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ABSTRACT
The modified Cholesky decomposition is commonly used for preci-
sion matrix estimation given a specified order of random variables.
However, the order of variables is often not available or cannot be
pre-determined. In this work, we propose a sparse precision matrix
estimation by addressing the variable order issue in the modified
Cholesky decomposition. The idea is to effectively combine a set of
estimates obtained from multiple permutations of variable orders,
and to efficiently encourage the sparse structure for the resultant
estimate by the thresholding technique on the ensemble Cholesky
factor matrix. The consistent property of the proposed estimate is
established under someweak regularity conditions. Simulation stud-
ies are conducted to evaluate the performance of the proposed
method in comparison with several existing approaches. The pro-
posed method is also applied into linear discriminant analysis of real
data for classification.
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1. Introduction

The estimation of large sparse precision matrix is of fundamental importance in the mul-
tivariate analysis and various statistical applications. For example, in the classification
problem, linear discriminant analysis (LDA) needs the precision matrix to compute the
classification rule. In financial applications, portfolio optimization often involves the pre-
cision matrix in minimizing the portfolio risk. A sparse estimate of precision matrix not
only provides a parsimonious model structure, but also gives meaningful interpretation on
the conditional independence among the variables.

Suppose that X = (X1, . . . ,Xp)
′ is a p-dimensional vector of random variables with an

unknown covariance matrix �. Without loss of generality, we assume that the expecta-
tion of X is zero. Let x1, . . . , xn be n independent and identically distributed observations
following a multivariate normal distribution N (0,�) with mean equal to the zero vec-
tor and covariance matrix �. The goal of this work is to estimate the precision matrix
� = (ωij)p×p = �−1. Particular interest is to identify zero entries of ωij, since ωij = 0
implies the conditional independence between Xi and Xj given all the other random vari-
ables. One way is that we obtain a sparse covariance matrix and then take its inverse. The
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inverse, however, is often computationally intensive, especially in the high-dimensional
cases. Moreover, the inverse of a sparse covariance matrix often would not result in sparse
structure for the precision matrix. Therefore, it is desirable to obtain a sparse estimate
directly to catch the underlying sparsity in the precision matrix.

The estimation of sparse precision matrix has attracted great attention in the literature.
Meinshausen and Bühlmann [1] introduced a neighbourhood-based approach: it first esti-
mates each column of the precisionmatrix by the scaled Lasso orDantzig selector, and then
adjusts the matrix estimator to be symmetric. Yuan and Lin [2] proposed the Graphical
Lasso (Glasso) method, which gives a sparse and shrinkage estimator of � by penalizing
the negative log-likelihood as

�̂ = argmin
�

− log |�| + tr[�S] + ρ||�||1,

where S = (1/n)
∑n

i=1 xix
′
i is the sample covariance matrix, ρ ≥ 0 is a tuning parame-

ter, and || · ||1 denotes the L1 norm for the off-diagonal entries. Hence, the penalty term
encourages some of the off-diagonal entries of the estimated� to be exact zeroes. Different
variations of the Glasso formulation have been later studied [3–8]. The corresponding the-
oretical properties of Glassomethod are also developed [2,5,9,10]. In particular, the results
from Raskutti et al. [5] and Rothman et al. [9] suggest that, although better than the sam-
ple covariance matrix, the Glasso estimate may not perform well when p is larger than the
sample size n.

In addition, Fan, Fan and Lv [11] developed a factor model to estimate both covariance
matrix and its inverse. They also studied the estimation in the asymptotic framework that
both the dimension p and the sample size n go to infinity. Xue and Zou [12] introduced
a rank-based approach for estimating high-dimensional nonparametric graphical models
under a strong sparsity assumption that the true precision matrix has only a few nonzero
entries. Wieringen and Peeters [13] studied the estimation of high-dimensional precision
matrix based on the Ridge penalty. There are also a few work focusing on the inference for
the precision matrix estimation. Drton and Perlman [14] proposed a new model selection
strategy for Gaussian graphical models via hypotheses testings of the conditional inde-
pendence between variables. Sun and Zhang [15] derived a residual-based estimator to
construct confidence intervals for entries of the estimated precision matrix. Some recent
Bayesian literature can also be found in the work of [16–20], among others.

Another set of commonly used methods is to consider the matrix decomposition
for estimating sparse precision matrix. The modified Cholesky decomposition (MCD)
approach was developed to estimate � [21,22]. This method reduces the challenge of
estimating a precision matrix into solving a sequence of regression problems, and pro-
vides anunconstrained and statistically interpretable parametrization of a precisionmatrix.
Although theMCD approach is statistically meaningful, the resultant estimate depends on
the order of the random variables X1, . . . ,Xp. In many applications, the variables often
do not have a natural order, that is, the variable order is not available or cannot be pre-
determined before the analysis. There are several Cholesky-based methods for estimating
the precision matrix without specifying a natural order to the variables [23–25]. In this
work, we propose an improved MCD approach to estimate the sparse precision matrix via
addressing the variable order issue using the permutation idea in Zheng et al. [25]. By con-
sidering an ensemble estimate under multiple permutations of the variable orders, Zheng
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et al. [25] introduced an order-averaged estimator for the large covariance matrix. How-
ever, they did not give the theoretical property of their estimator.Moreover, their estimator
does not have sparsity, which is a very important and desired property for the matrix esti-
mation in the high-dimensional cases. Hence, this paper improves the estimate of Zheng
et al. [25] by encouraging the sparse structure in the precisionmatrix estimate. Specifically,
we take average on the multiple estimates of the Cholesky factor matrix, and consequently
construct the final estimate of the precision matrix. Since the averaged Cholesky factor
matrix may not have sparse structure, we adopt the hard thresholding technique on the
averaged Cholesky factor matrix to obtain the sparsity, thus leading to the sparse structure
in the estimated precisionmatrix. The proposedmethod provides an accurate estimate and
is able to capture the underlying sparse structure of the precision matrix. The sensitivity of
the number of permutations of variable orders is studied in simulation. We also establish
the consistency property of the proposed estimator regarding Frobenius norm under some
appropriate conditions.

The remainder of the paper is divided into seven sections. In Section 2, we briefly review
the MCD approach to estimate the precision matrix. In Section 3, we address the order
issue of the MCD approach and propose an ensemble sparse estimate of �. The consistent
property is established in Section 4. Simulation studies and illustrative examples of real data
are presented in Sections 5 and 6, respectively.We conclude our workwith some discussion
in Section 7. The technical proof is given in Appendix.

2. Revisit of modified Cholesky decomposition

The key idea of themodifiedCholesky decomposition approach is that the precisionmatrix
� can be decomposed using a unique lower triangular matrix T and a unique diagonal
matrix D with positive diagonal entries [21] such that

� = T′D−1T.

The entries of T and the diagonal of D are unconstrained and interpretable as regres-
sion coefficients and corresponding variances when one variable Xj is regressed on its
predecessors X1, . . . ,Xj−1. Clearly, here an order for variables X1, . . . ,Xp is pre-specified.
Specifically, consider X1 = ε1, and for j = 2, . . . , p, define

Xj =
j−1∑
k=1

ajkXk + εj

= Z′
jaj + εj, (1)

where Zj = (X1, . . . ,Xj−1)
′, and aj = (aj1, . . . , aj,j−1)

′ is the corresponding vector of
regression coefficients. The errors εj are assumed to be independent with zero mean and
variance d2j . Denote ε = (ε1, . . . , εp)′ and D = Cov(ε) = diag(d21, . . . , d

2
p). Then the p

regression models in (1) can be expressed in the matrix form X = AX + ε, where A is a
lower triangular matrix with ajk in the (j, k)th position, and 0 as its diagonal entries. Thus
one can easily write TX = ε with T = I − A to derive the expression of � = T′D−1T.
The MCD approach therefore reduces the challenge of modelling a precision matrix into
the task of modelling (p − 1) regression problems.
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Note that theMCD-based estimate is affected by the order of variables X1, . . . ,Xp, since
the regressions in (1) change when the order changes [23]. Hence, different orders of vari-
ables would result in different regressions, leading to different estimates of T and D, and
consequently different estimates of�. To demonstrate this clearly, we generate 20 observa-
tions from a 4-dimensional normal distribution N (0,�−1), where � is a sparse matrix
with 1 as its diagonal and �13 = �31 = 0.5. We consider two different variable orders
π1 = (1, 2, 3, 4) and π2 = (1, 4, 3, 2), and obtain the corresponding estimates �̂1 and �̂2
based on the MCD (1) as follows, with the regression coefficients aj estimated according
to (3)

�̂1 =

⎛⎜⎜⎝
1.80 −0.13 0.75 0.06

−0.13 1.94 0.24 0.07
0.75 0.24 0.83 0.08
0.06 0.07 0.08 1.41

⎞⎟⎟⎠ and

�̂2 =

⎛⎜⎜⎝
0.85 0.22 0.64 0.08
0.22 1.82 −0.11 0.08
0.64 −0.11 1.64 0.05
0.08 0.08 0.05 1.41

⎞⎟⎟⎠ .

Clearly, the estimates �̂1 and �̂2 are much different, due to the different variable orders
used in the MCD. The variable orders significantly affect the Cholesky-based estimate.
Hence, it is important to address this issue in the MCD-based approach. Wagaman and
Levina [26] proposed an Isomap method to find the order of variables based on their cor-
relations prior to applying banding techniques. Rajaratnam and Salzman [27] introduced
a so-called ‘best permutation algorithm’ to recover the natural order of variables in autore-
gressive models for banded covariance matrix estimation, by minimizing the sum of the
diagonals ofD in the MCD approach. However, a natural variable order of Xmay not exist
in practice, such as in the gene expression data or stock data. Moreover, the aforemen-
tioned methods for selecting a variable order are often designated for the banded matrix
estimation. They are not suitable for the general matrix with no sparse structures. There-
fore, in the next section, we propose a Cholesky-based ensemble sparse estimate of the
precision matrix by addressing the order issue, with no assumption of sparse structure on
the underlying matrix.

3. The proposed sparse estimator

To address the order issue and obtain an accurate estimate �̂ = (ω̂ij)p×p, we take advantage
of permutations to gain the flexibility such that we can ensemble the multiple estimates
from different orders.

Define a permutation mapping π : {1, . . . , p} → {1, . . . , p}, which represents a rear-
rangement of the order of the variables,

(1, . . . , p) → (π(1),π(2), . . . ,π(p)). (2)

Define the corresponding permutationmatrixPπ of which the entries in the jth column are
all 0 except taking 1 at position π(j). Denote the n by p data matrix by X = (x1, . . . , xn)′.
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Therefore, the transformed data matrix is

Xπ = XPπ = (x(1)
π , . . . , x(p)

π ),

where x(j)
π is the jth column of Xπ , j = 1, 2, . . . , p. The Lasso technique [28] is employed

for the shrinkage purpose and for the situation where p is close to n or even larger than n.
The idea of Lasso-type estimator for the Cholesky factor has been used in some literatures
[5,23,29,30]. Under a given permutation π , obtain

âπ(j) = argmin
aπ(j)

‖x(π(j))
π − W

(π(j))
π aπ(j)‖22 + λπ(j)|aπ(j)|1, for π(j) �= 1, (3)

and

d̂2π(j) =
{
V̂ar(x(1)

π ), π(j) = 1,
V̂ar(x(π(j))

π − W
(π(j))
π âπ(j)), otherwise,

(4)

where W
(j)
π represents the first (j-1) columns of Xπ , λπ(j) ≥ 0 is a tuning parameter,

and | · | stands for the vector L1 norm. Here V̂ar(α) = (
∑p

i=1(αi − ᾱ)2)/(n − 1), where
α = (α1, . . . ,αp)

′ is a p-dimensional vector, and ᾱ = 1
n

∑p
i=1 αi. The tuning parameter is

chosen by the cross validation. Then we can model the lower triangular matrix T̂π with
ones on its diagonal and â′

π(j) as its π(j)th row. Meanwhile, the diagonal matrix D̂π has

its π(j)th diagonal element equal to d̂2π(j). Correspondingly, �̂π = T̂′
π D̂

−1
π T̂π will be a

sparse precision matrix estimate under π . Transforming back to the original order, we can
estimate � as

�̂ = Pπ �̂πP′
π

= Pπ T̂′
π D̂

−1
π T̂πP′

π

= (Pπ T̂′
πP′

π)(Pπ D̂
−1
π P′

π)(Pπ T̂πP′
π)

� T̂′D̂−1T̂. (5)

Note that T̂ = Pπ T̂πP′
π may no longer be a lower triangular matrix, but it still contains

the sparse structure. Suppose we randomly generate M permutation mappings πk, k =
1, . . . ,M. The word ‘randomly’ here means generating a permutation with all p! possible
permutations being equally probable. Accordingly, we obtain the corresponding estimates
�̂, T̂, and D̂ in (5), denoted as �̂k, T̂k, and D̂k for the permutation πk.

Based on the multiple estimates T̂k’s and D̂k’s, we consider the ensemble estimate of �
as follows

�̃ = T̃′D̃−1T̃ with T̃ = 1
M

M∑
k=1

T̂k, D̃ = 1
M

M∑
k=1

D̂k. (6)

The estimate in (6) is able to achieve good estimation accuracy since it reduces the vari-
ability in the estimates of T̃ and D̃. It is worth pointing out that we do not consider the
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True  Ω Estimate  Ω~ Estimate  Ω Estimate  Ω~δopt

Figure 1. Heat maps for the true precision matrix �, the estimates �̃, �̄ and the proposed estimate
�̃δopt . Darker colour indicates higher density; lighter colour indicates lower density.

averaged estimate �̄ based on the ensemble of �̂k as in Zheng et al. [25]

�̄ = 1
M

M∑
k=1

�̂k = 1
M

M∑
k=1

T̂′
kD̂

−1
k T̂k. (7)

The reason is that the estimation error of �̂k is already aggregated by the estimation error
of T̂k and D̂k. As shown in the simulations in Section 5, the estimate �̄ does not give good
performance on the estimation.

Although themethod (6) is able to produce an accurate estimate �̃, it fails to capture any
sparse structure of the true precision matrix, since T̃ in (6) does not contain the sparsity.
To illustrate this point, we generate 50 observations from normal distributionN (0,�−1),
where� is a 15 × 15 banded structure with main diagonal 1, the first sub-diagonal 0.5 and
the second sub-diagonal 0.3. The first three panels of Figure 1 display the heat maps for
the true precision matrix �, the estimates �̃ in (6) and �̄ in (7). Clearly, there are many
non-zeroes in the off-diagonal positions of estimates �̃ and �̄.

Therefore, to encourage the sparse structure in the estimate of T, we impose a hard
thresholding on each entry of T̃ in (6), which results in the sparsity of T̃, hence leading to a
sparse estimate of �. The resultant estimate of � not only enjoys the sparse structure, but
also requires no information on the variable order in the MCD before analysis.

The hard thresholding procedure is described as follows. let T̃ = (t̃ij)p×p be the ensem-
ble estimate obtained from method (6) and a hard thresholding is denoted by δ. Then
T̃δ = (t̃(δ)ij )p×p is defined as

t̃(δ)ij =
{
t̃ij, if |t̃ij| > δ,
0, if |t̃ij| ≤ δ,

(8)

then the sparse estimate �̃δ = T̃
′
δD̃

−1T̃δ .
A large value of thresholding will improve the performance of capturing sparse struc-

ture, but reduce the estimation accuracy. To choose an appropriate value for hard thresh-
olding, we suggest to use the Bayesian information criterion (BIC) which is to balance
the tradeoff between the fitting of the likelihood function and the sparsity of the estimate.
Specifically, for a given hard thresholding δl, l = 1, . . . ,H, the corresponding BIC(δl) [2]
is computed by

BIC(δl) = − log |�̃δl | + tr[�̃δlS] + log n
n

∑
i≤j

ẽij(l), (9)
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where �̃δl = (ω̃
(δl)
ij )p×p = T̃

′
δl
D̃−1T̃δl using the hard thresholding δl. ẽij(l) = 0 if ω̃

(δl)
ij =

0, and ẽij(l) = 1 otherwise. The optimal hard thresholding δopt is chosen such that its
corresponding BIC value is smallest. Then the proposed sparse precision estimate is

�̃δopt = T̃
′
δopt D̃

−1T̃δopt . (10)

Clearly, the method (6) can be viewed as a special case of the proposed estimate with hard
thresholding δ = 0. The fourth panel in Figure 1 shows the heat map of the proposed
estimate �̃δopt in (10). It has much less off-diagonal non-zeroes compared with �̃ and �̄.

The algorithm of proposed estimate of sparse precision matrix � based on the MCD is
summarized as follows:

Algorithm 1: Step 1: Input centred data.
Step 2: Randomly generate M permutation mappings πk as in (2), k = 1, 2, . . . ,M.
Step 3: Under each permutation πk, construct T̂πk from the estimates of regression

coefficients in (3). Obtain D̂πk from the corresponding residual variances in (4).
Step 4: Transform to the original order: T̂k = Pπk T̂πkP

′
πk

and D̂k = PπkD̂πkP
′
πk
.

Step 5: T̃ = 1
M

∑M
k=1 T̂k, D̃ = 1

M
∑M

k=1 D̂k as in (6).
Step 6: Obtain T̃δopt from (8) by applying δopt to T̃, where δopt is selected by (9).

Step 7: �̃ = T̃
′
δopt D̃

−1T̃δopt as in (10).

As seen in Algorithm 1, the proposedmethod attempts to balance between the accuracy
and sparsity of the estimate for�.Meanwhile, wewould like to point out thatAlgorithm1 is
also very flexible with respect to the objective in practice. If the practical objective does not
focus on the sparse structure of the precisionmatrix, one can set the hard thresholding δ =
0 for the estimation of �. As shown in Section 5, such an estimator has good performance
in certain setting of covariance structure.

Note that the proposed method needs to choose the number of permutations M. To
choose an appropriate number of permutationsM for efficient computation, we have tried
M = 10, 30, 50, 80, 100, 120 and 150 as the number of randomly selected permutations
from all the possible permutations. The performance results are quite comparable whenM
is larger than 30 or 50. In this paper, we choose M = 100 for the proposed method. The
sensitivity of the order of variables is also examined in the simulation.

4. Consistency property

In this section, the asymptotic property regarding the consistency of the proposed estima-
tor is established. We start by introducing some notation. Let �0 = (ω0

ij)p×p = T′
0D

−1
0 T0

be the true precision matrix and its MCD. The singular values of matrix A are denoted by
sv1(A) ≥ sv2(A) ≥ . . . ≥ svp(A), which are the squared root of the eigenvalues of matrix
AA′. In order to theoretically construct the asymptotic property for the estimator �̃δ =
T̃

′
δD̃

−1T̃δ , we assume that there exists a constant h such that

0 < 1/h < svp(�0) ≤ sv1(�0) < h < ∞. (11)

The similar assumption is also made in [5,10,31]. It guarantees the positive definiteness
property of �0. Now we present the following theory. The proof is given in the Appendix.
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Theorem 4.1: Assume data are from Normal distribution N(0,�−1
0 ). Under (11),

assume that p log(p) = o(n), and the tuning parameters λπ(j) in (3) satisfy
∑p

j=1 λπ(j) =
O(log(p)/n). The hard thresholding parameter δ satisfies δ = O(

√
((log(p))/(nM))), and

M = O(p). Then we have ‖�̃δ − �0‖F P→ 0.

Theorem 4.1 establishes the consistency property of the estimator �̃δ regarding Frobe-
nius norm under some appropriate conditions. Here the assumptionM = O(p) is to allow
the number of permutations of variable ordersM to vary with the number of variables p. A
larger value ofM is recommended for the proposed method as the number of variables p
increases. A numeric study to investigate the impact of the choice ofM on the performance
of the proposed method is conducted in the simulation section.

5. Simulation

In this section, we present a simulation study which evaluates the performance of the
proposedmethod in comparisonwith several existing approaches. Two versions of the pro-
posed method are considered, denoted by M1 and M2, respectively. The proposed method
M1 represents the estimate in (6) with hard thresholding δ = 0. The proposed method M2
stands for the estimate in (10) with hard thresholding chosen by the BIC criterion as in (9).
Among the comparison methods, The first one is the MCDmethod for estimating � with
the order chosen by BIC criterion [32], denoted as BIC. The second compared approach is
the Best Permutation Algorithm [27], denoted by BPA. It selects the order of variables such
that ||D||2F is minimized, where || · ||F denotes the Frobenius norm, and D is the diagonal
matrix in the MCD approach. The third method is the estimate �̄ in (7), denoted by AVE.
The last method for comparison is the Graphical Lasso [1–3], denoted as Glasso. In all the
Cholesky-based approaches, the Cholesky factor matrix T is constructed according to (3),
with the tuning parameter chosen by the cross validation.

Denote by �̂ = (ω̂ij)p×p an estimate for the covariance matrix � = (ωij)p×p. To mea-
sure the accuracy of a precision matrix estimate, we consider the Kullback-Leibler loss 	1,
the entropy loss 	2 and the quadratic loss 	3 (up to some scale) as follows,

	1 = 1
p

(tr[�−1�̂] − log |�−1�̂| − p),

	2 = 1
p

(tr[�̂
−1

�] − log |�̂−1
�| − p),

	3 = 1
p
[tr(�−1�̂ − I)]2.

We also use the mean absolute error and mean squared error given by

MAE = 1
p

p∑
i=1

p∑
j=1

|ω̂ij − ωij| and MSE = 1
p

p∑
i=1

p∑
j=1

(ω̂ij − ωij)
2.

In addition, to gauge the performance of the estimates in capturing the sparse structure, the
false selection loss (FSL) are used, which is the summation of false positive (FP) and false
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negative (FN). We say a FP occurs if a nonzero element in the true matrix is incorrectly
estimated as a zero. Similarly, a FN occurs if a zero element in the true matrix is incorrectly
identified as a nonzero. The FSL is computed in percentage as (FP+ FN) / p2. For each loss
function above, we report the averages of the performance measures over 50 replicates.

We consider the following six precision matrix (i.e. precision matrix) structures.
Model 1. �1 = MA(0.5, 0.3). The main diagonal elements are 1 with first sub-diagonal

elements 0.5 and second sub-diagonal elements 0.3.
Model 2. �2 is generated by randomly permuting rows and corresponding columns

of �1.

Model 3. �3 = (
CS(0.5) 0

0 I ), where CS(0.5) represents a 10 × 10 compound struc-

ture matrix with diagonal elements 1 and others 0.5. 0 indicates a matrix with all
elements 0.

Model 4.�4 = AR(0.5). The conditional covariance between any two random variables
Xi and Xj is fixed to be 0.5|i−j|, 1 ≤ i, j ≤ p.

Model 5. �−1
5 = diag(p, p−1, p−2, . . . , 1).

Model 6. �6 = B′H−1B, where H = 0.01 × I, and B = (−φt,s) with φt,t = 1, φt+1,t =
0.8, and φt,s = 0 otherwise.

Model 1 is a sparse banded structure.Model 2 permutates the rows and corresponding
columns of Model 1 randomly. Model 3 is a block compound structure on the upper left
corner. It is becoming more and more sparse as the dimension p increases. Model 4 is an
autoregressive structure that has homogeneous variances and correlations declining with
distance. This model is more dense than the other models. The structures ofModel 5 and
Model 6 are also used in Huang et al. (2006) [29]. For each model, we generate normally
distributed data with three settings of sample sizes and variable sizes: (1) n = 50, p = 30;
(2) n = 50, p = 50 and (3) n = 50, p = 100. Table 1 to Table 3 report the loss measures
of the estimates averaged over 50 replicates and their corresponding standard errors (in
parenthesis) for different approaches. For each model, the lowest averages regarding each
measure are shown in bold.

Table 1 reports the averages and corresponding standard errors (in parenthesis) of differ-
ent loss measures obtained from eachmethod when p = 30. From the results it can be seen
that, by addressing the order issue, the proposedmethodsM1 andM2 considerably outper-
form other approaches with respect to all the loss measures. Overall, the M1 performs the
best under	1,	3 andMSE criteria, followed byM2. TheM2produces theminimumMAE
in all the seven models. It also significantly dominates all the other approaches in terms of
FSL exceptModel 3, where the M2 is the second best and inferior to the Glasso. Neverthe-
less, the M2 substantially outperforms the Glasso in Model 3 regarding all the other loss
measures. Additionally, although the AVE gives the best performance for the loss function
	2, the M1 is much comparable. Particularly, from the perspective of models, the M2 gen-
erally gives the superior performance to the other methods in the sparseModel 5, and also
shows advantage in Model 6. Moreover, from the perspective of variation, the proposed
methodsM1 andM2 result in a much smaller variability of the estimates for all the models
in terms of 	1, 	3 and MSE. The AVE has comparable standard errors regarding 	2, and
the Glasso gives the smallest standard errors under MAE.

Compared with the proposed methods, the MCD approach based on the BIC order
selection (i.e. BIC) does not perform as well as M1 and M2, which implies that using a
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Table 1. The averages and standard errors (in parenthesis) of estimates for p = 30.

	1 	2 	3 MAE MSE FSL (%)

Model 1 M1 0.177 (0.004) 0.168 (0.003) 0.898 (0.099) 1.667 (0.015) 0.340 (0.005) 83.293 (0.066)
M2 0.278 (0.006) 0.246 (0.004) 2.932 (0.223) 1.397 (0.013) 0.460 (0.008) 7.640 (0.189)
BIC 0.390 (0.016) 0.244 (0.005) 9.411 (0.705) 3.692 (0.293) 1.784 (0.324) 71.489 (0.814)
BPA 0.274 (0.016) 0.198 (0.004) 5.201 (0.808) 2.347 (0.255) 0.880 (0.350) 54.151 (1.203)
AVE 0.256 (0.009) 0.158 (0.003) 6.483 (0.475) 2.289 (0.103) 0.527 (0.053) 83.764 (0.031)
Glasso 0.323 (0.008) 0.845 (0.035) 2.031 (0.132) 2.086 (0.011) 0.948 (0.017) 12.862 (0.563)

Model 2 M1 0.175 (0.003) 0.167 (0.002) 0.859 (0.069) 1.653 (0.010) 0.335 (0.004) 83.347 (0.044)
M2 0.283 (0.005) 0.250 (0.004) 3.004 (0.171) 1.391 (0.013) 0.463 (0.008) 7.502 (0.175)
BIC 0.371 (0.011) 0.239 (0.003) 8.443 (0.539) 3.539 (0.248) 1.654 (0.301) 71.320 (0.888)
BPA 0.271 (0.007) 0.201 (0.004) 4.723 (0.272) 2.319 (0.097) 0.645 (0.056) 55.391 (1.225)
AVE 0.248 (0.005) 0.157 (0.002) 6.072 (0.300) 2.235 (0.068) 0.490 (0.030) 83.804 (0.031)
Glasso 0.329 (0.006) 0.862 (0.026) 2.039 (0.098) 2.097 (0.007) 0.967 (0.011) 12.071 (0.247)

Model 3 M1 0.086 (0.002) 0.161 (0.004) 0.572 (0.056) 2.024 (0.015) 0.794 (0.009) 84.920 (0.125)
M2 0.081 (0.001) 0.215 (0.003) 0.604 (0.056) 1.766 (0.007) 0.848 (0.005) 10.209 (0.070)
BIC 0.230 (0.019) 0.156 (0.005) 3.939 (0.653) 4.326 (0.533) 3.099 (0.933) 56.898 (2.788)
BPA 0.144 (0.006) 0.235 (0.005) 1.388 (0.147) 2.492 (0.076) 1.074 (0.035) 35.267 (1.878)
AVE 0.111 (0.005) 0.116 (0.005) 1.738 (0.164) 2.323 (0.097) 0.752 (0.054) 86.013 (0.072)
Glasso 0.099 (0.002) 0.331 (0.005) 1.904 (0.076) 1.869 (0.004) 0.901 (0.003) 9.667 (0.109)

Model 4 M1 0.136 (0.002) 0.141 (0.002) 0.665 (0.063) 1.886 (0.011) 0.380 (0.004) 46.529 (0.068)
M2 0.171 (0.003) 0.189 (0.004) 1.253 (0.094) 1.764 (0.011) 0.478 (0.007) 44.382 (0.219)
BIC 0.301 (0.014) 0.202 (0.004) 5.925 (0.609) 3.341 (0.197) 1.409 (0.184) 45.649 (0.309)
BPA 0.210 (0.006) 0.174 (0.003) 2.838 (0.235) 2.294 (0.056) 0.582 (0.029) 44.818 (0.479)
AVE 0.184 (0.006) 0.133 (0.002) 3.683 (0.267) 2.149 (0.048) 0.429 (0.021) 46.671 (0.044)
Glasso 0.203 (0.003) 0.467 (0.012) 1.707 (0.072) 2.279 (0.007) 0.801 (0.008) 45.173 (0.168)

Model 5 M1 0.047 (0.002) 0.038 (0.001) 0.546 (0.066) 0.070 (0.003) 0.007 (0.001) 70.636 (0.755)
M2 0.033 (0.001) 0.027 (0.001) 0.481 (0.057) 0.436 (0.072) 0.006 (0.001) 3.920 (0.651)
BIC 0.093 (0.009) 0.061 (0.003) 1.337 (0.227) 0.097 (0.010) 0.015 (0.003) 27.422 (2.092)
BPA 0.082 (0.004) 0.057 (0.002) 0.992 (0.116) 0.129 (0.006) 0.014 (0.002) 21.680 (1.690)
AVE 0.066 (0.005) 0.047 (0.002) 1.186 (0.164) 0.096 (0.005) 0.009 (0.001) 79.827 (0.838)
Glasso 0.095 (0.002) 0.183 (0.005) 1.645 (0.079) 0.070 (0.000) 0.027 (0.000) 8.240 (0.344)

Model 6 M1 0.129 (0.002) 0.157 (0.003) 0.357 (0.048) 1.793 (0.012) 0.619 (0.011) 89.578 (0.046)
M2 0.230 (0.004) 0.188 (0.003) 0.404 (0.037) 1.366 (0.014) 0.579 (0.011) 10.071 (0.294)
BIC 0.261 (0.015) 0.163 (0.004) 5.583 (0.611) 3.572 (0.360) 2.798 (0.674) 58.284 (1.745)
BPA 0.171 (0.009) 0.110 (0.004) 2.663 (0.264) 2.167 (0.171) 0.974 (0.162) 42.089 (1.527)
AVE 0.162 (0.006) 0.101 (0.002) 3.744 (0.284) 2.203 (0.086) 0.698 (0.054) 89.920 (0.038)
Glasso 0.138 (0.002) 0.189 (0.005) 0.837 (0.087) 1.738 (0.016) 0.708 (0.025) 29.289 (0.555)

single variable order in the MCD approach may be not helpful to improve the estima-
tion accuracy, while the multiple orders would lead to a more accurate estimate. Also, the
inferior performance of the AVE to the proposed methods implies that the way of assem-
bling the available estimates obtained frommultiple orders is important, i.e. themethod (6)
with the ensemble estimates T̃ and D̃ performs better than the method (7) of the ensemble
estimate �̄.

Table 2 and Table 3 present the comparison results regarding the loss measures 	1, 	2,
	3, MAE, MSE and FSL for p = 50 and p = 100, respectively. Tables show the similar
conclusions as p = 30. The proposedmethods generally give superior performances to the
other approaches. As the number of variables p increases, the proposedmethods work even
more promising as expected. For example, theM2 performs better and better forModel 3 as
the number of variables p increases, since this model is becoming more and more sparse.
Compared with AVE, the proposed methods result in much smaller losses and standard
errors in terms of 	2 when p = 100. In addition, the M1 performs the best in the dense
Model 4 in all the settings of p, since the M1 is able to give an accurate estimate when the
true model is not sparse.
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Table 2. The averages and standard errors (in parenthesis) of estimates for p = 50.

	1 	2 	3 MAE MSE FSL (%)

Model 1 M1 0.218 (0.003) 0.198 (0.002) 2.780 (0.148) 1.894 (0.010) 0.392 (0.004) 89.043 (0.064)
M2 0.316 (0.004) 0.274 (0.004) 6.779 (0.259) 1.483 (0.010) 0.509 (0.006) 5.115 (0.097)
BIC 0.986 (0.101) 0.332 (0.006) 54.398 (6.024) 11.774 (1.775) 11.431 (2.665) 76.197 (0.827)
BPA 0.383 (0.012) 0.249 (0.004) 15.434 (0.987) 3.172 (0.169) 1.155 (0.190) 53.430 (0.970)
AVE 0.436 (0.017) 0.209 (0.003) 28.162 (1.925) 4.268 (0.272) 1.556 (0.246) 90.024 (0.024)
Glasso 0.363 (0.003) 1.023 (0.016) 4.090 (0.126) 2.170 (0.004) 1.037 (0.005) 7.232 (0.055)

Model 2 M1 0.217 (0.002) 0.202 (0.002) 2.502 (0.135) 1.882 (0.009) 0.404 (0.004) 88.944 (0.052)
M2 0.321 (0.003) 0.285 (0.003) 6.527 (0.261) 1.516 (0.009) 0.529 (0.005) 5.160 (0.087)
BIC 0.814 (0.112) 0.321 (0.005) 32.928 (8.454) 9.104 (2.227) 6.361 (3.415) 74.122 (0.943)
BPA 0.352 (0.012) 0.247 (0.004) 12.129 (0.903) 2.850 (0.173) 0.949 (0.165) 49.699 (1.079)
AVE 0.407 (0.018) 0.203 (0.003) 24.151 (1.766) 4.203 (0.379) 1.685 (0.400) 89.984 (0.029)
Glasso 0.360 (0.002) 0.998 (0.011) 3.896 (0.093) 2.164 (0.003) 1.031 (0.004) 7.181 (0.060)

Model 3 M1 0.075 (0.001) 0.134 (0.002) 1.146 (0.079) 1.538 (0.013) 0.563 (0.005) 88.010 (0.299)
M2 0.065 (0.001) 0.142 (0.002) 1.078 (0.075) 1.164 (0.005) 0.551 (0.004) 3.888 (0.032)
BIC 0.709 (0.284) 0.160 (0.005) 13.151 (3.098) 12.454 (5.710) 5.804 (1.822) 45.938 (2.656)
BPA 0.141 (0.006) 0.174 (0.003) 2.889 (0.253) 2.049 (0.063) 0.856 (0.031) 24.037 (1.070)
AVE 0.174 (0.024) 0.133 (0.003) 7.471 (1.964) 3.515 (0.563) 2.121 (0.808) 93.526 (0.102)
Glasso 0.083 (0.001) 0.230 (0.003) 3.490 (0.090) 1.240 (0.003) 0.577 (0.002) 3.904 (0.053)

Model 4 M1 0.161 (0.002) 0.170 (0.002) 1.698 (0.120) 2.143 (0.009) 0.448 (0.004) 64.654 (0.075)
M2 0.193 (0.002) 0.216 (0.003) 2.745 (0.157) 1.888 (0.008) 0.530 (0.005) 29.626 (0.079)
BIC 0.651 (0.104) 0.256 (0.005) 29.444 (5.522) 8.095 (1.927) 5.766 (1.464) 55.331 (0.592)
BPA 0.285 (0.017) 0.216 (0.003) 8.544 (1.462) 3.206 (0.387) 1.621 (0.849) 43.960 (0.553)
AVE 0.283 (0.012) 0.173 (0.002) 13.04 (1.058) 3.468 (0.212) 0.994 (0.157) 65.379 (0.033)
Glasso 0.233 (0.002) 0.581 (0.010) 3.520 (0.093) 2.400 (0.004) 0.882 (0.005) 30.557 (0.070)

Model 5 M1 0.047 (0.002) 0.038 (0.001) 1.035 (0.077) 0.049 (0.001) 0.003 (0.000) 46.182 (0.746)
M2 0.034 (0.001) 0.027 (0.001) 0.922 (0.071) 0.021 (0.001) 0.003 (0.000) 0.224 (0.038)
BIC 0.280 (0.076) 0.079 (0.004) 6.519 (1.542) 0.258 (0.094) 0.022 (0.010) 31.037 (2.411)
BPA 0.107 (0.009) 0.064 (0.003) 2.622 (0.389) 0.126 (0.016) 0.016 (0.007) 19.256 (1.214)
AVE 0.087 (0.006) 0.055 (0.002) 3.110 (0.255) 0.096 (0.008) 0.006 (0.001) 73.165 (1.283)
Glasso 0.109 (0.001) 0.239 (0.005) 2.736 (0.119) 0.053 (0.000) 0.020 (0.000) 7.973 (0.338)

Model 6 M1 0.148 (0.002) 0.163 (0.002) 0.253 (0.041) 1.882 (0.008) 0.626 (0.007) 92.797 (0.044)
M2 0.267 (0.004) 0.196 (0.002) 0.691 (0.081) 1.374 (0.009) 0.587 (0.007) 6.059 (0.152)
BIC 0.552 (0.163) 0.202 (0.004) 17.680 (1.523) 9.558 (4.628) 5.275 (1.026) 57.403 (1.252)
BPA 0.223 (0.008) 0.131 (0.003) 6.909 (0.478) 2.561 (0.116) 1.069 (0.084) 39.218 (1.120)
AVE 0.243 (0.012) 0.123 (0.002) 12.312 (0.978) 3.611 (0.373) 1.964 (0.563) 93.768 (0.029)
Glasso 0.196 (0.003) 0.306 (0.009) 2.832 (0.181) 2.085 (0.012) 1.094 (0.025) 21.902 (0.360)

Moreover, to investigate the impact of the choice of M on the performance of the pro-
posed methods, we compute six loss measures for different values of M = 10, 30, 50, 80,
100, 120 and 150. Figure 2 and 3 display the corresponding results obtained from the
proposed methods M1 and M2 for Model 2. The solid line, dashed line and dotted line
represent three situations where p = 30, 50 and 100, respectively. To clearly distinguish
three different lines for the loss measure FSL, here we present NFSL = FP + FN rather
than its percentage form. Overall, it is clear to see that almost all of the lines are signifi-
cantly decreasing in the range ofM = (10, 30), and are stable over other values ofM. The
dotted lines (p = 100) are slightly decreasing in the range ofM = (30, 50) for some criteria
since a relative large value ofM is needed for large p.

In a brief summary, the numerical results show that the proposed methods give a supe-
rior performance over some other conventional approaches. The M2 performs well when
the underlying precision matrix is sparse. It is able to catch the sparse structure of �. In
comparison, although the M1 does not provide a sparse estimate, it gives an accurate esti-
mate with respect to 	1 – 	3. Hence, the M1 method is suitable when the true � is not
sparse.
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Table 3. The averages and standard errors (in parenthesis) of estimates for p = 100.

	1 	2 	3 MAE MSE FSL (%)

Model 1 M1 0.275 (0.002) 0.248 (0.002) 9.296 (0.354) 2.180 (0.009) 0.484 (0.003) 92.118 (0.077)
M2 0.360 (0.003) 0.319 (0.002) 17.52 (0.474) 1.628 (0.005) 0.588 (0.003) 2.991 (0.034)
BIC 5.549 (0.618) 0.473 (0.007) 901.919 (148.717) 67.248 (7.801) 201.993 (59.170) 73.237 (0.668)
BPA 1.043 (0.200) 0.343 (0.004) 349.150 (162.716) 10.927 (2.649) 100.857 (57.985) 47.570 (0.994)
AVE 1.587 (0.070) 0.372 (0.006) 499.315 (37.701) 15.332 (0.699) 18.726 (2.345) 94.940 (0.009)
Glasso 0.392 (0.002) 1.171 (0.012) 9.690 (0.205) 2.222 (0.002) 1.086 (0.003) 3.750 (0.016)

Model 2 M1 0.271 (0.002) 0.250 (0.002) 8.470 (0.273) 2.180 (0.009) 0.487 (0.003) 92.128 (0.075)
M2 0.354 (0.002) 0.320 (0.002) 16.103 (0.372) 1.630 (0.005) 0.588 (0.004) 2.998 (0.029)
BIC 5.238 (0.610) 0.482 (0.007) 730.631 (82.704) 58.675 (6.936) 136.441 (35.581) 74.513 (0.642)
BPA 0.795 (0.107) 0.340 (0.005) 153.276 (51.777) 7.778 (1.569) 31.015 (16.681) 46.890 (1.020)
AVE 1.668 (0.073) 0.374 (0.007) 536.125 (39.379) 16.182 (0.702) 22.304 (2.673) 94.924 (0.010)
Glasso 0.389 (0.002) 1.157 (0.012) 9.672 (0.200) 2.219 (0.002) 1.083 (0.003) 3.732 (0.016)

Model 3 M1 0.071 (0.001) 0.093 (0.001) 3.194 (0.130) 1.274 (0.012) 0.3778 (0.004) 85.552 (0.443)
M2 0.058 (0.001) 0.089 (0.001) 2.938 (0.122) 0.739 (0.005) 0.344 (0.003) 1.162 (0.019)
BIC 1.559 (0.414) 0.162 (0.004) 158.478 (36.040) 24.432 (7.157) 83.644 (26.354) 40.689 (1.361)
BPA 0.266 (0.027) 0.150 (0.003) 21.652 (4.107) 3.545 (0.429) 4.181 (1.567) 22.407 (1.081)
AVE 0.976 (0.087) 0.201 (0.006) 223.731 (33.502) 16.309 (1.326) 35.368 (6.228) 97.729 (0.036)
Glasso 0.078 (0.001) 0.166 (0.002) 8.309 (0.151) 0.781 (0.002) 0.352 (0.002) 1.212 (0.021)

Model 4 M1 0.195 (0.002) 0.205 (0.001) 5.732 (0.270) 2.415 (0.009) 0.517 (0.003) 77.789 (0.155)
M2 0.224 (0.002) 0.247 (0.002) 8.074 (0.330) 2.006 (0.005) 0.584 (0.003) 16.170 (0.027)
BIC 2.949 (0.465) 0.352 (0.007) 303.160 (61.744) 37.093 (6.194) 67.431 (20.123) 57.449 (0.865)
BPA 0.449 (0.029) 0.276 (0.004) 38.051 (5.745) 4.646 (0.380) 3.652 (1.510) 38.676 (0.590)
AVE 1.105 (0.058) 0.301 (0.005) 261.304 (23.585) 12.519 (0.617) 12.556 (1.557) 81.760 (0.013)
Glasso 0.259 (0.002) 0.690 (0.007) 8.239 (0.148) 2.489 (0.003) 0.943 (0.003) 16.559 (0.018)

Model 5 M1 0.054 (0.002) 0.041 (0.001) 2.952 (0.183) 0.032 (0.001) 0.002 (0.000) 22.498 (0.454)
M2 0.040 (0.001) 0.031 (0.001) 2.655 (0.163) 0.014 (0.001) 0.002 (0.000) 1.216 (0.481)
BIC 2.065 (0.567) 0.121 (0.006) 211.015 (55.567) 0.983 (0.298) 1.077 (0.099) 31.034 (1.683)
BPA 0.230 (0.020) 0.088 (0.003) 16.510 (2.034) 0.147 (0.013) 0.011 (0.002) 18.975 (0.780)
AVE 0.779 (0.077) 0.147 (0.006) 159.517 (28.408) 0.504 (0.049) 0.182 (0.051) 82.719 (1.102)
Glasso 0.119 (0.001) 0.274 (0.002) 2.798 (0.116) 0.037 (0.000) 0.012 (0.000) 9.786 (0.172)

Model 6 M1 0.177 (0.002) 0.171 (0.001) 0.128 (0.020) 1.982 (0.007) 0.629 (0.006) 93.839 (0.073)
M2 0.301 (0.003) 0.203 (0.002) 2.879 (0.199) 1.386 (0.007) 0.593 (0.006) 3.242 (0.062)
BIC 0.847 (0.068) 0.261 (0.005) 90.849 (6.230) 10.432 (1.044) 19.070 (2.642) 52.967 (0.897)
BPA 0.397 (0.035) 0.162 (0.004) 40.191 (7.931) 4.760 (0.619) 6.980 (2.771) 34.222 (0.806)
AVE 0.378 (0.011) 0.161 (0.003) 52.509 (2.354) 4.454 (0.138) 1.921 (0.129) 96.417 (0.025)
Glasso 0.313 (0.004) 0.617 (0.012) 12.965 (0.368) 2.475 (0.007) 1.743 (0.019) 12.325 (0.172)

6. Application

In this section, we apply the proposed method of estimating � for the linear discriminant
analysis (LDA). To overcome the drawback of the classic LDA in high-dimensional data,
we consider a new classification rule by using the proposed sparse precision estimate. A
gene expression data set and hand movement data are used to evaluate the performance of
the proposed classification rule.

6.1. LDA via the proposed estimate of�

In the classification problem, LDA is one commonly used technique. Consider a classi-
fication problem with K classes. Each observation belongs to some class k ∈ 1, 2, . . . ,K.
Denote by Ck the class of training set observation xi. Let μ̂k be the p × 1 vector of the
sample mean of the training data in class k, and �̂LDA = (1/(n − K))

∑K
k=1

∑
i∈Ck

(xi −
μ̂k)(xi − μ̂k)

′ be the estimated within-class covariance matrix based on the training
data. Then LDA classification rule is: classify a test observation x to class k∗ if k∗ =
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Figure 2. Plot of six loss measures of the proposed M1 against the number of ordersM forModel 2

argmaxk ηk(x), where

ηk(x) = x′�̂
−1
LDAμ̂k − 1

2 μ̂
′
k�̂

−1
LDAμ̂k + logπk (12)

and πk is the frequency of class k in the training data set. This method works well if the
training sample size n is larger than the number of random variables p. However, when p is
close to n, Bickel and Levina (33) [33] showed that LDA is asymptotically as bad as random
guessing. Even worse, when n<p, the within-class covariance matrix �̂LDA is singular and
the classical LDA breaks down. There are different approaches developed to address these
problems in literature [34–38].

To overcome the singular issue, we suggest a classification rule using the proposed sparse
estimate instead of �̂

−1
LDA in (12). An accurate estimation of inverse within-class covariance

matrix is expected to lead to accurate classification performance. In the following subsec-
tions, two real classification data sets are used to evaluate the performance of the proposed
estimate, obtained respectively from M1 and M2, in comparison with other approaches,
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Figure 3. Plot of six loss measures of the proposed M2 against the number of ordersM forModel 2

including BIC, BPA, AVE and Glasso. Apart from these, the generalized LDA [35], C5.0
[39] and diagonal linear discriminant analysis [40] are also considered, denoted by GLDA,
C5 andDLDA. The GLDA replaces�−1

LDA in (12) with the generalized precisionmatrix. C5
builds decision trees from a set of training data, using the concept of entropy. On each iter-
ation of the algorithm, it iterates through every unused variable and calculates the entropy.
It then selects the variable which has the smallest entropy value. The DLDA is a modifica-
tion to LDA, where the off-diagonal elements of the pooled sample covariance matrix are
set to be zeroes.

6.2. Lymphoma data

The data set includes two classes. It contains expression values for 2647 genetic probes
and 77 samples, 58 of which are obtained from patients suffering from diffuse large B-cell
lymphoma, while the remaining 19 samples are derived from follicular lymphoma type.
Data are available online at http://ico2s.org/datasets/microarray.html. We randomly split

http://ico2s.org/datasets/microarray.html
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Table 4. Misclassification error of the proposed methods compared with other approaches for Lym-
phoma data.

Method M1 M2 BIC AVE BPA Glasso GLDA DLDA C5

Error 7 6 16 11 9 8 13 7 9

Figure 4. Boxplot of misclassification error comparison for proposed methods with other approaches
under the randomly splitting training and testing data from Lymphoma data.

the samples into two groups: training set of 35 samples and testing set of 42 samples. Then
the variable screening procedure is performed through two sample t-test. Specifically, for
each variable, t-test is conducted against the two classes of the training data such that vari-
ables with large values of test statistics are ranked as significant variables, and the top 50
significant variables are selected for data classification. The results ofmisclassification error
for each approach are summarized in Table 4. Overall, the proposed methods are better
than other approaches. The M2 is the best with the minimum misclassification error. The
M1 and M2 perform better than the BIC and AVE. Additionally, the AVE gives superior
performance to the BIC in terms of smaller misclassification error as expected. The BIC
and GLDA do not give the accurate classification.

Furthermore, we randomly partition 35 observations of the samples as a new training
data set and the remaining 42 observations as a new testing data set. Figure 4 shows the
boxplot of the misclassification errors for each method by repeating the above procedure
over 50 times based on the top 50 significant gene expressions. It is clear that the M1, M2
and DLDA are the best, followed by C5, Glasso and AVE, which further confirms that
an efficient way of organizing the available estimates will lead to a small misclassification
error. In this example, both the M2 and DLDA perform quite well due to the underlying
conditional independence between the gene variables. M2 appears to be better because
of its smaller misclassification error and narrower width. In addition, the AVE performs
better than BIC due to the superiority of the multiple orders over one order. The BIC, BPA
and GLDA are not as good as other approaches.
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Figure 5. Boxplot of misclassification error comparison for proposed methods with other approaches
under randomly selected 50 gene expressions from Lymphoma data.

Although DLDA shows comparable performance as M2 in the lymphoma example, we
will demonstrate its drawbacks in the following. The reason DLDA works well, we believe,
is that the contribution of every single variable of top 50 is relatively much more sig-
nificant than the contribution of their interactions. As a result, the underlying precision
matrix might be a diagonal matrix. To confirm our opinion, we assess the performance of
each method using lymphoma data set based on a new group of 50 variables, which are
randomly selected from all the 2647 gene expressions. Obviously, a single variable from
these randomly selected 50 variables would not play a role as great as the top 50 signif-
icant variables. Therefore, their interactions are supposed to make some contributions,
hence resulting in a sparse but not a diagonal precision matrix. In practice, we use the
same partitioned training and testing data sets used for Figure 4, and randomly select 50
gene expressions as variables. Figure 5 displays the misclassification errors of each method
from the above procedure. It is clear that the M2 performs much better than DLDA. The
M1 still gives a good performance due to its accurate estimate.

6.3. Handmovement data

To evaluate the performance of the proposed methods in multiple classification problems,
the second data set contains 15 classes of 24 observations each with each class referring to a
hand movement type. The hand movement is represented as a two dimensional curve per-
formed by the hand in a period of time, where each curve is characterized by 90 variables.
The data are available online at https://archive.ics.uci.edu/ml/datasets/Libra+Movement.
The data set is randomly split into the training set of 160 observations and testing set of 200
observations. Table 5 reports the misclassification errors for each approach. The proposed
M1 dominates all the other methods attributed to the accurate precision matrix estimate.
M2, especially DLDA, performs not well possibly due to the non-sparse structure of the
underlying precision matrix. BPA and Glasso are comparable with BIC and AVE. GLDA
does not provide a accurate classification.

https://archive.ics.uci.edu/ml/datasets/Libra{{$+$}}Movement
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Table 5. Misclassification error of the proposed methods compared with other approaches for Hand
Movement data.

Method M1 M2 BIC AVE BPA Glasso GLDA DLDA C5

Error 55 75 74 74 77 73 97 84 85

Figure 6. Boxplot of misclassification error comparison for proposed methods with other approaches
under the randomly splitting training and testing data from Hand Movement data.

Moreover, we randomly partition 160 observations as a new training data set and the
remaining 200 observations as a new testing data set. Figure 6 presents the boxplot of the
misclassification errors by repeating the above procedure over 50 times. The proposed
M1 outperforms the other approaches as it gives an accurate estimate. BIC, BPA, AVE
and Glasso are comparable with each other. The performances of M2, C5 and DLDA are
not as well as others. GLDA gives the highest misclassification error. This 15 classes data
example demonstrates that the proposed method works consistently well in the multiple
classification settings.

7. Discussion

In this paper, we have improved the Cholesky-based approach for sparse precision matrix
estimation by introducing an ensemble method. Based on the modified Cholesky decom-
position of a precision matrix, the proposed estimator is properly assembled from a set of
multiple estimates of T andD under different orders of random variables. Hard threshold-
ing technique is applied to the ensemble estimate of Cholesky factor matrix T to encourage
the sparse structure. The resulting estimator does not require the prior knowledge of the
order of variables. Although we employ the Lasso penalty in the regression (3) to solve
the coefficients, other regularization methods can be considered, such as Ridge penalty or
adaptive Lasso. The simulation studies show the superior performance of our proposed
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method in terms of loss measures and ability of capturing sparsity. The advantage of con-
sidering multiple orders over one single order is illustrated by comparison of the proposed
method with the BIC and BPA approaches.

Finally, we would like to remark that sometimes real data may include abnormal obser-
vations. Hence, robustness is a very important property we need to consider when propos-
ing an estimator. Compared to the method (6), alternatively, we consider the ensemble
estimate by the element-wise median of T̂ and D̂ instead of taking average

�̂ = T̂′D̂−1T̂ with T̂ = med(T̂k), D̂ = med(D̂k).

This estimator is supposed to be more robust than the proposed method. It is also able to
provide a sparse estimate for the precision matrix without a natural variable order, and is
applicable in high dimensions. We will further investigate the robustness of this estimator
in the future work.
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Appendix

LemmaA.1: Assume a positive definite matrix� has correspondingmodified Cholesky decomposition

� = T′D−1T,

and there exist c1 and c2 such that 0 < c1 < svp(�) ≤ sv1(�) < c2 < ∞, then there exist constants
g1 and g2 such that

g1 < svp(T) ≤ sv1(T) < g2
g1 < svp(D) ≤ sv1(D) < g2.

Also we have
‖T‖2F = O(1) and ‖D‖2F = O(1).

The proof of Lemma A.1 can be found in Jiang [41], thus is omitted here.
Let �0π = T′

0πD
−1
0π T0π be the MCD for the true precision matrix under a variable order π . Let

Zπk = {(j, k) : k < j, t(πk)
0jk �= 0} be the collection of nonzero elements in the lower triangular part of

matrix T0πk . Denote by s the maximum of the cardinality of Zπk for k = 1, 2, . . . ,M. Then we have
the following Lemma.

LemmaA.2: Assume data are fromNormal distribution N(0,�−1
0 ). Under (11), assume that the tun-

ing parameters λπ(j) in (3) satisfy
∑p

j=1 λπ(j) = O(log(p)/n). Then T̂π and D̂π have the following
consistent properties

‖T̂π − T0π‖F = Op(
√
s log(p)/n),

‖D̂π − D0π‖F = Op(
√
p log(p)/n).

Proof of Lemma A.2: The proof is the same as that of Theorem 3.1 in Jiang [41] except two key
differences. The first one is Jiang [41] considered data that are from different groups but share the
similar structure. �(j) was used to indicate the covariance matrix for the jth group, j = 1, 2, . . . , J.
Hence, the proof of Lemma A.2 is a special case with the number of data group J = 1. The second
difference between Theorem 3.1 in [41] and our Lemma A.2 is the penalty term. Jiang (2012) [41]
had two penalties λ and β satisfying λ + β = O(log(p)/n). While in our proposed method, such
assumption on the penalty terms is replaced with

∑p
j=1 λπ(j) = O(log(p)/n). Hence, we omit the

detailed proof here. �
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Proof of Theorem 4.1: Let �T = T̃δ − T0 and �D = D̃ − D0, then ‖�̃δ − �0‖2F can be decom-
posed as follows,

‖�̃δ − �0‖2F = ‖T̃′
δD̃

−1T̃δ − T′
0D

−1
0 T0‖2F

= ‖(�′
T + T′

0)D̃
−1

(�T + T0) − T′
0D

−1
0 T0‖2F

≤ ‖�′
TD̃

−1T0‖2F + ‖T′
0D̃

−1
�T‖2F + ‖�′

TD̃
−1

�T‖2F + ‖T′
0(D̃

−1 − D−1
0 )T0‖2F .

Next, we bound these four terms separately. From (11) and Lemma A.1, we have ‖T0‖2F = O(1) and
‖D0‖2F = O(1). Then ‖D̃‖2F = ‖D̃ − D0 + D0‖2F ≤ ‖�D‖2F + ‖D0‖2F = Op(1). Similarly we have
‖D̃−1‖2F = Op(1). It is because that the single values of � are bounded, then the single values of
�−1 are bounded. This together with Lemma A.1 results in ‖D−1

0 ‖2F = Op(1), and hence ‖D̃−1‖2F =
Op(1). Hence, it is easy to obtain

‖�′
TD̃

−1T0‖2F ≤ ‖�′
T‖2F‖D̃

−1‖2F‖T0‖2F = Op(‖�T‖2F).

Apply the same principle, we have ‖T′
0D̃

−1
�T‖2F = Op(‖�T‖2F). For the third term,

‖�′
TD̃

−1
�T‖2F ≤ ‖�′

T‖2F‖D̃
−1‖2F‖�T‖2F = op(‖�T‖2F).

For the fourth term,

‖T′
0(D̃

−1 − D−1
0 )T0‖2F ≤ ‖T′

0‖2F‖D̃
−1 − D−1

0 ‖2F‖T0‖2F = Op(‖D̃ − D0‖2F).
Therefore, we have

‖�̃δ − �0‖2F = Op(‖T̃δ − T0‖2F) + Op(‖D̃ − D0‖2F). (A1)

Next, we derive Op(‖T̃δ − T0‖2F) and Op(‖D̃ − D0‖2F). For any variable order πk, k = 1, 2, . . . ,M,
we have

‖T̂k − T0‖2F = ‖Pπk T̂πkP
′
πk

− PπkT0πkP
′
πk

‖2F
= ‖Pπk(T̂πk − T0πk)P

′
πk

‖2F
= ‖T̂πk − T0πk‖2F
= Op(s log(p)/n),

where the third equality results from the fact that the Frobenius norm of a matrix is invariant on the
permutation matrix, and the fourth equality is provided by Lemma A.2. This leads to the consistent
property of T̃ = (1/M)

∑M
k=1 T̂k in (6) as follows,

‖T̃ − T0‖2F =
∥∥∥∥∥ 1
M

M∑
k=1

T̂k − T0

∥∥∥∥∥
2

F

= 1
M2

∥∥∥∥∥
M∑
k=1

T̂k − MT0

∥∥∥∥∥
2

F

≤ 1
M2

M∑
k=1

∥∥∥T̂k − T0

∥∥∥2
F

= Op

(
s log(p)
nM

)
.
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Similarly, we can establish

‖D̃ − D0‖2F = Op

(
p log(p)
nM

)
= Op

(
log(p)
n

)
. (A2)

From the property of Frobenius norm and consistency of T̃, we have

‖T̃δ − T0‖2F ≤ ‖T̃δ − T̃‖2F + ‖T̃ − T0‖2F
≤ δ2p2 + Op

(
s log(p)
nM

)
= Op

(
(s + p2) log(p)

nM

)
= Op

(
p log(p)

n

)
, (A3)

where the fourth equality is given by s ≤ p2. Therefore, from (A1), together with the consistent
properties of D̃ and T̃δ in (A2) and (A3), it is easy to obtain

‖�̃δ − �0‖2F = Op(‖T̃δ − T0‖2F) + Op(‖D̃ − D0‖2F)

= Op

(
p log(p)

n

)
+ Op

(
log(p)
n

)
= Op

(
p log(p)

n

)
P→ 0.

�
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