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ABSTRACT
In many science and engineering systems both quantitative and qualitative output observations are
collected. If modeled separately the important relationship between the two types of responses is
ignored. In this article, we propose a Bayesian hierarchical modeling framework to jointly model a
continuous and a binary response. Compared with the existing methods, the Bayesian method over-
comes two restrictions. First, it solves the problem in which the model size (specifically, the number
of parameters to be estimated) exceeds the number of observations for the continuous response. We
use one example to show how such a problem can easily occur if the design of the experiment is
not proper; all the frequentist approaches would fail in this case. Second, the Bayesian model can
provide statistical inference on the estimated parameters and predictions, whereas it is not clear how
to obtain inference using the latest method proposed by Deng and Jin (2015), which jointly models
the two responses via constrained likelihood. We also develop a Gibbs sampling scheme to generate
accurate estimation and prediction for the Bayesian hierarchical model. Both the simulation and the
real case study are shown to illustrate the proposed method.
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1. Introduction

Many data collected from engineering and scientific
systems contain both quantitative and qualitative
(QQ) output observations or responses. For example,
in the lapping stage of the wafer manufacturing pro-
cess the qualitative response is the conformity of the
site total indicator reading (STIR) of the wafer, which
has two possible outcomes: whether or not the wafer
STIR is within the tolerance. The quantitative
response is the total thickness variation (TTV) of the
wafer. Both of the response variables measure the
smoothness of the wafers, which is an important geo-
metrical quality index of the wafers. See Ning et al.
(2012), Zhao et al. (2011), and Zhang et al. (2015) for
detailed studies of these two quality characteristics.
An interpretable and accurate statistical modeling
approach is needed to find out how the controllable
process variables and the covariates affect the two
kinds of responses. Among all possible modeling tech-
niques, the simplest approach is to model the two
types of responses separately. We can use linear
regression models for the quantitative response and

generalized linear models or classification methods for
the qualitative response. But doing so would ignore
the possible association between the two responses.
Deng and Jin (2015) have shown the necessity for
jointly modeling the two kinds of responses for the
lapping process experiment. Such association is
important as it provides us with some insightful
understandings of the system under study as well as a
significant improvement in the prediction accuracy.

There is some existing literature on how to jointly
model the mixed-type responses. One group of the
existing methods directly use latent variables to model
the correlations between different responses. Among
them, Dunson and Herring (2005), Weiss et al. (2011),
and Bello et al. (2012) are based on Bayesian frame-
work. The others use the frequentist approach, includ-
ing Catalano and Ryan (1992) and Sammel et al.
(1997). Another group of methods factorize the joint
distribution of the mixed-type responses, including
Cox and Wermuth (1992), Fitzmaurice and Laird
(1995, 1997), Chen et al. (2014), Yang et al. (2014),
Deng and Jin (2015), and Guglielmi et al. (2016). Cox
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and Wermuth (1992) discussed two factorization mod-
els for a continuous and a binary response as the func-
tion of covariates. Fitzmaurice and Laird (1995, 1997)
considered the marginal distribution of the qualitative
response as well as the conditional distribution of the
quantitative response and proposed a likelihood-based
method. Chen et al. (2014) and Yang et al. (2014)
introduced the mixed graphical model to analyze the
association between the quantitative and qualitative
responses. Guglielmi et al. (2016) proposed a semipara-
metric Bayesian joint model for one continuous and
two binary responses. See Deng and Jin (2015) and
Guglielmi et al. (2016) for more detailed reviews.

Based on the same factorization of the joint-likelihood
idea, Deng and Jin (2015) assumed a conditional model
for the quantitative response given the values of the quali-
tative response. Specifically, the quantitative response fol-
lows different normal distributions for different
qualitative response values. To achieve model sparsity the
authors used the nonnegative garrote and constrained
likelihood estimation method. The authors also demon-
strated that this approach provides parsimonious, inter-
pretable, and accurate models for both responses. Despite
these advantages, it has two main restrictions.

The first restriction is common to all frequentist
approaches. We demonstrate it using a toy example.
Denote by Y and Z a continuous response and a binary
qualitative response, respectively. Assume that the true
model of Z follows the Bernoulli distribution with
E(Zjx)¼ p(x)¼ exp (1þ x)=(1þ exp (1þ x)) and the true
model of Y is YjZ¼ z�N(1� (1� z)x2, 0.32) (i.e.,
E(YjZ¼ 1)¼ 1 and E(YjZ¼ 0)¼ 1� x2). We construct a
14-point design, which consists of an 8-point local D-
optimal design for the logistic model
log (p(x)=(1� p(x)))¼ g0þ g1x of Z and a 6-point
D-optimal design for the quadratic regression model of
Y. Figure 1(a)–(c) shows the data from the 8-point, 6-
point, and their combined 14-point designs, respectively.

Clearly, if using the frequentist approach it is impossible
to estimate the quadratic model of E(YjZ¼ 0) as there
are no observations of YjZ¼ 0 at x¼ 1. But such a defect
from the design of experiment can be solved by the
Bayesian approach with an informative prior.

The second restriction is that statistical inference is
hard to obtain from the joint model developed in Deng
and Jin (2015). This joint QQ model is also introduced
in Section 2.1. A constraint-likelihood approach was
used to estimate parameters for the joint QQ models.
The authors chose the nonnegative garrote approach
(Breiman 1995) to enable variable selection for a parsi-
monious model with meaningful interpretation. More
importantly, they incorporated the heredity principles
(Wu and Hamada 2011) into the nonnegative garrote
in the forms of constraints. Thus the estimation
becomes the constrained maximum likelihood estima-
tion (MLE). Such a complicated constrained likelihood
optimization often does not have an analytical solution
as in linear regression models. To solve this con-
strained optimization Deng and Jin (2015) developed
the constrained sequential quadratic programming that
iteratively searches for the optimal solution.
Consequently, the classic asymptotical distribution of
the maximum likelihood estimation cannot be easily
applied here as in the ordinary generalized linear
model. Thanks to the Bayesian framework, the infer-
ences of the estimated parameters and the predictions
are naturally available from the posterior distribution
and the posterior predictive distribution. What is
more, we also incorporate the hierarchical ordering
principle (Wu and Hamada 2011) in the marginal prior
components of the linear coefficients so as to achieve
sparsity and meaningful interpretation.

The two restrictions on the existing frequentist
methods motivate us to investigate the Bayesian
framework as an alternative. Different from some exist-
ing Bayesian approaches, we do not consider using the
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Figure 1. (a) Observations from design for Z; (b) observations from design for Y; (c) observations from the combined design. A
dashed line “- - -” denotes E(YjZ¼ 1)¼ 1; a solid line “—” denotes E(YjZ¼ 0)¼ 1� x2; point “+” denotes (xi, yi) with zi¼ 1; point
“o” denotes (xi, yi) with zi¼ 0. (See also Figure 1 in Kang et al. 2015.)
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latent variable to model the correlation between the
two responses because we prefer the clear model struc-
ture in Deng and Jin (2015). It is also different from
the Bayesian method in Guglielmi et al. (2016), where
the marginal distribution was applied to the continu-
ous response, whereas our approach applies the mar-
ginal distribution to the binary response. We also
propose a Bayesian hierarchical structure to link
together all the conditional models for the continuous
response and the marginal model for the binary
response. The structure also has satisfactory perform-
ances in prediction and variable selection.

The rest of the article is outlined as follows.
Section 2 introduces the Bayesian hierarchical model-
ing framework. In Section 3 a Gibbs sampling algo-
rithm is developed for estimation and prediction. We
use simulation studies to demonstrate the perform-
ance of the proposed method under different circum-
stances in Section 4; Section 5 considers the case
study on the lapping process in wafer manufacturing
and compares the results with previous results. The
article concludes with Section 6. Our algorithm and
data analysis are all implemented in R.

2. The Bayesian hierarchical model

2.1. Sampling distribution

Suppose that Y is a continuous response and Z is a
binary response. The independent variable x ¼
ðx1; :::; xpÞ0 2 R

p has p dimensions. It can contain
controllable process variables and uncontrollable cova-
riates. To jointly model the two responses Y and Z
given x, consider the joint probability of YjZ and Z.
The conditional model of YjZ is assumed to be a lin-
ear regression model, while the model of Z is a logis-
tic regression model. Specifically, we consider a joint
modeling of Y and Z as follows:

Z ¼
�
1; with probability pðxÞ
0; with probability 1� pðxÞwith pðx; gÞ

¼ expðf ðxÞ0gÞ
1þ expðf ðxÞ0gÞ ;

[1]

where f ðxÞ ¼ f1ðxÞ; :::; ; fqðxÞ
� �0 contains q modeling

effects including the intercept and main, interaction,
and quadratic effects, etc., and g ¼ ðg1; :::; gqÞ0 is a
vector of coefficient parameters. Conditional on Z¼ z,
the quantitative variable Y has the distribution

YjZ ¼ z�N
�
zf ðxÞ0bð1Þ þ ð1� zÞf ðxÞ0bð2Þ; r2

�
; [2]

where bðiÞ ¼ ðbðiÞ1 ; :::; bðiÞq Þ0; i ¼ 1; 2 are the correspond-
ing coefficients of the modeling effects. The parameter

r2 is the noise variance. The above QQ model
indicates that YjZ ¼ 1�Nðf ðxÞ0bð1Þ; r2Þ and YjZ ¼
0�Nðf ðxÞ0bð2Þ; r2Þ. The association between the two
responses Y and Z is represented using the conditional
model YjZ. When the two linear models for YjZ¼ 0
and YjZ¼ 1 are different (i.e., bð1Þ 6¼ bð2Þ), then it is
important to take into account the influence of the
qualitative response Z when modeling the quantitative
response Y. This conditional model structure of YjZ
and Z, called the joint QQ model, was also used in
Deng and Jin (2015) and Kang et al. (2015).

Note that here we assume that the linear model for
Y and the logistic model for Z involve the same model-
ing effects f ðxÞ. But if necessary we can assume differ-
ent modeling effects for E(YjZ¼ 1), E(YjZ¼ 0), and
logitðpðxÞÞ. In our model we let f ðxÞ contain all the
necessary terms for both Y and Z. If some terms are
statistically insignificant for a certain response, the pos-
terior means of the corresponding coefficients should
be shrunk and be close to zero, as in a Bayesian linear
regression or ridge regression. Another simplification
we make is to assume the same variance r2 for both
YjZ¼ 1 and YjZ¼ 0. Users can easily extend the pro-
posed model to different variances.

Denote the data as ðxi; yi; ziÞ; i ¼ 1; :::; n where yi 2
R and zi 2 f0, 1g. The vectors y ¼ ðyi; :::; ynÞ0 and
z ¼ ðz1; :::; znÞ0 are the vectors of response observa-
tions. Suppose that there are n1 observed yi’s when
Z¼ 1 and n2 observed yi’s when Z¼ 0. Let
n¼ n1þ n2. Based on Eqs. [1] and [2], we can express
the sampling distributions as

yjz; bð1Þ; bð2Þ; r2�N V1Fb
ð1Þþ;V2F; b

ð2Þ; ; r2; In
� �

;
zijg�ind Bernoulli pðxi; gÞð Þ for i ¼ 1; :::; n;

[3]

where V1 ¼ diagfz1; :::; zng is a diagonal matrix, In is
the n� n identity matrix, V2 ¼ In � V1, and F is the
model matrix with the ith row as f ðxiÞ0. Let p( � )
denote a general density function. The sampling dis-
tribution of z is

pðzjgÞ / exp
Xn
i¼1

zif ðxiÞ0g� log 1þ exp f ðxiÞ0g
� �� �� �	

:

(

2.2. Prior and hyperprior distributions

The unknown parameters in the sampling distribution
are h ¼ ðbð1Þ; bð2Þ; g; r2Þ. Due to the normal distribution
of y the semiconjugate marginal prior components of
bð1Þ and bð2Þ should come from the normal distribution
family. The semiconjugate marginal prior component for
g is not normal (Chen and Ibrahim 2003), but we still
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prefer to use the nonconjugate normal distribution as the
marginal prior for g. In this way, all the coefficients of
the model terms f ðxÞ have marginal prior components
of the same format, thus making it simpler to specify the
hyperprior distribution of the hyperparameters. In the
context of this article we consider r2 a nuisance param-
eter, so we choose a weakly informative marginal prior,
Inv � v2ð0:001; 0:001Þ, which is a commonly considered
vague proper prior distribution for variance parameters
(Chapter 5, Gelman et al. 2014). To sum up, the mar-
ginal prior components for bð1Þ, bð2Þ, g, and r2 are

bðiÞ�Nð0; s21RiÞfor i ¼ 1; 2;
g�Nð0; s22R3Þ;
r2�Inv � v2ð0:001; 0:001Þ:

[4]

The matrices R1, R2, and R3 are the correlation matri-
ces for the normal distributions and are explained
later. The marginal prior components for bð1Þ and bð2Þ

are independent for simplicity and are also based on
the assumption that two, YjZ¼ 1 and YjZ¼ 0, are not
correlated. Under certain circumstances it might be
necessary to assume that bð1Þ and bð2Þ are correlated
in the prior. The proposed Bayesian hierarchical
model can still be applied, but the full-conditional dis-
tribution of bð1Þ and bð2Þ—given the rest of the
parameters and data—has a slightly more complicated
covariance matrix. The prior mean g is such that

Pr ðZ ¼ 1jx;EðgÞÞ ¼ 1=2. To avoid too many
hyperparameters we also assume the prior mean of
bð1Þ and bð2Þ to be zero. It is reasonable as long as we
center y in the data preprocessing stage. Let �y1 be the
sample mean of yi’s for zi¼ 1 and �y2 for zi¼ 0. We
center the Y observations as yi � �y1 if zi¼ 1 and yi �
�y2 if zi¼ 0, and we use the same notation y for the
centralized observations. Again for simplicity, we
assume the same variance s21 in the marginal prior
components of bð1Þ and bð2Þ. The variance can be eas-
ily changed to different values.

The correlation matrices in Eq. [4] in the marginal
prior components for bð1Þ, bð2Þ, and g are assumed to be
diagonal, which means that the coefficients are independ-
ent of each other. This assumption is reasonable if we
use the orthogonal polynomial basis of x, which consists
of the intercept, the linear effects, the quadratic effects,
and the interactions, etc., up to a user-specified order. If
the controllable variable settings are from a full factorial
design or an orthogonal design, then we can achieve full
or near orthogonality between the bases. For the bases
involving covariates, achieving full or near orthogonality
is not likely. But we still assume independence for simpli-
city and leave the posterior distribution to correct it. Let
Ri ¼ diagf1; ri; :::; ri; r2i ; :::; r2i ; :::g for i¼ 1, 2, 3 where ri

2 (0, 1) is a hyperparameter. The power index of ri is
the same as the order of the corresponding polynomial
term. For example, if the model f ðxÞ for x 2 R

2 is a full
quadratic model and contains the term f1, x1, x2, x21,
x22, x1x2g then the corresponding prior correlation matrix
should specified as R ¼ diagf1; r; r; r2; r2; r2g. In this
way the prior variance of the effect decreases exponen-
tially as the order of the effect increases, following the
hierarchy ordering principle defined in Wu and Hamada
(2011). The hierarchy ordering principle can reduce the
size of the model and avoid including higher-order and
less-significant model terms. Such prior distribution was
first proposed by Joseph (2006) and later used by Kang
and Joseph (2009) and Ai et al. (2009).

The hyperparameters in the marginal prior compo-
nents of Eq. [4] are / ¼ ðr1; r2; r3; s21; s22Þ. We use the
following marginal hyperprior components:

s21; s
2
2�iidInv � v2ð�; d2Þ;

r1; r2; r3�iidBetaða; bÞ:
Here Inv � v2ð�; d2Þ denotes the scaled inverse Chi-
square distribution with � degrees of freedom and
scale d. For s2i , the inverse-v2 distribution is semicon-
jugate with normal prior distributions of bð1Þ, bð2Þ,
and g because the full-conditional distribution of s2i is
also an inverse-v2 distribution. As ri 2 (0, 1), the beta
distribution is an obvious choice. The parameters (�,
d2, a, b) can be considered as tuning parameters for
the Bayesian hierarchical model.

3. Monte Carlo Markov Chain (MCMC) sampling

Given the model assumptions, the next step in a stand-
ard Bayesian approach is to sample the posterior distri-
bution of the parameters and posterior predictive
distribution of the response variables. The mode values
of these distributions are usually considered as the par-
ameter estimation or predictions at the query points,
and statistical inference such as confidence intervals
can be obtained from these empirical distributions.

Our goal is to sample from the joint posterior dis-
tribution pðh;/jy; zÞ. For a relatively complicated
Bayesian framework, the Gibbs sampling algorithm, a
popular MCMC sampling method, can sequentially
update each block of parameters following the corre-
sponding full-conditional distribution. To briefly
explain the Gibbs sampler let us use the general nota-
tion of parameter vector h and data y. The vector h

can be divided into s blocks (i.e., h ¼ ðh1; :::; hsÞ).
In the tth iteration of the MCMC chain each ht;j
for j¼ 1, … , s is sampled from the conditional
distribution pðhjjht�1;�j; yÞ where ht�1;�j ¼ ðht;1; :::;
ht;j�1; ht�1;jþ1; :::; ht�1;sÞ. For a more detailed

JOURNAL OF QUALITY TECHNOLOGY 293



illustration of a Gibbs sampler and its convergence
condition readers can turn to Casella and George
(1992) and Roberts and Smith (1994). To develop the
Gibbs sampler for the Bayesian hierarchical model we
first derive the full-conditional distributions for the
blocks of parameters in ðh;/Þ in Section 3.1 and elab-
orate the Gibbs sampler in Section 3.2.

3.1. Full-conditional distributions

According to the sampling distribution, the prior, and
hyperprior distribution, we can derive the full-condi-
tional distributions for the parameters and the hyper-
parameters as follows. Many details on the derivation
are omitted to save space. The derivation follows the
classic Bayesian theory on deriving posterior distribu-
tions, which can be found in any Bayesian statistics
textbook such as Gelman et al. (2014).

Due to the semiconjugacy it is straightforward to
derive the full-conditional distribution for the linear
coefficients bð1Þ and bð2Þ following the formula on
Bayesian linear regression:

ðbð1Þ; bð2ÞÞj g; r2;/; y; z�Nðlb;RbÞ;where
lb ¼ Vn

F0V1y
F0V2y


 �
;

Rb ¼ r2Vn ¼ r2
F0V1F þ r2=s21R

�1
1 ; 0

0; F0V2F þ r2=s21R
�1
2


 ��1

:

The full-conditional distribution of r2 is an inverse-v2

distribution according to the Bayesian linear regres-
sion model (Chapter 14 of Gelman et al. 2014). Thus,

r2jbð1Þ; bð2Þ; y; z�Inv � v2 nþ 0:001;

Pn
i¼1 ðyi � liÞ2 þ 10�6

nþ 0:001

� 

;

where li’s are the elements of l ¼ V1Fb
ð1Þ þ V2Fb

ð2Þ.
Because the normal marginal prior for g is not

semiconjugate with the sampling distribution of z, the
exact full-conditional distribution pðgjz; r3; s22Þ in Eq.
[5] does not belong to any known distribution family:

pðgjr3; s22; zÞ / ð2ps22Þ�p=2detðR3Þ�p=2hðgjz; r3; s22Þ;
/ hðgjz; r3; s22Þ

[5]

where

hðgjz; r3; s22Þ ¼ exp

�
� 1
2s22

g0R�1
3 g

þ
Xn
i¼1

zif ðxiÞ0g� logð1þ ef ðxiÞ
0
gÞ

� �	
:

The Metropolis-Hasting (MH) algorithm is the go-to
method to sample from a target distribution with

an unknown distribution family. It generates a can-
didate sample from the proposal distribution, com-
putes the acceptance probability, and then either
accepts or rejects the candidate value based on the
acceptance probability. More details can be found in
Chapter 11 of Gelman et al. (2014). In the case of
a logistic model for the binary response Z, Holmes
and Held (2006) introduced a sampling method
from the exact full-conditional distribution in Eq.
[5] via auxiliary variables. We have implemented
both algorithms and conducted some simulation
examples, which are omitted here. Compared with
the MH algorithm the Holmes and Held (2006)
algorithm is not as efficient when embedded in the
Gibbs sampling algorithm in Section 3.2. We thus
choose the MH algorithm to sample from Eq. [5],
but readers can choose whichever one of the two
seems to fit their application.

The full-conditional distributions of s21 and s22
should follow an inverse-v2 distribution due to the
semiconjugacy; they are

s21jrest; y; z � Inv � v2

� þ 2p;
1

� þ 2p
½bð1Þ0R�1

1 bð1Þ þ bð2Þ
0
R�1
2 bð2Þ þ �d2�

� 

;

[6]

s22jrest; y; z � Inv � v2 � þ p;
1

� þ p
½g0R�1

3 gþ �d2�
� 


:

[7]

The exact full-conditional distributions of r1, r2, and
r3 are listed below:

pðr1jrest parameters; y; zÞ / jR1j�
1
2

expf� 1
2s21

bð1Þ
0
R�1
1 bð1Þg ra�1

1 ð1� r1Þb�1;
[8]

pðr2jrest parameters; y; zÞ / jR2j�
1
2

expf� 1
2s21

bð2Þ
0
R�1
2 bð2Þg ra�1

2 ð1� r2Þb�1;
[9]

pðr3jrest parameters; y; zÞ / jR3j�
1
2

expf� 1
2s22

g0R�1
3 gg ra�1

3 ð1� r3Þb�1:
[10]

Although the full-conditional distributions in Eqs. [8]
through [10] are straightforward to derive, they are
not any known distributions. Again, we use the MH
algorithm to sample from them.

To sum up this section, the merits of the proposed
Bayesian framework, besides overcoming the limita-
tions of the frequentist approach, lie in the hierarch-
ical structure. The hyperparameters (r1, r2, r3) connect
the coefficient parameters bð1Þ, bð2Þ, and g by follow-
ing the same marginal hyperprior. In the same way
the hyperparameters (s21, s

2
2) connect the models for
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Y and Z. The hierarchical model is flexible enough to
provide a reasonable fit to the data—as shown later—
and such flexibility is not paid by the price of too
many parameters.

3.2. Gibbs sampling algorithm

For the blocks of parameters bð1Þ bð2Þ, r2, s21, and s22
we can easily obtain their samples from the normal or
inverse-v2 distributions. For g, r1, r2, and r3 we use
the MH algorithm since their full-conditional distribu-
tions are not from any known distribution family.
Denote B and b as the length of the entire MCMC
chain and the burn-in sample size, respectively. The
following is the Gibbs sampling algorithm for the pro-
posed Bayesian hierarchical model.

Step 1: Set the initial values for the hyperparameters
r1,0, r2,0, r3,0, s21;0, and s22;0.

Step 2: Set the initial values for the parameters
b
ð1Þ
0 ; b

ð2Þ
0 ; g0, and r20 as follows.

a. Use the least squares estimates for b
ð1Þ
0 ; b

ð2Þ
0 .

When the least squares estimates are not avail-
able choose the ridge regression estimates.

b. Use the logistic regression estimate for g0.
c. Set r20 ¼ 1

n ½ðy � V1Fb
ð1Þ � V2Fb

ð2ÞÞTðy � V1

Fbð1Þ� V2Fb
ð2ÞÞ�.

Step 3: For t¼ 1 to B, do the following:

a. Sample ðbð1Þt ; b
ð2Þ
t Þ from Nðlb;RbÞ.

b. Sample r2t from Inv � v2 nþ 0:001;ðPn

i¼1
ðyi�liÞ2þ10�6

nþ0:001 Þ, where li’s are the elements

of V1Fb
ð1Þ
t þ V2Fb

ð2Þ
t .

c. Sample gt by the MH algorithm from the dis-
tribution in Eq. [5].

d. Sample s21;t and s22;t from Eqs. [6] and [7].
e. Sample r1,t, r2,t and r3,t by the MH algorithm

from the distributions in Eqs. [8) through [10].
f. If the prediction at any query point x is

required, sample zt from the sampling distribu-
tion of Zjgt in Eq. [1] and yt from the sampling
distribution of Yjzt; bð1Þt ;b

ð2Þ
t ; r2t in Eq. [2].

Step 4: Discard the first b samples ðht;/tÞ and pos-
terior predictive samples (yt, zt) from the
burn-in period. Using the rest of the sam-
ples, return the empirical posterior distribu-
tions for ðh;/Þ and the empirical posterior
predictive distributions for both responses
at x.

There are three kinds of tuning parameters. The
tuning parameters for the MCMC are (B, b), which

can be set by considering the amount of computation
needed to achieve the convergence and the preset
accuracy level. The tuning parameters for the algo-
rithm are the initial values (r1,0, r2,0, r3,0, s21;0, s22;0).
The tuning parameters for the Bayesian model are the
parameters of the hyperprior distribution (�, d2, a, b),
which can be chosen by analyzing historical data if
they are available. Alternatively, we suggest setting (a,
b) with a

aþb ¼ 1=3 or 1=2 and setting �¼ 2 or �¼ 4.5,
which lead to weakly informative distributions.
Through a simulation-based sensitivity study (omitted
from this article), we find that the Bayesian hierarch-
ical model is robust to the choice of (�, d2, a, b)
around the suggested settings.

4. Simulation examples

4.1. A small-scale example

We first use a small-scale simulated example to dem-
onstrate the estimation accuracy of the proposed
model and the sampling algorithm. In this example
we set the dimension of x as p¼ 5 and the sample
size n¼ 100; we then generate the training and test-
ing data from the joint QQ model specified in Eq.
[3]. The input variable values x1; :::; xn are independ-
ent and identically distributed samples from Nð0;RÞ,
where R ¼ ðRijÞp�p and the (i, j)th entry
Rij¼ 0.5ji� jj. The true values of bð1Þ, bð2Þ, g are plot-
ted as the red vertical lines in the posterior histo-
grams in Figures 2, 3, and 4. The true value of r2 is
set to be one, also shown in Figure 4. We can see
that the modes of the posterior distribution of the
parameters h match their respective true values
quite closely.

Using the Gibbs sampling algorithm in Section 3.2
we set the model tuning parameters (�, d2, a,
b)¼ (4.5, 5, 0.1, 0.2) and the MCMC tuning parame-
ters (B, b)¼ (10,000, 1,000). In Step 1 we set the ini-
tial values of (r1,0, r2,0, r3,0, s21;0, s

2
2)=(0.3, 0.3, 0.3, 0.5,

0.5). Gelman and Rubin’s (1992) convergence diag-
nostic is frequently used for monitoring the conver-
gence of the MCMC output, and it is implemented in
the R package coda by Plummer et al. (2006). The
multivariate scale reduction factor values returned by
the gelman.diag function for bð1Þ, bð2Þ, and g

are 1, 1, and 1.03, respectively, and the univariate
scale reduction factor for r2 is also 1, indicating that
the MCMC chains of all the parameters have con-
verged within B iterations.
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4.2. Comparisons with alternative methods

This subsection reports a large-scale simulation study
on the proposed Bayesian hierarchical model and the
posterior sampling scheme. We compare the following
four methods.

� BHQQ(1): The proposed Bayesian hierarchical
model and the model tuning parameters are (m, d2,
a, b)¼ (2, 2, 0.1, 0.1).

� BHQQ(2): The proposed Bayesian hierarchical
model and the model tuning parameters are (m, d2,
a, b)¼ (4.5, 5, 0.1, 0.2).

� SM(F): Separate models of the two responses using
a frequentist approach.

� SM(B): Separate models of the two responses using
a Bayesian approach.

For both BHQQ(1) and (2) we set the length of the
MCMC chain B¼ 10,000 and burn-in size b¼ 1,000
and let the initial value (r1,0, r2,0, r3,0, s21;0, s

2
2;0) be (0.3,

0.3, 0.3, 0.5, 0.5). Both SM(F) and SM(B) fit a linear
regression model for the continuous response Y and a
logistic regression for the binary response Z. SM(F)
employs the LASSO technique for both linear and

logistic regression models to shrink the estimated coeffi-
cients of parameters and select the significant variables.
SM(B) sets the marginal normal priors for the parame-
ters in linear and logistic regression models.

4.2.1. Different setups of data generation
We consider the similar simulation cases used in Deng
and Jin (2015). There are two settings for the input dimen-
sion, p¼ 20 and p¼ 50. The relatively high input-dimen-
sion settings are meant to test if the BHQQ can accurately
identify the significant variables. To generate the data
from the joint QQ model specified in Eq. [3], we consider
different setups of the true values of bð1Þ and bð2Þ.

Let I1 and I2 be the index sets of the significant
coefficients of bð1Þ and bð2Þ, respectively. Denote �b1 ¼
fbð1Þk : k 2 I1g and �b2 ¼ fbð2Þk : k 2 I2g. Similarly,
denote I3 as the index set of significant coefficients of
g and �g ¼ fgk : k 2 I3g. The coefficients that are not
in I1, I2, and I3 are set to zero. The following four set-
ups are used:

� Setup 1: I1 and I2 are the same, and the values of
�b1 and �b2 are similar.

� Setup 2: I1 and I2 are different, but the values of �b1

and �b2 are similar.
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Figure 2. The histogram of the posterior samples of bð1Þ compared against its true values plotted as the red vertical lines.
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� Setup 3: I1 and I2 are the same, but the values of
�b1 and �b2 are different.

� Setup 4: I1 and I2 are different, and the values of
�b1 and �b2 are also different.

The four setups represent different relationships
between YjZ¼ 0 and YjZ¼ 1. Under Setup 1 the
model of Y remains the same for different values of Z
(i.e., bð1Þ ¼ bð2Þ). Under Setups 2 – 4 there are differ-
ent degrees of dependency of Y on Z, as bð1Þ and bð2Þ

are different at different levels. Here we define propor-
tion sparsity, denoted by s, as the proportion of non-
zero entries in a parameter vector (i.e., the size of I1
or I2 divided by p). In each Setup 1–4 we use two set-
tings of s, s¼ 0.2 and s¼ 0.5. To sum up, we consider
two settings of p, four settings of the differences
between bð1Þ and bð2Þ, and two settings of the model
sparsity s. Overall, the full factorial combinations have
2� 4� 2¼ 16 cases.

For each of the 16 cases the entry values of param-
eter vector �g are generated from the uniform distribu-
tion U(� 2, 2). For the cases under Setups 1 and 2 we
first generate the parameter vector �b1 with each entry

value from the normal distribution N(2, 1) and then
obtain the entry values of �b2 by adding a small per-
turbation from N(0, 0.01) to the values of �b1. In
Setups 3 and 4 the entry values of parameter vectors
�b1 and �b2 are generated independently from N(2, 1).
The rest of the coefficients not in �g, �b1, and �b2 are
zero. The n input design points x1; :::; xn in the train-
ing set are independent and identically distributed
(i.i.d.) samples from Nð0;RÞ, where R ¼ ðrijÞp�p with
the (i, j)th entry rij¼ 0.5ji� jj. The n points of the test-
ing data set are i.i.d. samples from U(� 2, 2). The
sample size for both training and testing data sets is
n¼ 100. The r2 in Eq. [2] is one.

4.2.2. Comparison criteria
We measure the performances of the four methods
using three aspects: prediction accuracy, variable selec-
tion accuracy, and parameter estimation accuracy.

To measure the prediction accuracy we consider

the root mean squared prediction error RMSPE ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 ðyi � ŷiÞ2

q
for the quantitative response Y,

where ŷi represents the predicted value (the mean,
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Figure 3. The histogram of the posterior samples of bð2Þ compared against its true values plotted as the red vertical lines.
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median, or mode of the posterior predictive distribu-
tion) of yi in the testing data set. The prediction per-
formance for the qualitative response Z is measured
by the misclassification error ME ¼ 1

n

Pn
i¼1 Iðzi 6¼ ẑ iÞ,

where ẑ i is the predicted value of zi and I( � ) is an indi-
cator function. The prediction value ẑ i is set as one if
the corresponding posterior predictive sample mean
or median of Pr ðZ ¼ 1jx; gtÞ (gt is the MCMC chain)
is larger than 0.5.

In addition, to gauge the performance of variable
selection, false positive rates (FP) and false negative
rates (FN) are defined. In the FP case the model esti-
mation classifies insignificant predictors as significant
ones. Similarly, FN estimation classifies significant
predictors as insignificant ones. Here we use the total
number of falsely selected variables c¼ FPþ FN as the
performance measure. For the frequentist approach
SM(F) the selected variables are from LASSO. For the
Bayesian approach BHQQ and SM(B) the significant
variables are selected based on the credit intervals
from the rest of the 9,000 after burn-in. Denote clm as
the number of false selection for bð1Þ and bð2Þ, and
clogit as the number of false selection for g.

Moreover, to evaluate the parameter estimation
accuracy, L2 loss for each parameter estimate is

considered as follows:

L2ðbð1ÞÞ ¼ 1
p
jjb̂ð1Þ � bð1Þjj22; L2ðbð2ÞÞ ¼ 1

p
jjb̂ð2Þ � bð2Þjj22;

L2ðgÞ ¼ 1
p
jjĝ � gjj22;

where jj � jj2 stands for the vector L2 norm. Here b̂
ð1Þ
,

b̂
ð2Þ
, and ĝ are the estimated parameter values that

are compared against the corresponding true param-
eter values. For Bayesian models we use the modes of
the posterior samples as the parameter estimates.

4.2.3. Simulation results
Under each of the 16 cases of data-generation setup
we repeat M¼ 100 times of simulation. In each simu-
lation we generate the new training and testing data
and then fit BHQQ(1), BHQQ(2), SM(F), and SM(B)
to make predictions. Therefore, we can obtain
M¼ 100 values for each of the seven performance
measures. Table 1 presents the average values and
their corresponding standard deviations (in parenthe-
ses) of the aforementioned seven criteria for p¼ 20.
Table 2 displays the results for p¼ 50, and its conclu-
sions are similar to the ones for p¼ 20. So we focus
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Figure 4. The histogram of the posterior samples of g and r2 compared against their true values plotted as the red vertical lines.
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on explaining only the results from Table 1. Following
are our observations from the simulation.

� BHQQ(1) and BHQQ(2) have very similar per-
formances, indicating that the proposed Bayesian
hierarchical model is not sensitive to the two
options (m, d2, a, b).

� In terms of RMSPE for Setup 1 the BHQQ is infer-
ior to SM(F) and SM(B), but this is expected. On
the one hand, bð1Þ and bð2Þ are similar, which
implies the quantitative response Y does not
depend on the qualitative response Z, so the separ-
ate models should be sufficient. On the other
hand, the BHQQ involves twice as many unknown
parameters for Y as the separate models, which
could lead to the inferior parameter estimates. The
good news is that the RMSPE of BHQQ outper-
forms the separate models for Setups 2 – 4, in
which bð1Þ is different from bð2Þ, reflecting the
dependency of Y on Z. The proposed model is
especially significantly superior to the separate
models for Setups 2 and 4. One possible explan-
ation is that when the significant variables of bð1Þ

and bð2Þ are the same (i.e., Setups 1 and 3), the
separate models are still able to distinguish
between the significant and insignificant variables,
despite the fact that �b1 and �b2 are different (Setup
3). However, when the significant variables are dif-
ferent (i.e., Setups 2 and 4), there is a stronger
dependency of Y on Z; thus the separate models

have much more difficulty in identifying the sig-
nificant variables.

� We also note that the BHQQ is comparable to,
and sometimes slightly better than, the SM(F) and
SM(B) with respect to ME. This is because both
BHQQ and separate models fit the binary response
Z based on the marginal distribution pðzjgÞ.

� In terms of clm, the proposed Bayesian hierarchical
model remarkably dominates SM(F). It is also bet-
ter than SM(B) for Setups 1 and 3 in the setting
s¼ 0.2, and it is comparable in the setting s¼ 0.5.
For Setups 2 and 4 the BHQQ significantly outper-
forms SM(B) for the same reason as mentioned
above—the separate models do not perform well
because of the dependency between Y and Z.

� For the parameter estimation accuracy L2ðbð1ÞÞ and
L2ðbð2ÞÞ the BHQQ is inferior to the SM(F) and
SM(B) for Setup 1 but greatly outperforms the sep-
arate methods for Setups 2 – 4. This is due to the
same reason as the RMSPE for Setup 1.

� For clogit the proposed model is similar to SM(B)
for all settings. Compared with SM(F) the pro-
posed model gives superior performance in the set-
ting s¼ 0.2 and is similar to SM(F) in the
setting s¼ 0.5.

� In addition, we also notice that the proposed
model is slightly worse than the separate models
with respect to L2ðgÞ. One possible reason could
be the generalized linear model plus LASSO
slightly outperforms the Bayesian version of the
generalized linear model.
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Figure 5. Histograms for the selected parameters of one replicate from Setup 2 when p¼ 20 and s¼ 0.2.
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To check the convergence property of MCMC
chains for our interests bð1Þ, bð2Þ, and g we use the
Gelman-Rubin diagnostic through the coda pack-
age. Here we show only the multivariate scale reduc-
tion factor from one randomly selected simulation out
of the 100 from Setup 2, where p¼ 20 and s¼ 0.2.
Their values are 1.004, 1.003, and 1.209 for bð1Þ, bð2Þ,
and g, respectively. In addition, Figure 5 displays the
histograms for the posterior samples of some parame-
ters after the burn-in period.

5. Case study: Lapping experiment

We study the experiment of the lapping process
described in Section 1. The experimental data include
n = 450 observations, p = 10 predictor variables
x ¼ ðx1; :::; xpÞ0, and two responses as described in
Table 3. The quantitative response is the TTV, and
the binary response is the indicator variable denoting

whether or not the STIR is larger than the tolerance.
The basis function f ðxÞ here is just the intercept term
and predictor variables x1, … , xp, (i.e.,
f ðxÞ ¼ ð1; x1; :::; xpÞ0).

We set the number of MCMC iterations B¼ 10,000
with burn-in period b¼ 1,000. The initial values of
the hyperparameters (r1,0, r2,0, r3,0, s21;0, s

2
2;0) are set as

(0.3, 0.3, 0.3, 1.5, 3). We set the model tuning param-
eter (�, d2, a, b)¼ (2, 2, 0.5, 0.5). To compare the per-
formance of the BHQQ with SM(F), SM(B), and the
one proposed by Deng and Jin (2015) (denoted by
QQ(F)), we randomly split the whole data set into
two groups: a training set of 350 samples and a testing
set of 100 samples. For each random split we fit the
four methods and make predictions. We repeat this
50 times.

Figure 6 shows the boxplots of the RMSPE values
for Y and the ME values for Z. “Mean” or “Median”
indicate whether we use the mean or median of the

Table 3. Measured predictor variables and quality responses in the lapping experiment.
Type Name Definition

Lapping Process Variables x1: Pressure (N=m2) The high pressure of the upper to lower plate
x2: Rotation (Rpm) The rotation speed
x3: LPTime (Sec.) The time for low pressure
x4: HPTime (Sec.) The time for high pressure

Quality Covariates before Lapping x5: CTHK0 (lm) Central thickness of wafers
x6: TTV0 (lm) Total thickness variation of wafers
x7: TIR0 (lm) Total indicator reading of wafers
x8: STIR0 (lm) Site total indicator reading (STIR) of wafers
x9: BOW0 (lm) Deviation of local warp at the center of wafers
x10: WARP0 (lm) Maximum of local warp of wafers

QQ Responses y: TTV (lm) Continuous total thickness variation of wafers
z: STIR indicator (0 or 1) Binary indicator for the conformity of STIR

Mean Median QQ(F) SM(F) SM(B)
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Figure 6. Box plots of two prediction measures for lapping data for different methods.
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9,000 posterior predictive samples as the predicted
values for Y and Z. We compare them with the
RMSPE and ME of three alternative methods. For this
experiment the sample size is greatly larger than the
model size; thus all the frequentist approaches can be
used. According to Figure 6, SM(F) and SM(B)
perform comparably in terms of RMSPE and ME.
QQ(F) has a lower prediction error than SM(F) and

SM(B) since it considers the dependency of Y on Z.
Nevertheless, BHQQ greatly outperforms QQ(F) in
terms of both RMSPE and ME. Overall, the
proposed Bayesian hierarchical model shows
obvious improvement in prediction accuracy. Note
that using the median of the posterior predictive
samples is more accurate than the mean for the
Y response.
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Figure 7. ACF plots for the selected parameters for the lapping data.
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It is worth pointing out that the MEs of all four
methods are relatively large, even though the pro-
posed BHQQ method has the smallest ME. A possible
explanation is that the binary response of the lapping
experiment is quite noisy, which is confirmed by the
QQ(F), SM(F), and SM(B) methods and by Deng and
Jin (2015). Compared with SM(F) and SM(B), the
BHQQ method has reduced the misclassification
error, but such improvement is not as significant as it
is for the continuous response. This is due to the con-
ditional structure YjZ. Additional information from
the responses z is included in the model of Y, whereas
Z is still modeled marginally.

Next, we look into the analysis results of the
BHQQ model for only one randomly split training
and testing data set. There are 34 observations with
Z = 0 and 66 with Z = 1 in this particular testing set.
For clear illustration we reorder the testing data such
that the first 34 observations correspond to Z¼ 0.
Figures 7 and 8 are the autocorrelation function
(ACF) plots for some selected parameters and (r2, r1,
r2, r3, s

2
1, s

2
2). The quick drop off of ACF in these

plots, especially of bð1Þ, bð2Þ, and r2, implies the fast
convergence of the Gibbs sampling iteration. Figure 9
presents the trace plots for some selected parameters.
After the burn-in period the traces of the parameters
fluctuate around the means with relatively stable vari-
ation, which further confirms that the parameter pos-
terior sampling converges. The rest of the parameters
have similar patterns; hence their plots are omitted.

Figure 10 shows the histograms of the MCMC sam-
ples (after the burn-in ones have been removed) cor-
responding to the significant variables. Figure 11
displays the box plots of the posterior samples of each
element of bð1Þ, bð2Þ, and g from which we can easily
identify the significant ones. Also, it is clear that bð1Þ

and bð2Þ have very different distributions, implying
that Y strongly depends on Z; thus the proposed
Bayesian hierarchical model is able to account for this
relationship.

We plot the true observations y against the pre-
dicted values ŷ of the testing set in Figure 12. The
prediction is relatively accurate since most points are
around the line of y ¼ ŷ. Figure 13 shows the true
observations y (black dashed line) in the testing set
and their 95 percent prediction intervals (red dotted
lines) from the posterior predictive samples. Among
them, 61 out of the 100 observations are correctly
covered by the intervals. Figure 14 plots the estimated
probability (black dashed line) and its 95 percent pre-
diction intervals (red dotted lines) for testing the data
set. The first 34 binary responses are equal to zero.
They are on the left of the black solid line of index =
34. The horizontal solid line represents p¼ 0.5. If the
estimated probability is above the line p¼ 0.5, its pre-
dicted value is set to be one and zero otherwise. We
are more confident assigning values one or zero when
the prediction intervals are totally above or below the
line p¼ 0.5. These predicted values are shown in
Figure 15—the red triangles are the misclassifications.
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Figure 9. Trace plots for the selected parameters for the lapping data.
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The proposed model incorrectly classifies 12 good
wafers (STIR indicator is zero) as bad (STIR indicator
is one), and five bad wafers as good. The misclassifi-
cation error rate is 17 percent. In contrast, QQ(F)
incorrectly gives 21 good wafers as bad and wrongly
predicts 9 bad wafers as good. The misclassification
rate of QQ(F) is 30 percent, which is worse than the
proposed model.

6. Conclusion

We propose a Bayesian hierarchical model to analyze
the experiments whose outputs contain a continuous
response and a binary response. The proposed method
can jointly model the two types of responses and dis-
cover the dependency between them, which exceeds

the simple separate modeling of the two types of
responses. The latest existing method developed by
Deng and Jin (2015) can jointly model the two
responses via maximizing the constrained likelihood,
but it has two restrictions that are discussed in the
Introduction. The proposed Bayesian framework can
easily overcome these two restrictions. In addition, its
estimation, prediction, and inference accuracy are
comparable to or much better than all the existing
methods, including Deng and Jin (2015), as shown in
Section 4.

In this article we focus only on the simplest case of
the quantitative and qualitative system (i.e., a single
normal distributed quantitative response and a single
binary qualitative response). The proposed Bayesian
hierarchical modeling approach can be extended to
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Figure 10. Histograms for the parameter estimates of the significant variables for the lapping data. Red color presents elements
of bð1Þ, blue for bð2Þ, and yellow for g.
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some more complicated situations. For example, when
there are multivariate quantitative responses we
assume a multivariate normal distribution model
accordingly and assume the correlation between the
different quantitative responses if needed. When the
qualitative response has finite but more than two lev-
els we can assume the multinomial logistic regression
model instead of the Bernoulli logistic regression
model. Some more complicated cases may occur, such

as multiple qualitative responses, in which the pro-
posed approach cannot be easily extended. We plan to
pursue these topics in our future research.
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Figure 11. Box plots for the parameter estimates for the lapping data.
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Figure 12. Plot of the true observations y against the pre-
dicted ŷ of the testing data set.
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Figure 13. Plot of the true observations y of testing data set
and the corresponding 95 percent prediction intervals.
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Figure 14. Plot of the estimated probabilities and the corre-
sponding 95 percent prediction intervals using the testing
data set.
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Figure 15. Plot of the estimated qualitative responses Z of
testing data set. The black circles represent the correct classifi-
cations; the red triangles indicate the misclassifications.
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