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Cluster-based data filtering for manufacturing big data systems

Yifu Lia , Xinwei Dengb , Shan Bac, William R. Myersd, William A. Brennemand, Steve J. Langed ,
Ron Zinkd, and Ran Jina

aGrado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia; bDepartment of Statistics, Virginia Tech,
Blacksburg, Virginia; cLinkedin Corporation, Mountain View, California; dProcter and Gamble Corporation, Cincinnati, Ohio

ABSTRACT
A manufacturing system collects big and heterogeneous data for tasks such as product quality
modeling and data-driven decision-making. However, as the size of data grows, timely and
effective data utilization becomes challenging. We propose an unsupervised data filtering
method to reduce manufacturing big data sets with multi-variate continuous variables into
informative small data sets. Furthermore, to determine the appropriate proportion of data to
be filtered, we propose a filtering information criterion (FIC) to balance the tradeoff between
the filtered data size and the information preserved. The case study of a babycare manufactur-
ing and a simulation study have shown the effectiveness of the proposed method.

KEYWORDS
big data; data filtering; data
quality; hub clustering;
smart manufacturing

1. Introduction

With the advancement of sensor and communication
technologies, Industrial internet-based sensing systems
can collect data over a long period of time from vari-
ous manufacturing environments and machine set-
tings. While such a sensing system is capable of
collecting a large amount of data, there may contain
redundant information, which significantly limits the
quality and efficiency of data analysis (Kenett and
Shmueli 2014). For example, a manufacturing process
may generate a lot of sensor data from conformance
manufacturing status, where the readings of the sen-
sors have small variation through process modeling or
control analysis, and little information can be
extracted. As a result, selecting a meaningful or repre-
sentative subset to reduce the overall size of the data
while ensuring the quality of the subset is important
to improve the efficiency of data analysis. Here the
data quality is strongly related to the information
richness, which can be measured by entropy (Gray
2011) and the performance of the data analysis. It is
expected that a small but information-rich subset fil-
tered from the massive raw data sets can effectively
support various data analyses and reduce the time
latency in computation without significantly sacrific-
ing the performance of the analysis.

The objective of this work is to reduce the sample
size of manufacturing big data while maintaining the
amount of useful information for efficient data ana-
lysis. This work is motivated by a continuous babycare
manufacturing system, where the data were continu-
ously collected as multi-dimensional time-series data.
The cloud-storage is typically expensive for data from
such a process as there will be more than three mil-
lion data points collected from a single production
line over one month. Under this motivation, we focus
on proposing a method to reduce the information loss
(i.e., entropy loss) when data is filtered/sampled for
storage. After preliminary investigation, we found out
that within a time window (e.g., several hours or
days), the manufacturing process produces conform-
ing products and the data collected may contain
redundant information, e.g., constant values with little
information for manufacturing analysis. Big data with
redundancy pose challenges to efficient data storage
and timely data analysis in a continuous manufactur-
ing process. We believe that a properly filtered data
set can preserve the majority of the original data set’s
useful information leading to computational saving
and improved data analysis performance.

Reducing the size of data while preserving the
information was a major focus for data reduction
under a data-rich environment (Liu et al. 2015; Xian
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et al. 2018). Along this direction, the most widely
adopted approaches are probability-based filtering,
which means that the probability of preserving each
observation is pre-determined for filtering. Popular
probability-based filtering methods include random
sampling (Clarkson and Shor 1989; Liu, Sadygov, and
Yates 2004) and stratified sampling (Trost 1986;
Liberty, Lang, and Shmakov 2016). However, the
probability-based data filtering methods often over-
look inherent group structures or clustering patterns
among data, and may easily preserve excessive data
from large clusters, while ignoring small clusters.

In manufacturing, similar processes and equipment
can produce clusters of data having similar informa-
tion in terms of statistical moments (Yamaoka,
Nakagawa, and Uno 1978). Filtering guided by such
clustering patterns can effectively reduce the informa-
tion redundancy by removing a large number of
observations with similar information. A natural out-
come is to utilize data clustering patterns for sam-
pling. One recent work along this direction is Singh
and Masuku (2014), which first clusters the raw data,
then select a number of large data clusters to be fully
preserved, while ignoring the smaller ones. However,
one improvement opportunity in this work is that the
clustering algorithm performed on the full data set
may be over-complex, as the size of data can easily
become too large to cluster. Furthermore, as the size
of data is reduced through filtering, the information
preserved will inevitably degrade and the resulting
data analysis performance becomes worse. There is a
pressing need to propose a method to optimize the
selection of the filtering ratio, which is the proportion
of data to be preserved after filtering, by considering
the information loss.

We propose an unsupervised data filtering method
along with a filtering information criterion (FIC) to
automatically determine the proportion of data pre-
served in filtering. The proposed method aims to
select representative subsets from raw data.
Specifically, the unsupervised data filtering method
includes two steps. The first step is to use certain
index tags, such as time index tags, to segment the
raw data into different segments (denoted as hubs)
whenever there is a large gap between index tag values
for two adjacent data observations. We assume that
each hub has different characteristics compared with
other hubs, as large index gaps usually indicate manu-
facturing events that impact the characteristics of in
situ variables. An example of a large index gap can be
caused by equipment shutdown, and the manufactur-
ing process may run under different conditions after

the equipment is restarted. The second step is to par-
tition each hub into clusters, extract the centroid of
each cluster, and perform cluster-wise random sam-
pling. The proposed two-step method can recover the
clustering pattern from raw data and help to better
preserve the information by retaining the data from
each cluster with the determined filtering ratio.
Furthermore, the computational speed will be signifi-
cantly accelerated by performing clustering within-
hubs, instead of using the full data set.

To determine the best filtering ratio, we propose a
filtering information criterion (FIC) to balance a
tradeoff between the information preserved and the
size of the filtered data set. It is worth mentioning
that the proposed sampling method does not rely on
any data distribution assumption while deriving the
analytical form of FIC relies upon data normality
assumption. A babycare manufacturing case study is
used to evaluate the filtering performance based on
the optimal filtering ratio selected by FIC. We further
conducted simulation studies to systematically evalu-
ate the filtering method at multiple levels of filtering
ratios. The numerical results from studies show the
promising performance of the proposed filtering
method, compared with the benchmark methods, such
as random sampling and stratified sampling.

The remainder of the paper is organized as follows.
In Section 2, we introduce the proposed data filtering
method and the FIC. In Section 3, we perform a case
study in babycare manufacturing to test the proposed
filtering method with FIC. In Section 4, we perform a
simulation study inspired by the manufacturing data
set for comparing the proposed data filtering method
with other benchmark methods. In Section 5, we sum-
marize the paper and discuss future work.

2. The proposed data filtering method

Denote the full manufacturing data set as X ¼
fx1, :::, xng0 2 R

n�p, which contains n observations
xi ¼ ðxi1, :::, xipÞ0, i ¼ 1, :::, n: Here we assume that
there are p continuous variables of interest (e.g., sig-
nals from p sensors). Each observation xi is often
associated with its index tag, denoted as ti. For
example, the index tag can be the operation time-
stamp (a quantitative variable) or the current machine
operational status (a categorical variable). Note that
although the size of data, n, is usually very large, the
corresponding manufacturing process conforms to the
specifications for the majority of the time.To filter the
full data X, X̂ is selected from X, such that X̂ � X,
with X̂ contains the raw data points or summary
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statistics (e.g., centroids of clusters for clustered data)
from X, to preserve the information in a smaller size.
Here the data filtering can be formulated as,

min
X̂

lðX̂ ,XÞs:t: jX̂ j
n

� r, (2.1)

where lðX̂ ,XÞ is a loss function, such as negative log-
likelihood or entropy loss (Gray 2011), to quantify the
information loss between the filtered data and the full
data. The j � j is the cardinality or the sample size of a
data set. Here 0 � r � 1 is a tunable filtering ratio.

To filter the raw data considering the data cluster-
ing patterns, we propose to incorporate clustering into
the loss function in (2.1). For example, assume that X
can be partitioned into k clusters, where X ¼
C1 [ � � � [ Ck: The data in different clusters are het-
erogeneous in terms of means, variances, etc. A repre-
sentative subset of such a data set after the data
filtering is denoted as X̂ ¼ Ĉ1 [ � � � [ Ĉk, where Ĉ i

contains either the raw data or the summary statistic
of Ci: Therefore, we incorporate the clustering into
(2.1) and propose cluster-based data filtering as

min
X̂ , li,Ci, Ĉ i

lðX̂ ,XÞ þ k
Xk
i¼1

X
xj2Ci

jjxj � lijj22

s:t:
jĈ ij
jCij � r, for i ¼ 1, :::, k

(2.2)

where li is the centroid of each data cluster, k � k2 is
the Euclidean norm, and k is the coefficient for the
clustering term, which minimizes the within-cluster
distances. Here, we assume that the size of data
extracted from each cluster is proportional to the
sample size of each cluster. Although the loss function
in (2.2) is well-defined, there are two major computa-
tional challenges when using it in filtering. The first
one is that the optimization problem involves finding
the optimal data partitioning and sub-sampling, which
is NP-hard (Burdakov, Kanzow, and Schwartz 2015).
Furthermore, solving the multi-objective problem pre-
sented in loss function in (2.2) requires the selection
of k, which can significantly increase computational
cost if iterative parameter tuning procedures are
adopted (e.g., 5-fold cross-validation).

To address these challenges, we propose a heuristic
data filtering approach by combining the index-based
data partition and the cluster-based data sampling.
The method will divide the data into hubs and clus-
ters and extract subsets of data from clusters. In the
first step, we adopt the index-based data partition,
which is computationally fast, to partition the full
data into hubs and pave an efficient way to enable
cluster-wise data filtering. In the second step, within

each hub, we perform clustering and randomly sample
each cluster of data proportionally.

2.1. Cluster-based data filtering method

The index-based data partition consecutively parti-
tions the full data along the index tags into q data
hubs as X ¼ H1 [ � � � [Hq: Here, Hj, where j ¼
1, :::, q, are consecutive and non-overlapping data sub-
sets of X over time. When index tags are categorical
variables, it is straight-forward to hub partition, as
each unique value of a categorical variable will form
one data hub. However, for continuous variables, it is
not intuitive, and we propose a quantile-based method
for hub partition. The data partition (segmentation)
for continous variables has many variants, such as
using a likelihood criterion (Guralnik and Srivastava
1999), minimum message length approximation
(Fitzgibbon, Dowe, and Allison 2002), and landmark
identification (Ibragimov et al. 2014). Note that for
manufacturing processes with index tags, it is not easy
to assume certain probabilistic distribution properties
for the index tag variable. Thus, segmentation based
on likelihood and message length approximation is
not applicable to our problem. Alternatively, we adopt
the idea of finding landmarks (Perng et al. 2000) or
perceptually important points (PIPs) (Zhang, Jiang,
and Wang 2007) based on index tags for
segmentation.

Note that the index tags in the manufacturing data
often reflect the dynamics of a manufacturing system.
A large gap between two consecutive index tags often
reflects a change in the manufacturing system. For
example, when the operation times are used as the
index tags, a gap for several hours between two con-
secutive observations may indicate that there is a
product change-over. The aforementioned manufac-
turing events can significantly vary the in situ condi-
tions of manufacturing processes, and generate data in
hubs. Partitioning the data into hubs will reduce the
complexity of clustering, compared with the clustering
in the full data set. Practitioners can always use
domain knowledge to choose significant gaps among
data hubs, such as identifying the process change-
over, maintenance events, product receipt changes etc.
However, we would like to propose a data-driven rule
to identify significant gaps among data hubs when no
such domain knowledge exists. Specifically, to incorp-
orate the information on the gaps of index tags in the
proposed method, we consider to use the second-
order tag gap at ti, defined as di ¼ ðtiþ1 � tiÞ � ðti �
ti�1Þ: When time tags of data collection are adopted
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as the index tags, the second-order tag gap can iden-
tify the large index tag gaps, either in the time domain
(the first-order information) or the frequency domain
(the second-order information) among index tags. We
consider to form the segments by partitioning the raw
data X at the following locations

fj : dj � q1�aðd1, :::, dnÞg, (2.3)

where q1�aðd1, :::, dnÞ is the ð1� aÞ percentile of all
d1, :::, dn: It means that the gap values at these loca-
tions are larger than the ð1� aÞ percentile of all dj’s.

For each identified hub, we cluster it into kj clusters
for hub Hj as Hj ¼ CðjÞ

1 [ � � � [ CðjÞ
kj
: Here we adopt the

k-means clustering method (MacQueen, et al. 1967) to
form clusters CðjÞ

1 , :::,CðjÞ
kj

for each hub. Specifically, the
k-means clustering method minimizes the total within-
cluster sum of squares for the clusters in a hub as

min
Xkj
s¼1

X
xi2CðjÞ

s

kxi � lðjÞs k22, (2.4)

where l
ðjÞ
s is the centroid of the cluster s from the

hub Hj: The number of clusters kj for each hub is
selected to maximize the average Silhouette distance
of all data points in the hub (Rousseeuw 1987). Given
any data point xi, the Silhouette distance calculates
the difference between the average distance of xi to
the other data points in the same cluster and the aver-
age distance of xi to the other data points in different
clusters. The Silhouette distance is adopted because it
is a state-of-the-art method at measuring how well
that data points are matched to their respective clus-
ters, hence evaluates the overall clustering perform-
ance at any given kj (Tomasev et al. 2014). Finally, we
generate samples Ĉ

ðjÞ
s from each cluster CðjÞ

s to form
the filtered data set X̂ ¼ [q

j¼1 [kj
s¼1 Ĉ

ðjÞ
s , where Ĉ

ðjÞ
s

consist of 100r% data points randomly sampled from
cluster CðjÞ

s plus the cluster centroid l
ðjÞ
s : Here, the

centroids are important summary statistics of clusters,
and adding them to the filtered dataset is crucial for
the proposed method to preserve representative infor-
mation of clusters. Similar to prior works such as
Abramowicz et al. (2017), we consider that centroids/
medoids are the representative summary statistics for
clusters, and we expect that adding cluster centroids
in the filtered data sets results in less information loss
and better model fitting performance. In the mean-
time, various alternative approaches at utilizing cent-
roids such as offering centroid a higher weight for
down-stream tasks, adding more copies of centroids
to the filtered data, or only preserving the centroid
after filtering are beneficial future works. Further
exploring the capability of centroids at balancing the

tradeoff between filtering ratio and information loss
may result in better ways of performing data filtering.

2.2. Selection of the filtering ratio r

The filtering ratio r determines the degradation of
data quality. For example, the entropy loss quantita-
tively measures the information loss between the raw
and filtered data sets, which is defined as EL ¼
traceðR�1R̂Þ � log ðdetðR�1R̂ÞÞ � p, where traceð�Þ is
the trace operator, detð�Þ is the determinant operator,
R is the sample covariance matrix of the raw data set,
R̂ is the sample covariance matrix of the filtered data
set, and p is the number of variables in the data set.

Determining the filtering ratio r is not trivial. For
example, in P&G babycare manufacturing data with a
size of n¼ 24915 observations and p¼ 32 variables, the
increase of loss due to the decrease of data size preserved
is non-linear. In Figure 1, we compared the entropy loss
acquired by random sampling under different filtering
ratios. From Figure 1 we can see that the entropy loss
remains stable when the filtering ratio is larger than
r¼ 0.2, but increases dramatically when the filtering ratio
is smaller than r¼ 0.2. As a result, r¼ 0.2 may be consid-
ered as a good choice of the filtering ratio, since it has a
balanced small filtering ratio with a relatively small
entropy loss. We will make use of this observation to test
if our proposal can identify the optimal filtering ratio.

In practice, the exact tradeoff relationship between
the filtering ratio and the entropy loss among data
sets may vary significantly. The filtering ratio r can be
determined by users based on their experience.
However, there is a lack of statistical justification
behind the ad hoc selection of the filtering ratio for
achieving a good balance between the information
preserved and the size of the filtered data X̂ :

Here we propose a statistical framework on the
selection of optimal value of r. Specifically, we pro-
pose FIC, as the criterion to find the optimal value of
r. The FIC is motivated and modified from Akaike
information criterion (AIC), a statistical model selec-
tion method (Akaike et al. 1998). Assuming that the
data set X has n observations and follows the inde-
pendent and identically distributed normal distribu-
tion Nðl,RÞ, with l as the mean and R as the
covariance matrix, then the log-likelihood of the full
data can be written as

lðXjl,RÞ ¼ �n
1
2
log jRj � 1

2

Xn
i¼1

ðxi � lÞ0R�1ðxi � lÞ

¼ �n
1
2
log jRj � n

1
2
traceðR�1SÞ,

(2.5)up to some constant and where
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S ¼ 1
n

Xn
i¼1

ðxi � lÞðxi � lÞ0:

The original AIC is to consider the balance
between the fitness of the model to the data and the
model complexity, which can be expressed as

AICðl,RÞ ¼ �2l þ 2k, (2.6)

where l is the log likelihood function and k is the
number of estimated parameters in the model.

We propose to use an AIC-like measure to find the
optimal ratio r. To do this, we estimate the mean and
covariance matrix from the filtered data, which are
conducted by using the weighted sample mean and
sample covariance matrix from the full data

l̂ ¼ 1
m
ð
Xn
i¼1

wixi þ
Xq
i¼1

wiliÞ,

R̂ ¼ 1
m
ð
Xn
i¼1

wiðxi � l̂Þðxi � l̂Þ0 þ
Xq
i¼1

viðlj � l̂Þðlj � l̂Þ0Þ,

where wi 2 f0, 1g, vi 2 f0, 1g, q is the total number of
clusters identified in the full data, lj is the centroid of
the cluster j, m ¼ Pn

i¼1 wi þ
Pn

i¼1 vi, is the total
number of preserved data points, l̂ and R̂ are the
mean and covariance generated from the filtered data
set based on both preserved data points and cluster
centroids. Then a modified AIC, denoted as filtering
information criterion (FIC), for evaluating the quality
of the filtered data can be written as

FICðl̂, R̂Þ ¼ �2lðXjl̂, R̂Þ þ 2jX̂ j
¼ nlogjR̂j þ

Xn
i¼1

ðxi � l̂Þ0R̂�1ðxi � l̂Þ þ 2jX̂ j

¼ n logjR̂j þ traceðR̂�1
S�Þ þ 2

jX̂ j
n

� �
,

(2.7)

where S� ¼ 1
n

Pn
i¼1ðxi � l̂Þðxi � l̂Þ0:

Given a pre-defined set r ¼ fr1, :::, rmg, the optimal
filtering ratio r� is chosen to have the smallest

corresponding FIC value resulted from the filtering.
In the case study and simulation that follows, we will
evaluate the performance of the proposed filtering
method and the FIC.

A pseudo-code for the proposed filtering method is
summarized as follows.

Algorithm 1 Pseudo code for the proposed filtering
method
Step 1: Split raw data into hubs Hj, where j ¼ 1, :::, q
satisfying (2.3).

Step 2: Identify kj clusters CðjÞ
s , where s ¼ 1, :::, kj,

within each hub Hj using k-means clustering and
Silhouette distance.

Step 3: Randomly sample from each cluster CðjÞ
s

based on the filtering ratio r:
for each hub Hj, where j ¼ 1, :::, q, do
for each cluster CðjÞ

s , where s ¼ 1, :::, kj, do
Randomly sample 100r% data points and the clus-

ter centroid l
ðjÞ
s from cluster CðjÞ

s :

Denote these observations for each cluster as Ĉ
ðjÞ
s :

end forend for
Step 4: Combine all cluster Ĉ

ðjÞ
s and form the fil-

tered data X̂ ¼ [q
j¼1 [kj

s¼1 Ĉ
ðjÞ
s :

We would like to remark that although the pro-
posed filtering method does not rely on distributional
assumption of the underlying data, the derivation of
FIC does rely on the Multivariate Normality assump-
tion of data. In the later studies, we tested the per-
formance of both FIC and proposed filtering method
on various data sets with different distributions. The
result shows that FIC can make reasonable filtering
ratio suggestions even when the data do not follow
the Multivariate Normal assumption. However, we
believe that relaxing the multivariate Normality
assumption to work with data having a variety of and
mixed distribution can become a valuable future
work. Note that the formulation in (2.7) can be
viewed as an information discrepancy between R̂ and
S�: Following this observation, it is possible to use
FIC as a general guideline to select the optimal filter-
ing ratio for data with proper mean and covariance
matrix. The analysis of the case study provides further
evidence on the use of FIC.

3. Case study

In collaboration with the P&G babycare manufactur-
ing sector, we evaluate the performance of the pro-
posed method. A data collected from the P&G
production line has a size of n¼ 24915 observations
and p¼ 32 variables including the time tag. Although
the physical meanings of variables are not disclosed

Figure 1. The increase of entropy loss as the filtering
ratio decreases.
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here due to the data non-disclosure agreement, we
summarized the summary statistics, the histogram of
each centralized variable, and normality test of the
data set in the supplementary materials. Based on the
summary, we observe that although the whole dataset
doesn’t follow multivariate Normality, which requires
all variables to follow Normal distribution, approxi-
mately half of variables passed the univariate
Normality test while several others resemble the
Normality patterns. As a result, FIC’s assumption is
partially fulfilled to a certain degree for the case study
data so that likelihood in FIC can still quantify the
similarities between the raw data and the filtered data
to a certain degree. However, we want to remind
readers again that relaxing the multivariate Normality
assumption for FIC to improve the generality of the
proposed method is a valuable future work.

Typically, a manufacturing big data system can
have millions of observations for analysis. This
selected data set is to provide a representative per-
formance evaluation in a big data environment for
two reasons. The first reason is that some engineer-
ing-driven partition can divide a big data set into sub-
data with smaller sample sizes for filtering. The
second reason is that production engineers often avoid
waiting until the collected data for analysis becomes
big sizes, which can cause a significant delay in deci-
sion-making.

The objective of this case study is two-fold. First,
we demonstrate that an effective filtering ratio can
be selected by FIC to achieve a good balance
between the size of data preserved and the data
quality. Second, we evaluate the performance of the

proposed filtering method in comparison with sev-
eral benchmark methods.

We used the entropy loss (Gray 2011) to evaluate
the entropy loss of the filtered data sets compared
with the raw data efficiently. Two benchmark meth-
ods, denoted as BM1 and BM2 were included for com-
parison. The BM1 is random sampling (Liu, Sadygov,
and Yates 2004) which extracts observations randomly
from the full data set, and the BM2 is stratified sam-
pling (Liberty, Lang, and Shmakov 2016) which
extracts one observation within every equally spaced
and non-overlapping time window. For example,
given a filtering ratio r and n data points, we stratified
the raw data into approximately nr consecutive and
equally sized data segments and preserved the first
observation of each segment. The threshold for form-
ing hubs by segmentation in (2.3) set a ¼ 0:01: To
illustrate the impact of different a on gap identifica-
tion, we compare the gaps above the ð1� aÞ percent-
ile with a ¼ 0:02, 0:01, 0:001 versus the gaps identified
in the natural log space in the appendix. To evaluate
the performance of the proposed filtering method, 50
replications with 90% of randomly extracted data were
performed on varying and fixed filtering ratios to
ensure reproducibility. Here the time order of the ran-
domly extracted data is preserved in each replication.

In Figure 2, we summarized the average entropy
loss for each filtering method with varying (Figure 2a)
and fixed (Figure 2b) filtering ratios. The mean value
and the standard error of the optimal filtering ratios
selected by FIC over 50 replications are symbolized as
solid and dashed vertical lines respectively in Figure
2a. In Figure 2a, the entropy loss appears not to
improve significantly when the filtering ratio is larger

Figure 2. (a) The mean and standard errors (in vertical solid and dotted lines) of the optimal filtering ratio over 50 replications
using the proposed filtering method versus the mean entropy loss at different filtering ratios for all methods over 50 replications.
(b) The comparison in a boxplot of entropy loss for all methods using the fixed filtering ratio over 50 replications.
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than 0.4 and increased dramatically as the filtering
ratio is smaller than 0.1. As a result, the desirable fil-
tering ratio should be between 0.1 and 0.4. In Figure
2a, the average optimal filtering ratio was 0.235, which
is within the desirable range (0.1-0.4) with very small
standard errors. Furthermore, we observed that the
cluster-based filtering method (the solid curve in
Figure 2a) showed superior performance compared
with the benchmark methods at the selected filtering
ratio. We further use the same optimal filtering ratio
determined by FIC for the proposed filtering method
to the two benchmark methods to compare the
entropy loss over 50 replications. As a summary, the
boxplots in Figure 2b show that the cluster-based fil-
tering method provides a significantly smaller entropy
loss than the benchmark methods.

We also summarize the filtering performance for
different methods when the filtering ratios are deter-
mined by FIC over 50 replications. Specifically, we
used FIC to select the optimal filtering ratios, which
yielded the lowest FIC scores for the three filtering
methods, e.g., random sampling, stratified sampling,
the proposed method, in each replication. The optimal
filtering ratios and the corresponding entropy loss
from the optimal filtering ratios are summarized in
the boxplots shown in Figure 3. Figure 3a shows the
boxplot of the selected filtering ratios over 50 replica-
tions. Figure 3b shows the boxplot of the entropy loss
obtained under the selected filtering ratios over 50
replications. We can see that the proposed filtering
method favored higher filtering ratios, which were
between 0.2-0.5, while the benchmark filtering meth-
ods favored much smaller filtering ratios (0.01-0.05).
As FIC jointly leverages the likelihood and the size

of data preserved, it is straightforward to see that
FIC favors preserving more data points for the pro-
posed filtering method. As a result, we conclude that
the proposed filtering method can efficiently preserve
the likelihood with higher filtering ratios to yield the
lowest FIC. On the other hand, a much smaller filter-
ing ratio is preferred by FIC for the benchmark fil-
tering methods as they are less effective at preserving
the likelihood where only decreasing the filtering
ratio will lead to a lower FIC score. Furthermore,
although the cluster-based filtering method had a
relatively higher filtering ratio, it offered much
smaller entropy loss. We summarize that: (1) the fil-
tering information criterion (FIC) can successfully
help to identify the optimal filtering ratio, balancing
the tradeoff between the entropy loss and the size of
data preserved; (2) the cluster-based filtering method
can more efficiently preserve the data likelihood
compared to the benchmark filtering methods; and
(3) the FIC will favor saving more data when the
underlying filtering methods can better preserve
the likelihood.

Furthermore, to show that the proposed method
can be easily applied to dataset with much larger size,
we performed hub identification using a ¼ 0:01 on a
dataset with n¼ 24, 915 (the case study data) and a
dataset with n¼ 1, 003, 708 data points from the P&G
babycare manufacturing process. The result is that
hub identification generated data hubs in a compar-
ably average size of 199.902 and 196.1811 from two
datasets. Such similar hub sizes indicate that the scale-
up of the proposed method to new data sets from the
same process can be straight-forward since hub

Figure 3. (a) The boxplots of the optimal filtering ratios determined over 50 replications. (b) The entropy losses obtained under
the optimal filtering ratio over 50 replications.
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identification partitions raw data in significantly dif-
ferent sizes into similar-sized hubs for fur-
ther processing.

4. The simulation study

We further evaluated the filtering performance in a
simulation study. In particular, we considered varying
four simulation settings: the inherent number of data
clusters, the signal-to-noise ratios, the model sparsity,
and the distributions that variables follow. To mimic
the characteristics of the real manufacturing data set,
the simulation data were generated as follows: for two
settings on the inherent number of clusters, we
respectively clustered the real data set into NC clusters
using k-means clustering, each denoted as X̂ f : Then
we extracted the original time stamp for each observa-
tion in the cluster f as tf and the means of all varia-
bles as lf , where f ¼ 1, :::,NC from real data. Then
we simulated each data cluster with a mixed of expo-
nential, non-exponential, symmetrical, and skewed
distributions: 1. Xf 	 Nðlf ,RÞ, 2. Xf 	 tðlf ,R, df ¼
10Þ, 3. Xf 	 Uniformðlf � 0:5, lf þ 0:5Þ, 4. Xf 	
Gammaðk, hÞ, where the shape parameter k 	
Uniformð1, 5Þ, and scale parameters h 	
Uniformð1, 2Þ, 5. a mixed distribution with each vari-
able following either Student’s t, Uniform, or Gamma
distribution with the parameters described above
(2,3,4) with 1/3 of probability. Xf has the same size as
X̂ f , and the regularized covariance matrix R ¼ ½rij

with rij ¼ 1 when i¼ j, and rij ¼ 0:3 when i 6¼ j: To
investigate the different impact of covariance struc-
ture, we can investigate the results from datasets fol-
lowing t-distribution with the same covariance matrix
and Uniform distribution, which did not rely on
covariance. Finally, we aggregated all simulated clus-
ters Xf with the time stamps tf to produce the simu-
lated data matrix X.

We further created simulation models to evaluate
the modeling performance. To generate the response
variable y, we used a linear model given by y ¼
~Xbþ e, where y ¼ ðy1, :::, ynÞ0 was the response, ~X
was the simulated data matrix with all the main effect
variables ðt, x1, :::, xpÞ0 in X and the two-factor interac-
tions in the multiplication form ðtx1, :::, xp�1xpÞ0: b ¼
ðbt , b1, :::, bp, bt1, :::, bðp�1ÞpÞ0 is the model parameter

vector corresponding to main effect variables and the
interaction terms, e ¼ ðe1, :::, enÞ0 were the residual
terms with ei 	 Nð0, r2Þ as independent and identi-
cally distributed. To obtain the value of b, we first
trained a linear model using the real data set, and
extracted the model coefficients as b̂: Then, we ran-
domly set MS% of main effect parameters
ðbt, b1, :::, bpÞ0 and 10% of interaction term parameters
ðbt1, :::, bðp�1ÞpÞ0 in b as significant (non-zeros), with
values randomly chosen from b̂: Furthermore, we var-
ied the signal-to-noise ratio (SNR) when generating
the error term e, where SNR ¼ varð~XbÞ

varðeÞ , and varð�Þ
represents the variance (Friedman, Hastie, and
Tibshirani 2001). In summary, two levels of the three
factors are shown in Table 1.

We evaluated the performance of the proposed fil-
tering method with 90% of data randomly extracted
from the raw data over 50 replications to ensure
reproducibility. Same as the case study, We normal-
ized all the variables in this study. We evaluated the
performance measures with both fixed filtering ratios
(0.1, 0.01, 0.005) and the optimal filtering ratio
(marked as �) determined by FIC and the proposed
filtering method. The a value for identifying the sig-
nificant second-order index gap in (2.3) is set to be
a ¼ 0:01: Then the filtered data sets were used to esti-
mate a linear model for the evaluation goodness-of-fit.

Five performance measures were used including
entropy loss (Gray 2011), R2, adjusted-R2, the CPU
time for the data filtering step, and the CPU time for
the modeling step. R2 quantifies the goodness-of-fit
for the model on the filtered training data while the
adjusted-R2 (Gelman and Pardoe 2006) simultaneously
evaluates the goodness-of-fit and the complexity of
the model. Besides the previously adopted random
sampling and stratified sampling methods, the third
benchmark method was to directly use the full data
set for modeling. Using the full data yielded zero
entropy loss but is not necessarily the best model per-
formance. The simulation was performed on a work-
station with CPU Xeon Processor E5-2687W,
3.10GHz, 64GB RAM.

For the simplicity of presentation, we only include
the tables of the results with varying inherent number
of clusters in the manuscript (Tables 2 and 3), while
presenting the rest of tables corresponding to the
other scenarios in the supplementary materials. Both
tables show that the proposed method significantly
outperformed the two benchmark methods on entropy
loss as the filtering ratio decreased. Furthermore, the
proposed method outperformed all methods in com-
parison on R2 and adjusted-R2. As the inherent

Table 1. Simulation setting summary.
Parameters Low High

Number of Clusters (NC) 30 1000
Model Sparsity (MS) 0.3 0.7
Signal-to-Noise Ratio (SNR) 3 10

The same settings were applied on Normal, t, and Uniform distribution
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Table 2. Means and standard errors (within parenthesis) of five performance measures based on 50 simulation replications for
Normal distribution with NC¼ 30, MS¼ 0.3, and SNR¼ 3.
Filtering ratio Filtering Method Entropy Loss R2 Adjusted-R2 Filtering Time (in seconds) Modeling Time (in seconds)

0.1 Full Data - 0.748 0.748 - 39.664
- (0.000) (0.000) - (0.220)

BM1 0.270 0.750 0.750 0.106 10.073
(0.005) (0.001) (0.001) (0.008) (0.146)

BM2 0.247 0.752 0.752 0.123 10.292
(0.004) (0.001) (0.001) (0.009) (0.223)

Proposed 0.237 0.753 0.753 9.496 10.359
(0.003) (0.001) (0.001) (0.178) (0.154)

0.01 Full Data - 0.748 0.748 - 39.664
- (0.000) (0.000) - (0.220)

BM1 5.194 0.764 0.762 0.052 0.725
(0.111) (0.005) (0.005) (0.004) (0.013)

BM2 4.987 0.768 0.765 0.051 0.745
(0.108) (0.005) (0.005) (0.004) (0.013)

Proposed 3.849 0.789 0.787 9.622 0.717
(0.056) (0.006) (0.006) (0.179) (0.017)

0.005 Full Data - 0.748 0.748 - 39.664
- (0.000) (0.000) - (0.220)

BM1 10.875 0.774 0.769 0.049 0.457
(0.298) (0.009) (0.010) (0.003) (0.011)

BM2 10.790 0.791 0.786 0.068 0.484
(0.281) (0.009) (0.009) (0.007) (0.010)

Proposed 7.312 0.833 0.829 9.595 0.403
(0.101) (0.011) (0.011) (0.176) (0.012)

0.104� Full Data - 0.748 0.748 - 39.664
- (0.000) (0.000) - (0.220)

BM1 0.249 0.754 0.753 0.059 11.036
(0.008) (0.001) (0.001) (0.006) (0.244)

BM2 0.233 0.752 0.752 0.044 11.213
(0.006) (0.001) (0.001) (0.003) (0.252)

Proposed 0.225 0.752 0.752 34.714 10.078
(0.006) (0.001) (0.001) (0.316) (0.162)

Table 3. Means and standard errors (within parenthesis) of five performance measures based on 50 simulation replications for
Normal distribution with NC¼ 1000, MS¼ 0.3, and SNR¼ 3.
Filtering ratio Filtering Method Entropy Loss R2 Adjusted-R2 Filtering Time (in seconds) Modeling Time (in seconds)

0.1 Full Data - 0.750 0.750 - 39.821
- (0.000) (0.000) - (0.169)

BM1 0.319 0.753 0.753 0.104 7.680
(0.013) (0.001) (0.001) (0.007) (0.104)

BM2 0.261 0.752 0.752 0.129 7.589
(0.006) (0.001) (0.001) (0.010) (0.110)

Proposed 0.302 0.754 0.754 10.019 7.705
(0.013) (0.001) (0.001) (0.337) (0.096)

0.01 Full Data - 0.750 0.750 - 39.821
- (0.000) (0.000) - (0.169)

BM1 3.836 0.785 0.782 0.050 0.721
(0.254) (0.005) (0.005) (0.003) (0.012)

BM2 3.992 0.772 0.769 0.062 0.743
(0.245) (0.005) (0.005) (0.007) (0.012)

Proposed 3.203 0.792 0.789 9.994 0.649
(0.176) (0.009) (0.009) (0.334) (0.009)

0.005 Full Data - 0.750 0.750 - 39.821
- (0.000) (0.000) - (0.169)

BM1 6.812 0.791 0.786 0.054 0.431
(0.478) (0.008) (0.008) (0.005) (0.010)

BM2 8.652 0.788 0.782 0.058 0.505
(0.740) (0.010) (0.010) (0.005) (0.008)

Proposed 5.480 0.838 0.833 9.997 0.371
(0.363) (0.013) (0.013) (0.330) (0.009)

0.115� Full Data - 0.750 0.750 - 39.821
- (0.000) (0.000) - (0.169)

BM1 0.275 0.754 0.754 0.043 9.333
(0.014) (0.001) (0.001) (0.002) (0.257)

BM2 0.215 0.753 0.752 0.041 8.993
(0.012) (0.001) (0.001) (0.001) (0.244)

Proposed 0.269 0.755 0.754 35.238 8.411
(0.017) (0.001) (0.001) (0.452) (0.246)
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number of clusters increased from 30 (Table 2) to
1000 (Table 3), each cluster contained less data and
information. As a result, the clustering pattern is
becoming less significant in data composition and the
modeling performance is less affected by such a pat-
tern. However, the proposed method always outper-
formed the benchmark filtering methods for the
majority of performance measures in both scenarios.
Although the proposed filtering method took a longer
time at the filtering step, it costs less than 10 seconds
on average and was deemed as a time-efficient
method by production engineers. The rest of the
results, corresponding to the Normal, t, Uniform,
Gamma, and mixed distribution, show that the pro-
posed methods outperformed benchmark methods for
the majority of scenarios at reducing entropy loss and
achieving better goodness-of-fit. One thing drew our
attention is that the proposed method yielded higher
entropy loss in some runs for Gamma distribution
(skewed distribution). One reason is that the proposed
method focuses on preserving major/large clusters at
low filtering ratio so that it will likely ignore the
data points from small clusters. As a result, the pro-
posed method is not as good as random and strati-
fied sampling on preserving information from those
small data clusters representing the tail of highly
skewed variables.

Additionally, we generated the Figure 4 based on
the information from Table 2. It is seen that there
was a significant reduction of entropy loss achieved
by the proposed filtering method over the two bench-
mark filtering methods. The proposed filtering
method outperformed the benchmark methods for the
adjusted R2 as well. Such improvements became more
significant as the filtering ratio decreased.

5. Discussion

As sensor and communication technologies advance,
Industrial Internet-based sensing systems are capable
of collecting massive data for process modeling and
control. However, such systems also generate a lot of
redundant information which significantly limits the
quality and efficiency of the data analysis. As a result,
extracting representative and high-quality data subsets
is important to improve the efficiency of the data ana-
lysis. In this work, we proposed a filtering method
and new criteria (FIC) to facilitate data analysis by
selecting a small but effective data subset. Specifically,
the proposed method partitions raw data into clusters
and proportionally extracts a data subset from each
cluster. The proposed cluster-based data filtering
method outperformed the benchmark filtering meth-
ods on performance measures, such as information
loss, the modeling goodness-of-fit in the case study
and the simulation. Furthermore, the new filtering
ratio selection criteria (FIC) has shown its effective-
ness in terms of balancing the tradeoffs between the
size of data preserved in filtering and the quality of
the filtered data.

Another challenge at storing and analyzing big data
is when the number of variables/dimensions of data
grows high. To mitigate these issues, one can adopt
variable screening or dimension reduction methods to
reduce the data dimension before applying filtering
and direct analysis. State-of-the-art methods on
dimension reduction include but are not limited to
principle component analysis (Dunteman 1989), sure
independence screening (Fan and Lv 2008), manifold
embedding (Nie et al. 2010), and kernel dimension
reduction (Wang et al. 2010). This paper leads to a
few future research directions. Data analysis under big

Figure 4. The means and standard errors (in black error bars) of two performance measures based on 50 simulation replications.
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data environments have become prevalent and even
sometimes necessary because of the computational
performance requirement. However, efficiently utiliz-
ing big data through analysis that is both time-effi-
cient and accurate is still a challenging problem. The
proposed method can also facilitate internet-of-things
(IoT)-based data collection, communication, storage,
and analysis. For example, as the inline data de-dupli-
cation (real-time data filtering for continuous data
streaming), has become more popular in recent years
(Zhou, Liu, and Li 2013), future work will focus on
the conversion of the current offline data filtering to
online. Specifically, we need to investigate when to
update the filtering ratio due to process changes,
product changes, etc. Furthermore, an integer pro-
gramming heuristic or relaxation technique (Schrijver
1998) can be derived to help directly solve the data
filtering problem shown in the objective function (2.1)
so that the filtering performance may be further
improved. Lastly, we will investigate filtering for func-
tional data (Sun, Huang, and Jin 2017) and imaging
data (Li et al. 2019) as in situ data measurement for
manufacturing.
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