o;uð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i�oð Þ2þ j�uð Þ2

q
>u;o 6¼ i;u 6¼ j

� �� �
:

Eventually, the response was generated based on model
(1) with the values generated above and e following
i.i.d. N 0; 1ð Þ:

Similar to the simulation settings in Zhou and Li (2014),
we used the above methods to generate 500 64� 64 image
samples with an example shown in Figure 3(a) to 3(i) and a
set of 64� 64 2-D model parameters shown in Figure 3(b).

To evaluate the consistency of the results, we simulated 100
replications for each simulation scenario. Within each repli-
cation, we randomly used 90% of the simulated samples as
the training dataset and the remaining 10% as the testing
dataset (Zeng et al., 2016). The tuning parameters were
selected based on EBIC for Lasso and SSVS, and BIC for
matrix regression (Zhou and Li, 2014). The simulation
results including the testing data prediction accuracy in
Root Mean Squared Error (RMSE) and the corresponding
standard error (SE) values are presented in Table 1. The
value shown in bold is the best result (smallest error)
obtained from different models and SSVS achieved the
lowest error with r ¼ 2. The variable selection results
are presented in Table 2 based on variable selection
accuracies

Table 1. Testing RMSE values over 100 replications for the 2-D simulation data set (standard errors in parenthesis).

Benchmark Models Proposed Model

Matrix Regression SSVS (c ¼ 0) / Lasso SSVS (c ¼ 1) / Fused Lasso SSVS (c ¼ 2)

RMSE 23.56 (<0.00) 33.32 (0.34) 11.07 (0.18) 10.03 (0.12)

Table 2. Average variable selection accuracies (ACCs) over 100 replications for the 2-D simulation data set (standard errors in
parenthesis).

Benchmark Models Proposed Model

Matrix Regression SSVS (c ¼ 0) / Lasso SSVS (c ¼ 1) / Fused Lasso SSVS (c ¼ 2)

RMSEs 0.48 (<0.01) 0.89 (<0.01) 0.96 (<0.01) 0.97 (<0.01)

Figure 4. (a) True values of the simulated parameters, (b) the parameters learned considering more than one neighborhoods using SSVS’ (c) the parameters learned
considering one neighborhood using SSVS (fused Lasso). and (d) the parameters learned considering no neighborhood (Lasso).
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ACC ¼ True Negativeþ True Positve
Total Amount of Predictors

and Figure 3. The modeling assumptions were validated by
residual plots that are presented in the online supplemen-
tary materials.

From Table 1, Table 2, and Figure 3, it is clear that
Lasso, which did not consider the neighborhood effect, per-
formed the worst in prediction studies. It also had a large
number of misdetections on significant model parameters
(insignificant parameters misidentified as significant) during
variable selection (Figure 3(d)). Furthermore, we can see
that the matrix regression method, which relied on low-rank
approximation, did not recover the parameter structures as
good as did SSVS in this simulation (Figure 3(c)), and had
significantly lower prediction accuracies. For results of using
SSVS, using one neighborhood (fused Lasso) had larger pre-
diction errors and more misdetections on significant model
parameters in variable selection (Figure 3(e)). However,
increasing the size of neighborhoods enforced in SSVS may
significantly improve the modeling results (Figure 3(e) to
(i)). When there were more than two neighborhoods consid-
ered in variable selection, the prediction error and misdetec-
tions in variable selection gradually increased. This
simulation did not only show the values of SSVS in spatial
variable selection problems, but also emphasize the import-
ance of varying the size of neighborhoods considered for
SSVS in order to achieve the best modeling performance.

3.2 A 1-D simulation study of SSVS

Additionally, we created a 1-D data simulation to test the per-
formance of SSVS by varying the sample size of input data (n),
the number of model parameters (p), and the covariance of
predictors controlled by covariance shrinkage parameter (s)
defined later in this simulation. The sample size had the values
of n ¼ 40 and n ¼ 400; the number of predictors (p) had val-
ues of p ¼ 4000 and p ¼ 8000; and the covariance shrinkage
parameter (s) had values of 1.01 and 1.05. Based on s; the

covariance between two variables was generated as

riþd;i ¼ cov xiþd; xið Þ ¼ cov xi�d; xið Þ ¼ 1
sd

;

where xi�d and xiþd were the d distances of the variables
before and after xi; respectively: Then, covariance among
variables reflects neighborhood shrinkage effects, i.e., the
larger the d; the smaller the covariance between xiþd and xi
or xi�d and xi: Such a neighborhood shrinkage effect was
indeed observed in our case study data set when we sort the
spatial predictors based on their contrast values from small
to large. In total, we had eight simulation scenarios. The
model parameters were generated from a uniformly distrib-
uted random combination of piece-wise constant functions
and exponential decay functions (see Figure 4(a)). If a piece-
wise constant function was used, then 100, 150 or 200
parameters in series with equal and non-zero parameter val-
ues were generated, and the values were selected from a dis-
crete uniform distribution of {-3, -2, -1, 0, 1, 2, 3}. Similarly,
if an exponential decay function was used, 100, 150 or 200
parameters in series were generated using

bi�d ¼ biþd ¼
bi
hd

;

so that the parameters of each series formed a symmetrical
curve that mimicked the shrinkage effect on values of the
parameters. Here, bi was the parameter in the center of each
series of parameters and followed a discrete uniform distri-
bution of {-3, -2, -1, 0, 1, 2, 3}. bi�d and biþd were the d dis-
tances of the parameters before or after bi; respectively, h
was the shrinkage parameter and followed a discrete uni-
form distribution of {1.01, 1.02, 1.03}, which generated a
symmetrically decaying parameter curve. Finally, the
response was generated based on model (1) using the values
generated above and e following i.i.d. N 0; 1ð Þ: The motiv-
ation to generate the model parameters containing two dif-
ferent structures was to test if SSVS could better recover the
inherent model structure when both piece-wise constant and
smooth model parameter structures exist.

Table 3. Average RMSE values over 100 replications for testing data in 1-D simulation studies.

p Size of Neighborhoods for SSVS

s ¼ 1.01 s ¼ 1.05

n ¼ 40 n ¼ 400 n ¼ 40 n ¼ 400

4000 SSVS (r ¼ 0) / Lasso 145.29 (8.48) 14.32 (0.67) 199.55 (9.07) 26.15 (1.12)
SSVS (r ¼ 1) / Fused Lasso 31.57 (2.38) 1.42 (0.02) 61.41 (4.04) 1.48 (0.03)

SSVS (r > 1) 30.49 (r 5 3) (2.16) 1.52 (r ¼ 3) (0.03) 55.23 (r 5 4) (3.58) 1.55 (r ¼ 2) (0.03)
8000 SSVS (r ¼ 0) / Lasso 342.21 (15.59) 33.15 (1.42) 327.54 (13.41) 64.95 (2.72)

SSVS (r ¼ 1) / Fused Lasso 185.84 (11.68) 2.01 (0.04) 229.56 (9.83) 2.38 (0.05)
SSVS (r > 1) 176.28 (r 5 4) (10.57) 2.11 (r ¼ 2) (0.04) 209.87 (r 5 5) (9.61) 2.54 (r ¼ 2) (0.06)

Table 4. Average variable selection accuracies (ACCs) over 100 replications for the 1-D simulation dataset (standard errors in parenthesis).

p Size of Neighborhoods for SSVS

s ¼ 1.01 s ¼ 1.05

n ¼ 40 n ¼ 400 n ¼ 40 n ¼ 400

4000 SSVS (r ¼ 0) / Lasso 0.83 (0.01) 0.89 (<0.01) 0.83 (9.07) 0.89 (0.01)
SSVS (r ¼ 1) / Fused Lasso 0.96 (<0.01) 1.00 (<0.01) 0.92 (0.01) 1.00 (<0.01)

SSVS (r > 1) 0.97 (r 5 3) (<0.01) 1.00 (All r) (<0.01) 0.93 (All r) (0.01) 1.00 (All r) (<0.01)
8000 SSVS (r ¼ 0) / Lasso 0.84 (<0.01) 0.88 (<0.01) 0.84 (<0.01) 0.88 (<0.01)

SSVS (r ¼ 1) / Fused Lasso 0.87 (0.01) 1.00 (<0.01) 0.82 (0.01) 1.00 (<0.01)
SSVS (r > 1) 0.87 (r 5 5) (0.01) 1.00 (All r) (<0.01) 0.83 (r 5 5) (0.01) 1.00 (All r) (<0.01)
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Similar to the previous simulation, we used the 90%–10%
random data split for training and testing within each repli-
cation, with 100 replications performed in total. The tuning
parameters were selected based on EBIC. Due to the 1-D
nature of the underlying data set, matrix regression was not
used for this simulation study. We varied the neighborhood
value r from one to five in SSVS (one being fused Lasso)
and report only the best result for SSVS with r > 1. Table 3
reports average RMSE values for the prediction based on the
testing data and the corresponding SE values (shown in par-
enthesis) over 100 replications for each scenario. We refer to
Lasso, where the neighborhood effect was not considered as
r ¼ 0: The variable selection results are presented in Table 4
based on variable selection accuracies

ACC ¼ True Negativeþ True Positve
Total Amount of Predictors

:

The values shown in bold are the best results (smallest
errors) obtained under each data generation scenario across
different models. The modeling assumptions were validated
by residual plots; these are shown in the online supplemen-
tary materials. The first observation is that SSVS performed
significantly better than did Lasso in all scenarios. Within
SSVS models, when the sample size was small (n ¼ 40), a
larger r offered better prediction accuracy, and when the
sample size (n ¼ 400) was large, a smaller r offered better
prediction accuracy (SSVS with r ¼ 1). The results indicate
that emphasizing the neighborhood effect of variables can
result in a better performance when the sample size is very
limited. However, we also realized that when the sample size
reduced to only 40, the prediction accuracy of SSVS became
much worse, which had approximately 10 times larger

RMSE compared with the “n ¼ 400” case. This means that
we should always increase the sample size as much as pos-
sible for an ideal prediction performance when the model
dimension grows very large. Lastly, we can see that SSVS
was very robust to the variation on the covariance of adja-
cent model predictors, compared with Lasso. This suggests
that SSVS can effectively handle the data collinearity by con-
sidering model parameter smoothness.

As a visual illustration of variable selection, we present
the results from the same data set generated with 4000 pre-
dictors. Figure 4(a) shows the true parameters generated and
Figure 4(b) shows the parameters estimated by SSVS when
more than one neighborhood was considered. By comparing
the figures, it is clear that when we considered more neigh-
borhoods, SSVS recovered the original parameters signifi-
cantly better compared with SSVS only considering one
neighborhood (Figure 4(c)), and Lasso, which did not con-
sider the neighborhood effect (Figure 4(d)).

4. Case study of the AJP for printed electronics

In this case study, we model the resistance of conducting
wires printed by the AJP process. Single-layer silver nano-
particle wires were printed by varying several process
parameters, including atomizer power voltage, process speed,
gas flow rate, sheath gas flow rate, and ink volume. In the
end, 35 wires with microscopic images taken on their surfa-
ces were produced and the corresponding resistances were
measured. The primary defect type we are focusing on in
this study is missing spray of the silver inks. Such defects
can be seen as black pinholes/regions in Figure 5, which sig-
nificantly increase the resistance of printed wires. A known
cause of missing ink spray is the inappropriate compositions
of silver nanoparticle inks (Zhao et al., 2012). Some recent
research focuses on adding novel carbon nanotubes, which
can bridge the pinholes/defects, into silver nanoparticle ink
to improve the printing quality (Oh et al., 2008; Zhao et al.,
2012). Additionally, other process settings, including the

Figure 5. (a) An original gray-scale image and (b) a newly formed image with
lower resolution.

Figure 6. For the first set: the top five selected meshes represent the contrast between each mesh’s intensity and the overall image’s mean intensity for the wire
with 15 X and 40 X resistances. Second set: the top five selected meshes reflect the contrast between each mesh’s intensity and the mean intensity of the each
mesh’s 8-Connected neighborhood for the wire with 15 X and 40 X resistances. Third set: the top five selected meshes reflect the contrast between each mesh’s
intensity and the largest row-wise mean intensity for the wire with 15 X and 40 X resistances.
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sheath gas flow rate, the aerosol gas flow rate, and the stage
speed, have been shown to affect the wire resistance and
potentially contribute to the missing ink spray issue (Sun
et al., 2017).

4.1. Contrast generation on microscopic images

A high-resolution microscopic image (741 � 19491 pixels),
combined from 10 consecutive microscopic images, was
taken on the conducting wire over a small area
(0.5mm � 10mm). It can be inefficient and computation-
ally expensive to use one predictor to represent such a small
region for product quality characterization. For ease of
future modeling scale-up, we divided the raw image (Figure
5(a)) into rectangular meshes and averaged the intensities of
all the pixels in each mesh (Figure 5(b)). This approach is
also called the average pooling operation with non-overlap-
ping windows (Boureau et al., 2010), and we refer to images
produced from the pooling as pooled images. When deter-
mining the optimal resolution for images after pooling, we
first trained different Lasso models using different sets of
pooled images in resolutions of 10 � 100, 20 � 200,
30 � 300, 40 � 400, and 50 � 500 based on the under-
lying data set as a pilot study. The model trained using the
resolution setting of 20 � 200 provided us the best predic-
tion results on the testing data. As a result, each pooled
images has a resolution of 20 � 200, with each mesh rep-
resenting a 50lm � 25 lm region.

For the case study, we considered three types of contrasts,
which could be easily generated from the images without
engineering domain knowledge. The first set of 20 � 200
predictors was generated with the contrasts between each
mesh’s intensity and the overall image’s mean intensity. The
second set of 20 � 200 predictors was generated with the
contrasts between each mesh’s intensity and the mean inten-
sity of the meshes in its 8-Connected neighborhood. Lastly,
the third set of 20 � 200 predictors was generated with
the contrasts between each mesh’s intensity and the largest
row-wise mean intensity. In an AJP process, this “brightest”
region in the microscope image was the outcome of the
most silver ink spray and could be considered as the most
conductive path of the wire. However, one problem is that
defect locations can vary significantly from one wire to
another (dark regions in Figure 6), so that it was meaning-
less to fix each predictor to one corresponding location of
images. Therefore, we sorted the values within each set of
predictors from low to high and re-organized the predictors
in quantiles. As a result, we expected that predictors at cer-
tain quantiles (e.g., high quantiles representing high contrast
regions) were more strongly associated with wire resistance.
Furthermore, the neighborhood effect among the model
parameters of neighborhood quantiles is preserved, which

means that the changes of parameter values among neigh-
borhood quantiles should be smooth. As a result, we can
apply the 1-D version of the SSVS model based on spatial
predictors sorted in quantiles.

We adopted High-dimensional Ordinary Least squares
Projection (HOLP) by Wang and Leng (2015) to further fil-
ter the 12000 (3�20�200) predictors down to 6000 predic-
tors. Here, the HOLP method is a screening method, which
is built on the Ordinary Least Square (OLS) estimator.
Comparing with regularized regressions, HOLP can quickly
screen the number variables in the original variable space
down to a relatively low level, so that the computational effi-
ciency of SSVS can be further enhanced. We consider that
determining the appropriate percentage of variables to pre-
serve through HOLP can be a valuable future study. One
thing worth emphasizing on dimension reduction in this
work is that there are other popular methods, such as
Principal Component Analysis (PCA) (Jin and Shi, 2000), to
reduce the dimension of the data. However, different from
HOLP, methods like PCA are widely known as “black box”
approaches, which do not preserve the original variables of
data, and hence are significantly detrimental to the inter-
pretability of the modeling and variable selection efforts.

4.2. Numerical results and interpretations

We performed 100 replications for both benchmarks (Lasso
and nuclear-norm-based matrix regression) and SSVS esti-
mator under different neighborhood settings. For fair com-
parison, the matrix regression, which already incorporated
low-rank regularization in model estimation, was trained
using the original 2-D microscopic image data (Zhou and
Li, 2014), whereas the SSVS and Lasso were trained using
the proposed spatial predictors in 1-D filtered quantiles.

For each replication, we used 90%–10% data partition for
model training and testing. The average testing RMSE values
for the resistance obtained over 100 replications are pre-
sented in Table 5 with SE values in the parenthesis. The
regularized matrix regression has a significantly poorer pre-
diction performance compared with the proposed approach.
As a drawback mentioned previously, one major limitation
on regularized matrix regression is that it fixes each pre-
dictor to the same location across different samples, but the
defect areas which are strongly associated with the response
(resistance) are constantly changing their locations.
Furthermore, we can see that Lasso performed poorly in
resistance prediction. On the contrary, SSVS with different
neighborhood settings had significantly smaller RMSE val-
ues, and the smallest error was achieved at r ¼ 3. This indi-
cated that the neighborhood defined by r ¼ 3 was the most
appropriate to describe the predictors’ smoothness. The

Table 5. Testing RMSE values over 100 replications for the AJP data set.

Benchmark Models
Proposed Model

Matrix Regression SSVS (r ¼ 0) / Lasso SSVS (r ¼ 1) / Fused Lasso SSVS (r ¼ 3)

RMSE 8.44 (0.87) 4.68 (0.20) 3.27 (0.14) 3.21 (0.13)
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modeling assumptions were validated by residual plots that
are available in the online supplementary materials.

One of the advantages of transforming original images
directly into spatial predictors lies in good interpretability,
as complicated feature extractions can lead to the loss of
information depending on how well the underlying physical
manufacturing process is understood. We illustrate the most
selected features in Figure 6, where the colors of the mask
indicate the number of times a predictor was selected over
100 replications (a darker color indicates the mesh being
more frequently selected). Specifically, the top two wires of
Figure 6 illustrate the variable selection among the first set
predictors: the contrasts between each mesh’s intensity and
the overall image’s mean intensity. The middle two wires of
Figure 6 illustrate the variable selection among the second
set predictors: the contrasts between each mesh’s intensity
and the mean intensity of the mesh’s 8-Connected neighbor-
hood. The bottom two wires of Figure 6 illustrate the vari-
able selection among the third set predictors: contrasts
between each mesh’s intensity and the largest row-wise
mean intensity of the image. The row with the largest inten-
sity, due to a dense layer of ink sprayed, is the most con-
ductive path of the wire.

For the first set in Figure 6, the selected meshes identified
the missing ink defects. However, the intensities of selected
meshes in the 40 X-wire were only 78 units (on a 0–255
scale) darker than the wire mean intensity on average, with
the difference increasing to 120 units for the 15 X-wire. A
relatively lower difference is due to the mean intensity of
the 40 X-wire being low, which is the result of excessive
missing prints shown in the image. For the second set in
Figure 6, the selected meshes identified the areas of non-
uniform ink spray (seen as black pinholes). However, the
contrasts between each mesh and its 8-Connected neigh-
borhood were significantly smaller for the 15 X-wire,
which is on average 0 versus -4 for the 40 X-wire. The
lower contrast reflects that the 15 X-wire was printed
more uniformly. For the third set in Figure 6, the selected
meshes identified uniformly printed regions. The meshes
in the 15 X-wire have similar intensity to that of the
image’s largest row-wise mean intensity (an average dif-
ference of zero). On the contrary, the meshes for the 40
X-wire are on average 9 units darker than its largest row-
wise mean intensity due to significantly more missing
sprays. The variable selection results show that variation
modeling based on simple and direct spatial features have
inherently good interpretability for quality diagnosis and
can result in an accurate resistance prediction when com-
bined with SSVS estimator.

5. Summary

Although spatial predictors are widely encountered in AM
process modeling, the modeling and feature extractions of
the spatial predictors are typically challenging and case-spe-
cific problms. In most cases, such an effort requires engin-
eering knowledge of the spatial data set (e.g., feature
extractions from images), or the manufacturing process. In

this article, the proposed SSVS aims to identify the signifi-
cant predictors in pursuit of smooth parameters to reflect
the neighborhood effect. The size of neighborhoods can be
adaptively determined by the data set, which is flexible for
various AM processes, with different spatial correlations of
predictors. The proposed SSVS relaxed the strong assump-
tion of fused Lasso, which is SSVS’s special case considering
a 1-neighborhood, and was able to estimate the underlying
model parameters with higher accuracy. Both the simulation
and case studies showed that the proposed methodology
could not only accurately predict the quality response, but
also automatically locate areas in quality modeling, which
can be used in root cause diagnosis.

There are several directions for further investigations.
First, we can validate the proposed methodology on other
types of 2-D or 3-D spatial data sets, which have coherent
spatial information across different samples, so that re-
organizing the spatial data into quantiles for smoothness
enforcement is no longer necessary. Second, we may also
relax the coherency requirement by projecting the raw
image data into other domains, e.g., 2-D Fourier domains,
so that the same set of projected spatial predictors may
correspond to different regions with missing spray defects
across different samples. As a result, ordering the predic-
tors in quantiles will no longer be necessary before adopt-
ing SSVS for the AJP case study data set. Third, we may
adopt other spatial data sets to enhance the modeling per-
formance. For example, we can use 3-D surface scanning
to capture the thickness variation, which can also contrib-
ute to the resistance variation of printed wires. However,
limitations, such as a slow data collection speed, of the
current sensing technologies suggest that additional spa-
tial data types might not be obtained efficiently for quick
product quality quantification (Wang et al., 2013). Finally,
the proposed framework can be further used for spatial
predictor monitoring and control for quality improve-
ments and variation reduction, with some examples in Li,
Mohan, Sun, and Jin (2017). The code package of SSVS is
available upon request.
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