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Abstract: Estimation of a large sparse covariance matrix is of great importance for statistical analysis,
especially in high-dimensional settings. The traditional approach such as the sample covariance matrix
performs poorly due to the high dimensionality. The modified Cholesky decomposition (MCD) is a
commonly used method for sparse covariance matrix estimation. However, the MCD method relies on the
order of variables, which often is not available or cannot be pre-determined in practice. In this work, we
solve this order issue by obtaining a set of covariance matrix estimates based on assuming different orders
of variables used in the MCD. Then we consider an ensemble estimator as the “centre” of such a set of
covariance matrix estimates with respect to the Frobenius norm. Our proposed method not only ensures
that the estimator is positive definite, but also captures the underlying sparse structure of the covariance
matrix. Under some regularity conditions, we establish both algorithmic and asymptotic convergence of the
proposed method. Its merits are illustrated via simulation studies and a practical example using data from a
prostate cancer study. The Canadian Journal of Statistics 00: 000–000; 2020 © 2020 Statistical Society of
Canada
Résumé: L’estimation de grandes matrices de covariance éparses revêt une grande importance pour
l’analyse statistique, notamment en haute dimension. Les estimés traditionnels tels que la matrice de
covariance empirique offrent de piètres performances en haute dimension. La décomposition de Cholesky
modifiée (DCM) est couramment utilisée pour l’estimation de matrices de covariances éparses. Elle dépend
toutefois de l’ordre des variables qui est souvent indisponible ou inconnu d’avance en pratique. Les
auteurs résolvent ce problème d’ordre en obtenant un ensemble d’estimés de la DCM avec des matrices
de covariance dont les entrées sont ordonnées selon différents arrangements. Ils considèrent un estimateur
ensembliste correspondant au centre selon la norme de Frobenius d’un tel ensemble d’estimés générés par
des agencements différents des variables. Leur méthode garantit un estimateur positif défini en plus de
capturer la structure éparse sous-jacente de la matrice de covariance. Les auteurs établissent la convergence
algorithmique et asymptotique de la méthode proposée sous des conditions de régularité. Ils illustrent ses
mérites par des études de simulation et l’analyse d’un exemple pratique avec les données d’une étude sur
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1. INTRODUCTION

Estimation of a large covariance matrix from high-dimensional data is an important and
challenging problem in multivariate data analysis. For example, dimension reduction using
principal component analysis usually relies on accurate estimation of covariance matrix. In the
context of graphical models, the estimate of a covariance matrix or its inverse is often used to
infer the network structure of the graph. However, conventional covariance estimation is known
to perform poorly due to the dimensionality of the estimation problem when the number of
variables is close to or larger than the sample size (Johnstone, 2001). To overcome this curse of
dimensionality, various methods proposed in literature often assume certain patterns of sparsity
in the covariance matrices.

In this work we focus on the problem of estimating a sparse covariance matrix for
high-dimensional data. Early work on covariance estimation includes shrinking eigenvalues of
the sample covariance matrix (Dey & Srinivasan, 1985; Haff, 1991), a linear combination of
the sample covariance matrix and a proper diagonal matrix (Ledoit & Wolf, 2004), improving
the estimation using the matrix condition number (Aubry et al., 2012; Won et al., 2013),
and regularizing the eigenvectors of the matrix logarithm (Deng & Tsui, 2013; Yu, Wang &
Zhu, 2017). However, the above-mentioned methods do not exploit the sparse structure of the
covariance matrix. A sparse covariance estimate can be useful in subsequent inference, such
as inferring the correlation pattern among the variables. Bickel & Levina (2009) proposed to
threshold the small entries of the sample covariance matrix to zeroes and studied the theoretical
behaviour of their method when the number of variables is large. Rothman, Levina & Zhu (2009)
suggested thresholding the sample covariance matrix with more general thresholding functions.
Wagaman & Levina (2009) introduced a method of sparse estimation for a covariance matrix
with banded structure based on the correlations between variables using the Isomap. Cai &
Yuan (2012) suggested estimating a covariance matrix using block thresholding. Their estimator
is constructed by dividing the sample covariance matrix into blocks and then simultaneously
estimating the entries in a block using thresholding. However, the threshold-based estimator
is not guaranteed to be positive definite. To make the resulting estimate both sparse and
positive definite simultaneously, Bien & Tibshirani (2011) proposed using a penalized likelihood
method with a Lasso penalty (Tibshirani, 1996) on the entries in the covariance matrix. Their
idea is similar to the graphical Lasso for inverse covariance matrix estimation found in the
literature (Yuan & Lin, 2007; Friedman, Hastie & Tibshirani, 2008; Rocha, Zhao & Yu, 2008;
Rothman et al., 2008; Yuan, 2008, 2010; Deng & Yuan, 2009), but the computation is much
more complicated due to the non-convexity of the objective function. Xue, Ma & Zou (2012)
developed a sparse covariance matrix estimator for high-dimensional data based on a convex
objective function with positive definite constraint and L1 penalty. They also derived a fast
algorithm to solve the constraint optimization problem. Additional research on the problem of
estimating a high-dimensional covariance matrix can be found in Fan, Liao & Mincheva (2013),
Liu, Wang & Zhao (2014), Xiao et al. (2016), Cai, Ren & Zhou (2016), Huang, Farewell &
Pan (2017) and Kang, Xie & Wang (2020). A comprehensive review of the development of
covariance matrix estimation can be found in Pourahmadi (2013) and Fan, Liao & Liu (2016).

Another direction of sparse covariance estimation is to take advantage of matrix decom-
position. One popular and effective tool is the modified Cholesky decomposition (MCD)
(Pourahmadi, 1999; Wu & Pourahmadi, 2003; Pourahmadi, Daniels & Park, 2007; Rothman,
Levina & Zhu, 2009; Dellaportas & Pourahmadi, 2012; Xue, Ma & Zou, 2012; Rajaratnam &
Salzman, 2013). This method assumes that the variables have a natural order which enables
them to be sequentially orthogonalized to re-parameterize the covariance matrix. By imposing
a certain sparse pattern on the Cholesky factor, we obtain the sparse structure in the estimated
covariance matrix. For example, Huang et al. (2006) considered imposing an L1 (Lasso) penalty
on the entries in the Cholesky factor. Rothman, Levina & Zhu (2010) suggested using a banded
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estimator of the Cholesky factor, which can be obtained by regressing each variable on only
its closest k predecessors. However, the MCD-based approach for estimating a covariance
matrix depends on the order of the variables, and such a pre-specification may not always be
appropriate. A natural order of variables is often not available or cannot be pre-determined in
many applications such as those involving gene expression or stock market pricing data.

In this article, we adopt the MCD approach for estimating a large covariance matrix, but
resolve the drawback of order dependency in this method using the permutation idea suggested
by Zheng et al. (2017). By considering a set of covariance estimates under different orders of
variables in the MCD, Zheng et al. (2017) introduced an order-averaged estimator for a large
covariance matrix which is positive definite. However, their approach cannot ensure that the
resulting estimate is sparse. In addition, Zheng et al. (2017) did not provide any theoretical
results. To overcome these drawbacks, we address the order issue and ensure that the resulting
estimate is suitably sparse. We also show that the estimator of Zheng et al. (2017) represents
a special case of our proposed estimator when the penalty tuning parameter in the objective
function is set equal to zero. It is worth remarking that it is not straightforward to simultaneously
address both the order issue and the sparsity of the covariance matrix within the framework of
MCD. To achieve these two goals we first obtain a collection of estimates of a covariance matrix
from different orders of variables using the permutation idea. With such estimates, our proposed
estimator is obtained as the “centre” of this collection under the Frobenius norm through an L1
penalized objective function, where the L1 regularization is imposed to achieve the sparsity of
the estimate. We also develop an efficient algorithm that makes the computation of our estimator
attractive. Furthermore, under certain regularity conditions we establish the consistency of our
proposed estimator with respect to the Frobenius norm.

The remainder of this article is organized as follows. Section 2 briefly reviews the MCD
method of estimating a covariance matrix. Section 3 introduces our proposed method for
addressing the order issue. We also outline an efficient algorithm to solve the objective function.
In Section 4, we identify the theoretical properties of our proposed method of estimation. A
simulation study and a practical example are reported in Sections 5 and 6, respectively. Some
summary comments are provided in Section 7.

2. A REVIEW OF MCD

Suppose that X = (X1,… ,Xp)′ is a p-dimensional random vector with mean 0 and covariance
matrix 𝚺. Let x1,… , xn be n independent and identically distributed observations following
 (0,𝚺). Pourahmadi (1999) proposed the MCD to estimate a covariance matrix, which is
statistically meaningful and guarantees the estimate is positive definite. This decomposition arises
from regressing each variable X𝑗 on its predecessors X1,… ,X𝑗−1 for 2 ≤ 𝑗 ≤ p. Specifically,
consider fitting a series of regression models

X𝑗 =
𝑗−1∑
k=1

(−t𝑗k)Xk + 𝜖𝑗 = X̂𝑗 + 𝜖𝑗 ,

where 𝜖𝑗 is the error term for the 𝑗th regression model with E𝜖𝑗 = 0 and Var(𝜖𝑗) = d2
𝑗 . Let 𝜖1 = X1

and D = diag(d2
1 ,… , d2

p) be the diagonal covariance matrix of 𝝐 = (𝜖1,… , 𝜖p)′. Construct the
unit lower triangular matrix T = (t𝑗k)p×p with ones on its diagonal and regression coefficients
(t𝑗1,… , t𝑗,𝑗−1)′ as its 𝑗th row. It follows that

D = Var(𝝐) = Var(X − X̂) = Var(TX) = T𝚺T′,
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and thus

𝚺 = T−1DT′−1
. (1)

Consequently, the MCD method reduces the challenge of estimating a covariance matrix to the
task of fitting (p − 1) linear regressions, and is applicable in high-dimensional settings. However,
directly imposing a sparse structure on the Cholesky factor matrix T in Equation (1) does not
imply that 𝚺 must be sparse since Equation (1) involves an inverse of T and hence fails to ensure
that the resulting estimate of 𝚺 will be sparse, as required. Alternatively, one could consider
using a latent variable regression model based on the MCD. Writing X = L𝝐 would lead to

Var(X) = Var(L𝝐)

𝚺 = LDL′.

This decomposition can be interpreted as resulting from a new sequence of regressions, where
each variable X𝑗 is regressed on all the previous latent variables 𝜖1,… , 𝜖𝑗−1 rather than the X’s
themselves. This approach results in a sequence of regression models

X𝑗 = l
′

𝑗
𝝐 =

∑
k<𝑗

l𝑗k𝜖k + 𝜖𝑗 , 𝑗 = 2,… , p,

where l𝑗 = (l𝑗k) is the 𝑗th row of L. Here l𝑗𝑗 = 1 and l𝑗k = 0 for k > 𝑗.
With the data matrix 𝕏 = (x1,… , xn)′, define its 𝑗th column to be x(𝑗). Denote by e(𝑗) the

residuals of x(𝑗) for 𝑗 ≥ 2, and e(1) = x(1). Let ℤ(𝑗) = (e(1),… , e(𝑗−1)) be the matrix containing
the first (𝑗 − 1) residuals. Now the Lasso regularization (Tibshirani, 1996) can be used to induce
sparsity in L̂ (Huang et al., 2006; Rothman, Levina & Zhu, 2010; Chang & Tsay, 2010; Kang et
al., 2019), i.e.,

l̂𝑗 = arg min
l𝑗

‖x(𝑗) − ℤ(𝑗)l𝑗‖2
2 + 𝜂𝑗‖l𝑗‖1, 𝑗 = 2,… , p, (2)

where 𝜂𝑗 ≥ 0 is a tuning parameter and selected by cross-validation. The symbol ‖ ⋅ ‖1 stands
for the vector L1 norm. The variable e(𝑗) = x(𝑗) − ℤ(𝑗)l𝑗 is used to construct the residuals for the
last column of ℤ(𝑗+1). Then d2

𝑗 is estimated via

d̂2
𝑗
= V̂ar(ê(𝑗)) = V̂ar(x(𝑗) − ℤ(𝑗) l̂𝑗), (3)

the sample variance of e(𝑗), when constructing matrix D̂ = diag(d̂2
1 ,… , d̂2

p). As a result, �̂� = L̂D̂L̂′

will be a sparse covariance matrix estimate.

3. THE PROPOSED METHOD

Clearly, the estimate �̂� = L̂D̂L̂′ depends on the order of the variables X1,… ,Xp, which means that
different orders would lead to different estimates of 𝚺. To address this order-dependence issue,
we consider an order-averaged method of estimating 𝚺 by exploiting the idea of permutation.
Specifically, generate M different permutations of {1,… , p} as orders of the variables, denoted
by 𝜋k

,s, k = 1,… ,M. Let P𝜋k
be the corresponding permutation matrix. Under an order 𝜋k,

the corresponding estimate of 𝚺 is �̂�𝜋k
= L̂𝜋k

D̂𝜋k
L̂
′
𝜋k

, where L̂𝜋k
and D̂𝜋k

are calculated using
Equations (2) and (3). Then transforming back to the original variable order, we have

�̂�k = P𝜋k
�̂�𝜋k

P′
𝜋k
.
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To obtain a proper estimator for 𝚺, Zheng et al. (2017) proposed �̄� = 1
M

∑M
k=1 �̂�k; however,

the resulting estimator is clearly not sparse since any sparse structure in �̂�k is destroyed by
computing the average.

In order to simultaneously achieve a sparse estimate that is also positive definite, we propose
using

�̂� = arg min
𝚺⪰𝜈I

1
2

M∑
k=1

‖𝚺 − �̂�k‖2
F + �̃�|𝚺|1, (4)

where ‖ ⋅ ‖F denotes the Frobenius norm, �̃� ≥ 0 is a tuning parameter, and | ⋅ |1 is the L1 norm
for all the off-diagonal elements. Here 𝜈 is some positive arbitrarily small number. The constraint
𝚺 ⪰ 𝜈I is introduced to guarantee that �̂� is positive definite, whereas the penalty term ensures
that �̂� is suitably sparse. It is worth pointing out that, if �̃� = 0 in (4), the solution for �̂� would
be �̄� = 1

M

∑M
k=1 �̂�k, which is the estimator of Zheng et al. (2017). If we omit the constraint

𝚺 ⪰ 𝜈I in (4), the solution for �̂� would be the soft-threshold estimate of �̄�. The objective (4) is
similar to that adopted in Xue, Ma & Zou (2012), but their implications are different. Xue, Ma
& Zou (2012) used the sample covariance matrix S instead of �̂�k in (4). Hence, their estimate
can be considered to attain the minimum distance from S with respect to the Frobenius norm.
However, our proposed estimator minimizes the averaged distance to all �̂�k’s, while ensuring
that �̂� is both positive definite and sparse. Thus, �̂� can be interpreted as the “centre” of estimates
�̂�k’s with respect to the Frobenius norm. As evidenced in the simulation study we report in
Section 5, our proposed estimator can be more accurate than the estimator proposed by Xue,
Ma & Zou (2012).

For ease of theoretical deduction, we re-write Equation (4) as

�̂� = arg min
𝚺⪰𝜈I

1
2M

M∑
k=1

‖𝚺 − �̂�k‖2
F + 𝜆|𝚺|1, (5)

where 𝜆 = �̃�∕M. To efficiently solve the optimization problem (5), we employ the alternating
direction method of multipliers (ADMM) (Boyd et al., 2011), which has been widely used
in solving the convex optimization of L1 penalized covariance matrix estimation. Let us first
introduce a new variable 𝚽 and an equality constraint via

(�̂�, �̂�) = arg min
𝚺,𝚽

{
1

2M

M∑
k=1

‖𝚺 − �̂�k‖2
F + 𝜆|𝚺|1 ∶ 𝚺 = 𝚽,𝚽 ⪰ 𝜈I

}
. (6)

Note that the solution of (6) provides solution for the corresponding problem in (5). To solve the
former problem, we minimize its augmented Lagrangian function

L(𝚺,𝚽;𝚲) = 1
2M

M∑
k=1

‖𝚺 − �̂�k‖2
F + 𝜆|𝚺|1

− ⟨𝚲,𝚽 − 𝚺⟩ + 1
2𝜏

‖𝚽 − 𝚺‖2
F (7)

for some given penalty parameter 𝜏, where 𝚲 is the Lagrangian multiplier. The notation ⟨⋅, ⋅⟩
represents the matrix inner product ⟨A,B⟩ = ∑

i,𝑗 ai𝑗bi𝑗 , where ai𝑗 and bi𝑗 are the elements of
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matrices A and B. The ADMM iteratively solves the following steps sequentially for i = 0, 1, 2,…
till convergence

𝚽 step ∶ 𝚽i+1 = arg min
𝚽⪰𝜈I

L(𝚺i,𝚽;𝚲i) (8)

𝚺 step ∶ 𝚺i+1 = arg min
𝚺

L(𝚺,𝚽i+1;𝚲i) (9)

𝚲 step ∶ 𝚲i+1 = 𝚲i − 1
𝜏
(𝚽i+1 − 𝚺i+1). (10)

Assume the eigenvalue decomposition of a matrix A is
∑p

i=1 𝜆i𝝃
′
𝝃, and define (A)+ =∑p

i=1 max(𝜆i, 𝜈)𝝃
′

i𝝃i. Then we develop the closed form for the 𝚽 step in Equation (8) as

𝜕L(𝚺i,𝚽;𝚲i)
𝜕𝚽

= −𝚲i + 1
𝜏
(𝚽 − 𝚺i) ≜ 0

𝚽 = 𝚺i + 𝜏𝚲i

𝚽i+1 = (𝚺i + 𝜏𝚲i)+.

Next, define an element-wise soft threshold for each entry zi𝑗 in matrix Z as s(Z, 𝛿) =
{s(zi𝑗 , 𝛿)}1≤i,𝑗≤p with

s(zi𝑗 , 𝛿) = sign(zi𝑗)max(|zi𝑗| − 𝛿, 0)I{i≠𝑗} + zi𝑗I{i=𝑗}.

Then the solution of Equation (9) is

𝜕L(𝚺,𝚽i+1;𝚲i)
𝜕𝚺

= 1
M

M∑
k=1

(𝚺 − �̂�k) + 𝚲i + 1
𝜏
(𝚺 −𝚽i+1) + 𝜆sign∗(𝚺) ≜ 0

(𝜏 + 1)𝚺 = 𝜏( 1
M

M∑
k=1

�̂�k − 𝚲i) +𝚽i+1 − 𝜆𝜏sign∗(𝚺)

𝚺i+1 = {s(𝜏( 1
M

M∑
k=1

�̂�k − 𝚲i) +𝚽i+1, 𝜆𝜏)}∕(𝜏 + 1),

where sign∗(𝚺) means sign(𝚺) with the diagonal elements replaced by the 0 vector. Algorithm
1 summarizes the procedure we have outlined above to solve Equation (5) using the ADMM
technique.

Algorithm 1.

Step 1 : Input initial values 𝚺init, 𝚲init and 𝜏.
Step 2 : 𝚽i+1 = (𝚺i + 𝜏𝚲i)+.
Step 3 : 𝚺i+1 = {s(𝜏( 1

M

∑M
k=1 �̂�k − 𝚲i) +𝚽i+1, 𝜆𝜏)}∕(𝜏 + 1).

Step 4 : 𝚲i+1 = 𝚲i − 1
𝜏
(𝚽i+1 − 𝚺i+1).

Step 5 : Repeat Step 2–4 until the algorithm converges numerically.
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This algorithm converges quickly and produces the optimal solution arg min L(𝚺,𝚽;𝚲) in
Equation (7). In practice, the initial value 𝚺init is set equal to �̄� = 1

M

∑M
k=1 �̂�k. The initial value

𝚲init is set equal to the zero matrix, and 𝜏 = 2 as well as 𝜈 = 10−4. The optimal value of the
tuning parameter 𝜆 in Equation (7) is chosen based on the Bayesian information criterion (BIC)
(Yuan & Lin, 2007)

BIC(𝜆) = − log |�̂�−1
𝜆
| + tr

[
�̂�−1
𝜆

S
]
+

log n
n

∑
i≤𝑗

êi𝑗(𝜆),

where S is the sample covariance matrix, �̂�𝜆 = (�̂�(𝜆)
i𝑗 )p×p indicates the estimate of 𝚺 obtained

by applying Algorithm 1 with tuning parameter 𝜆. The quantities êi𝑗(𝜆) = 0 if �̂�
(𝜆)
i𝑗 = 0, and

êi𝑗(𝜆) = 1 otherwise.

4. THEORETICAL CONVERGENCE

In this section, Theorem 1 states that the sequence (𝚺i,𝚽i,𝚲i) generated by Algorithm 1 from
any initial value converges numerically to an optimal minimizer (�̂�+

, �̂�+
, �̂�+) of Equation (7),

where �̂�+
is the optimal dual variable. Theorem 2 demonstrates that our proposed estimator

is asymptotically consistent under certain regularity conditions. The details of the proofs of
Theorems 1 and 2 can be found in the Appendix. To facilitate the presentation of the proofs, we
first introduce some notation. Define a 2p by 2p matrix J as

J =
(
𝜏Ip×p 0

0 𝜏−1Ip×p

)
.

Let the notation ‖ ⋅ ‖2
J be ‖U‖2

J = ⟨U, JU⟩ and ⟨U,V⟩J = ⟨U, JV⟩. Let 𝚺0 = (𝜎0
i𝑗)p×p = L0D0L′

0
be the true covariance matrix for the observations 𝕏 = (xi𝑗)n×p, and define the number of
non-zero off-diagonal elements of 𝚺0 as s0. Denote the maximal true variance of 𝚺0 by 𝜎max.
Let Z𝜋k

= {(𝑗, k) ∶ k < 𝑗, l(𝜋k)
0𝑗k ≠ 0} be the collection of non-zero elements in the lower triangular

part of the matrix L0𝜋k
. Denote by s1 the maximum of the cardinality of Z𝜋k

for k = 1, 2,… ,M.
We now state the following lemmas, together with Theorems 1 and 2.

Lemma 1. Assume that (�̂�+
, �̂�+) is an optimal solution of Equation (6) and �̂�+

is the
corresponding optimal dual variable with the equality constraint 𝚺 = 𝚽. Then the sequence
(𝚺i,𝚽i,𝚲i) generated by Algorithm 1 satisfies

‖W+ − Wi‖2
J − ‖W+ − Wi+1‖2

J ≥ ‖Wi − Wi+1‖2
J ,

where W+ = (�̂�+
, �̂�+)′ and Wi = (𝚲i,𝚺i)′.

Theorem 1 (Algorithmic convergence). Suppose x1,… , xn are n independent and identically
distributed observations from  (0,𝚺). Then the sequence (𝚺i,𝚽i,𝚲i) generated by Algorithm 1
from any initial value converges numerically to an optimal minimizer of the objective function
(7).

Theorem 1 demonstrates the convergence of Algorithm 1. It automatically indicates that
the sequence 𝚺i, i = 1, 2,…, produced by Algorithm 1 converges to an optimal solution of the
objective (5). We prove Lemma 1 and Theorem 1 following the ideas of Xue, Ma & Zou (2012)
via the Karush–Kuhn–Tucker conditions (Karush, 1939; Kuhn & Tucker, 1951). The proofs are
outlined in the Appendix.
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In order to establish the asymptotic consistency of our proposed estimator, we assume that
there exists a constant 𝜃 > 1 such that the singular values of the true covariance matrix are
bounded, i.e.,

1∕𝜃 < svp(𝚺0) ≤ sv1(𝚺0) < 𝜃, (11)

where we use sv1(A), sv2(A),… , svp(A) to indicate the singular values of matrix A in decreasing
order. They are the square roots of the eigenvalues of matrix AA′. This same assumption was used
in Rothman et al. (2008), Lam & Fan (2009) and Guo et al. (2011), which guarantees the positive
definiteness and makes inverting the covariance matrix meaningful. The following lemma and
theorem establish that our proposed estimator is asymptotically consistent with respect to the
Frobenius norm.

Lemma 2. Let 𝚺0 = L0D0L
′

0 be the MCD of the true covariance matrix. If the singular values
of 𝚺0 are bounded, so that there exist constants 𝜃1 and 𝜃2 such that 0 < 𝜃1 < svp(𝚺0) ≤ sv1(𝚺0) <
𝜃2 < ∞, then there exist constants h1 and h2 such that

h1 < svp(L0) ≤ sv1(L0) < h2,

and

h1 < svp(D0) ≤ sv1(D0) < h2.

Lemma 3. Suppose x1,… , xn are n independent and identically distributed observations from
 (0,𝚺). Let 𝚺0𝜋k

= L0𝜋k
D0𝜋k

L
′

0𝜋k
be the MCD of the true covariance matrix resulting from an

order of variables 𝜋k. Under (11), assume that the tuning parameters 𝜂𝑗 in Equation (2) satisfy∑p
𝑗=1 𝜂𝑗 = O(

√
log(p)∕n) and (s1 + p) log(p) = o(n); then

‖L̂𝜋k
− L0𝜋k

‖F
P
→ 0 and ‖D̂𝜋k

− D0𝜋k
‖F

P
→ 0.

Lemma 3 demonstrates the asymptotical convergence of the Cholesky factor matrices L̂𝜋k

and D̂𝜋k
. Based on this result, we can derive the theoretical property of �̂�𝜋k

under variable order
𝜋k, which is then used to prove the following theorem.

Theorem 2 (Asymptotic convergence). Assume all the conditions in Lemma 3 hold, and
𝜆 = o((s0 + p)−1∕2). Under the condition that for all |t| ≤ 𝜌 and 1 ≤ i ≤ n, 1 ≤ 𝑗 ≤ p

E{exp(tx2
i𝑗)} ≤ K.

For any m > 0, set

𝜆 = c2
0

log p
n

+ c1

(
log p

n

)1∕2

,

where
c0 = 1

2
eK𝜌1∕2 + 𝜌−1∕2(m + 1)

and
c1 = 2K

(
𝜌−1 + 1

4
𝜌𝜎2

max

)
exp

(1
2
𝜌𝜎max

)
+ 2𝜌−1(m + 2).

Then ‖�̂�+ − 𝚺0‖F
P
→ 0.
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Theorem 2 demonstrates that our proposed estimator is asymptotically consistent with respect
to the Frobenius norm under certain regularity conditions. Together with Theorem 1, this property
implies that the estimate obtained from Algorithm 1 is consistent. We would like to remark
that the constraint 𝚺 ⪰ 𝜈I could increase the computational cost of iterations in Algorithm 1;
however, it guarantees that our proposed estimator is positive definite.

Without this constraint, the solution of the optimization problem (4) would become the
soft-threshold estimate of �̄�. Moreover, such a constraint helps to establish the convergence
of Algorithm 1 as well as the proposed estimator. For details, see the proof outlined in the
Appendix.

5. SIMULATION STUDY

In this section, we conduct a comprehensive simulation study to evaluate the performance of the
proposed method. We consider the following five covariance matrix structures:

Model 1. 𝚺1 = MA(0.5, 0.3), where MA stands for “moving average.” The diagonal elements
are 1 with the first sub-diagonal elements equal to 0.5 and the second sub-diagonal
elements equal to 0.3.

Model 2. 𝚺2 = AR(0.5), where AR stands for “autoregressive.” The conditional covariance
between any two random variables Xi and X𝑗 equals 0.5|i−𝑗|, 1 ≤ i, 𝑗 ≤ p.

Model 3. 𝚺3 is generated by randomly permuting the rows and corresponding columns of 𝚺1.
Model 4. 𝚺4 is generated by randomly permuting the rows and corresponding columns of 𝚺2.
Model 5. 𝚺5 = 𝚯 + 𝛼I, where the diagonal elements of 𝚯 are zeroes and 𝚯i𝑗 = 𝚯𝑗i = b ∗

Uni𝑓 (−1, 1) for i ≠ 𝑗, where b has a Bernoulli distribution and equals 1 with probability
0.15, or 0 otherwise. Each off-diagonal element of 𝚯 is generated independently. The
value of 𝛼 is gradually increased to ensure that 𝚺5 is positive definite.

Note that Models 1 and 2 represent a banded or nearly banded structure for the covariance
matrix, whereas the covariance matrices of Models 3 and 4 do not have structured sparsity
due to the random permutations. Model 5 is a more general sparse matrix with no particular
structure. Hence from the perspective of sparse pattern, Model 5 represents the most general
case and Models 1 and 2 correspond to the least general cases. For each case, we generate the
data independently from the normal distribution  (0,𝚺) with three settings of different sample
sizes and variable sizes: (1) n = 50, p = 30; (2) n = 50, p = 50 and (3) n = 50, p = 100. For the
implementation of the proposed method in this study, we choose to set M = 100 in the simulation.
We have also tried M = 10, 30, 50, 100 and 150 as the number of randomly selected permutations
from all p! possible permutations. The resulting performances appeared to be marginally better
when M is larger than 30. Please refer to Kang & Deng (2020) for a detailed discussion and
justification of the choice of M. In practice, we would suggest to choose a relatively large value
of M to ensure the accuracy of the estimate, provided the computational resources are available.
Otherwise, a moderate value of M is recommended to balance the accuracy and computation
efficiency for the proposed model.

The performance of the proposed estimator is examined in comparison with several other
approaches, which are divided into three classes. The first class is the sample covariance matrix
S that serves as the benchmark. The second class is composed of three methods that deal with
the variable order used in the MCD, including the MCD-based method with BIC order selection
(BIC) (Dellaportas & Pourahmadi, 2012), the best permutation algorithm (BPA) (Rajaratnam
& Salzman, 2013) and the proposed method (Proposed). The third class of competing methods
consists of five approaches, including Bien and Tibshirani’s estimate (BT) (Bien & Tibshirani,
2011), Bickel and Levina’s estimate (BL) (Bickel & Levina, 2009), Xue, Ma and Zou’s estimate
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(XMZ) (Xue, Ma & Zou, 2012), Wagaman and Levina’s Isoband estimate (IB) (Wagaman &
Levina, 2009) and Rothman et al.’s estimate (RLZ) (Rothman, Levina & Zhu, 2010).

To assess the accuracy of the covariance matrix estimates �̂� = (�̂�i𝑗)p×p obtained from each
approach, we use the F norm, entropy loss (EN), L1 norm and mean absolute error (MAE),
defined as

F =

√√√√ p∑
i=1

p∑
𝑗=1

(�̂�i𝑗 − 𝜎i𝑗)2,

EN = tr[𝚺−1�̂�] − log |𝚺−1�̂�| − p,

L1 norm = max
𝑗

∑
i

|�̂�i𝑗 − 𝜎i𝑗|,
MAE = 1

p

p∑
i=1

p∑
𝑗=1

|�̂�i𝑗 − 𝜎i𝑗|.
In addition, to gauge the performance concerning sparsity, we use the notion of false selection
loss (FSL), which is the summation of false positive (FP) and false negative (FN). Here we say a
FP occurs if a non-zero element in the true matrix is incorrectly estimated as a zero. Similarly, a
FN occurs if a zero element in the true matrix is incorrectly identified as a non-zero. The FSL is
computed in percentage as (FP + FN)/p2, expressed as a percentage value. For each loss function
mentioned above, Tables 1 and 2 and Tables A1–A3 in the Appendix report the average values
of the performance measures and their corresponding standard errors in the parentheses over 100
replicates. For each model, the two methods with lowest averages for each measure are shown
in bold. Dashed lines in the tables represent cases where the corresponding values could not be
determined due to singularity of the estimated matrix.

For a short summary of the numerical results, it shows that the proposed method generally
provides more reliable estimates of a large covariance matrix than other approaches in comparison.
It is able to accurately reflect the underlying sparse structure of the covariance matrix. Although
the IB method exhibits good estimation performance, it could not ensure that the resulting
estimate was positive definite. When the underlying covariance matrix is banded or tapered, the
proposed method is not as good as the RLZ. The reason for this result is that the RLZ method
targets a banded covariance matrix. When the underlying structure of covariance matrix is more
general without any specification, the proposed method still performs well. Furthermore, the
advantage of the proposed method is even more evident in the high-dimensional cases.

We first analyze the performance results and demonstrate the mechanism of several methods
from the perspective of covariance structures using F loss. Since the IB method assumes the
true matrix has banded structure after re-ordering the variables, this method exhibits good
performance for Models 1–4, since Models 1 and 2 are banded matrices and Models 3 and
4 also possess banded structure after certain permutations of the variables. However, the IB
method is inferior to the proposed method for Model 5, since this case represents a general sparse
covariance matrix with no particular banded structure, even if we permute the variable order. The
RLZ method performs well for Models 1 and 2 under F loss, since this method is designated to
estimate the banded or tapered matrices. But it is not suitable for Models 3, 4 and 5. In addition,
we observe that the BPA method yields relatively low F loss for Model 4. The reason is that
this method is good at recovering the variable order for the AR models. Therefore, although the
BPA, IB and RLZ methods all perform well for the banded or tapered matrices, they are inferior
to the proposed model when the true covariance is a general matrix with no sparse pattern.
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TABLE 1: The averages and standard errors of estimates for Model 1.

F EN L1 MAE FSL (%)

p = 30

S 4.43 (0.05) 12.42 (0.08) 5.21 (0.07) 3.51 (0.03) 83.96 (0.01)

BIC 3.25 (0.03) 7.22 (0.08) 2.96 (0.04) 1.76 (0.02) 52.32 (0.55)

BPA 2.98 (0.03) 6.02 (0.09) 2.74 (0.05) 1.55 (0.02) 46.53 (0.68)

BT 4.74 (0.01) 7.78 (0.03) 2.14 (0.01) 1.85 (0.00) 6.92 (0.10)

BL 3.32 (0.05) – 2.33 (0.05) 1.17 (0.02) 6.81 (0.14)

XMZ 3.35 (0.04) 10.61 (0.17) 1.88 (0.01) 1.25 (0.01) 7.13 (0.18)

IB 2.95 (0.05) – 2.22 (0.05) 1.14 (0.03) 8.86 (0.46)

RLZ 2.90 (0.02) 9.36 (0.07) 1.55 (0.01) 1.04 (0.01) 6.22 (0.00)

Proposed 3.26 (0.03) 7.10 (0.11) 1.92 (0.02) 1.22 (0.01) 6.75 (0.15)

p = 50

S 7.25 (0.05) – 8.26 (0.07) 5.75 (0.03) 90.19 (0.01)

BIC 4.51 (0.03) 15.77 (0.21) 3.85 (0.06) 1.98 (0.01) 43.30 (0.47)

BPA 4.30 (0.03) 12.98 (0.16) 3.62 (0.08) 1.84 (0.02) 41.49 (0.63)

BT 6.10 (0.07) 15.07 (0.28) 2.42 (0.02) 1.93 (0.02) 10.68 (0.46)

BL 4.67 (0.05) – 2.41 (0.05) 1.27 (0.01) 4.80 (0.06)

XMZ 4.64 (0.05) 20.45 (0.29) 1.98 (0.01) 1.36 (0.01) 5.13 (0.07)

IB 4.08 (0.05) – 2.52 (0.04) 1.21 (0.02) 6.05 (0.27)

RLZ 3.79 (0.02) 16.20 (0.07) 1.63 (0.01) 1.06 (0.00) 3.84 (0.00)

Proposed 4.58 (0.03) 13.68 (0.10) 2.02 (0.01) 1.35 (0.01) 4.36 (0.06)

p = 100

S 14.40 (0.06) – 16.15 (0.12) 11.43 (0.03) 95.01 (0.00)

BIC 6.87 (0.03) 42.56 (0.45) 5.26 (0.07) 2.24 (0.01) 32.75 (0.36)

BPA 6.74 (0.03) 35.68 (0.38) 5.29 (0.11) 2.20 (0.02) 33.60 (0.38)

BT 8.54 (0.13) 28.78 (0.33) 2.40 (0.03) 1.87 (0.02) 4.08 (0.33)

BL 7.19 (0.04) – 2.67 (0.06) 1.42 (0.01) 2.83 (0.02)

XMZ 14.39 (0.06) 364.15 (0.18) 16.14 (0.12) 11.42 (0.03) 94.96 (0.01)

IB 5.89 (0.05) – 2.80 (0.05) 1.23 (0.01) 2.71 (0.07)

RLZ 5.41 (0.02) 33.40 (0.12) 1.69 (0.01) 1.08 (0.00) 1.96 (0.00)

Proposed 7.06 (0.02) 31.28 (0.14) 2.12 (0.01) 1.49 (0.00) 2.38 (0.02)

Next, we provide some insights of the results through methods and other loss functions.
Tables 1 and 2 summarize the comparison results for Models 1 and 2, respectively. From the
perspective of competing methods, the sample covariance matrix S does not necessarily yield a
sparse estimate, and exhibits poor performance with respect to all the loss measures. The BIC
and BPA in the second class of approaches provide sparse covariance matrix estimates compared
with S, but their FSL are considerably larger than that of the proposed method. Moreover, our
proposed method is clearly superior to both BIC and BPA with respect to L1 and MAE for all
settings that we consider. Although the proposed method is comparable to the BIC and BPA
under EN criterion when p = 30, it performs slightly better when p = 50 and much better in the
case of p = 100.
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TABLE 2: The averages and standard errors of estimates for Model 2.

F EN L1 MAE FSL (%)

p = 30

S 4.39 (0.04) 12.58 (0.08) 5.10 (0.07) 3.49 (0.03) 46.66 (0.01)

BIC 3.35 (0.03) 5.35 (0.09) 2.94 (0.04) 1.91 (0.01) 43.47 (0.30)

BPA 3.16 (0.03) 4.60 (0.07) 2.82 (0.04) 1.78 (0.01) 42.53 (0.31)

BT 4.70 (0.01) 5.40 (0.03) 2.52 (0.01) 2.19 (0.00) 43.82 (0.08)

BL 3.43 (0.04) – 2.61 (0.04) 1.57 (0.01) 43.70 (0.20)

XMZ 3.48 (0.04) 5.82 (0.11) 2.27 (0.01) 1.64 (0.01) 42.24 (0.20)

IB 3.02 (0.04) – 2.61 (0.04) 1.56 (0.24) 41.88 (0.45)

RLZ 2.76 (0.02) 3.16 (0.03) 1.89 (0.01) 1.34 (0.01) 43.56 (0.00)

Proposed 3.47 (0.03) 4.09 (0.06) 2.30 (0.01) 1.66 (0.01) 41.82 (0.16)

p = 50

S 7.36 (0.05) – 8.54 (0.08) 5.84 (0.03) 65.59 (0.01)

BIC 4.57 (0.02) 11.08 (0.20) 3.93 (0.08) 2.18 (0.01) 42.28 (0.24)

BPA 4.38 (0.03) 9.17 (0.15) 3.70 (0.06) 2.08 (0.02) 41.73 (0.28)

BT 6.06 (0.05) 10.07 (0.18) 2.69 (0.02) 2.26 (0.01) 30.34 (0.13)

BL 4.73 (0.04) – 2.91 (0.05) 1.68 (0.01) 29.45 (0.07)

XMZ 4.73 (0.04) 11.26 (0.20) 2.36 (0.01) 1.76 (0.01) 28.85 (0.07)

IB 4.20 (0.05) – 2.92 (0.04) 1.64 (0.02) 27.99 (0.25)

RLZ 3.59 (0.01) 5.48 (0.04) 1.96 (0.01) 1.38 (0.00) 28.68 (0.00)

Proposed 4.70 (0.02) 7.22 (0.06) 2.40 (0.01) 1.77 (0.01) 28.60 (0.07)

p = 100

S 14.40 (0.07) – 16.04 (0.12) 11.43 (0.04) 81.86 (0.00)

BIC 6.92 (0.03) 29.70 (0.55) 5.32 (0.08) 2.47 (0.01) 33.77 (0.25)

BPA 6.78 (0.03) 23.65 (0.36) 5.16 (0.11) 2.44 (0.02) 34.41 (0.31)

BT 8.34 (0.13) 21.09 (0.36) 2.80 (0.03) 2.24 (0.02) 17.01 (0.23)

BL 7.18 (0.04) – 3.04 (0.05) 1.82 (0.01) 16.07 (0.02)

XMZ 14.39 (0.07) 369.27 (0.19) 16.03 (0.12) 11.42 (0.04) 81.83 (0.00)

IB 6.53 (0.05) – 3.25 (0.05) 1.64 (0.01) 15.22 (0.06)

RLZ 5.13 (0.02) 11.03 (0.07) 2.05 (0.02) 1.41 (0.00) 15.12 (0.00)

Proposed 7.11 (0.02) 16.29 (0.09) 2.49 (0.01) 1.90 (0.00) 15.63 (0.02)

In comparison to the BT method, our proposed approach is clearly superior in capturing the
sparse structure for both p = 50 and p = 100. Furthermore, the proposed method gives superior
performance to the BT with respect to all the other loss criteria. In comparison with the BL
method, the performance of our proposed method appears to be quite similar. It is well known that
the BL method is asymptotically optimal for sparse covariance matrix (Bickel & Levina, 2009).
However, the resulting estimate is not necessarily positive definite, which gives rise to problems
when computing the EN loss function. Compared with the XMZ approach, our proposed method
is superior or comparable with respect to all the loss measures both for p = 30 and 50. In the
high-dimensional case when p = 100, the proposed method performs much better than the XMZ

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2020 ESTIMATION OF LARGE SPARSE COVARIANCE MATRIX 13

FIGURE 1: Heatmaps of the absolute values of the estimated correlation matrices obtained from
the proposed method and other approaches for prostate cancer data. A darker shade indicates a

higher density, and a lighter shade a lower density.

approach. The IB method performs well regarding MAE and comparably to the proposed method
under FSL. But it has the singularity issue. Finally, as we have already remarked, when the true
covariance matrix is either banded or tapered, i.e., Models 1 and 2, the RLZ method outperforms
our proposed model.

Tables A1 and A2 in the Appendix present the comparison results for Models 3 and 4,
respectively. Different from Models 1 and 2, the covariance matrices under Models 3 and 4 are
unstructured. This implies that the RLZ does not have the advantage. Hence, it is clearly seen
that the proposed method performs much better than the RLZ approach, especially at capturing
the sparse structure and with respect to EN loss. Overall, the proposed method provides superior
performance to other approaches, with similar comparison results as described under Models 1
and 2. For the most general covariance matrix with no sparse pattern of Model 5, our proposed
method shows even better performance; see Table A3 in the Appendix. Finally, note that for the
cases when p = 100, our method usually exhibits very good performance.
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TABLE 3: Estimated percent misclassification errors for LDA obtained in the prostate cancer data.

Methods BIC BPA BT XMZ RLZ Proposed

ME 31.7 15.6 14.9 16.2 14.4 14.7

SE 1.58 1.06 1.01 0.97 1.04 0.95

6. APPLICATION

In this section, a real prostate cancer data set (Glaab et al., 2012) is used to evaluate the
performance of the proposed method in comparison with other approaches described in Section 5.
The data contain two classes with 50 normal samples and 52 prostate cancer samples, as well
as 2,135 gene expression values recorded for each sample. Data are available online at http://
ico2s.org/datasets/microarray.html. Because it includes a large number of variables, we adopt
a variable screening procedure using a two sample t-statistic to identify the 50 variables that
generate the largest observed values (Group 1), together with the corresponding 50 variables
that give rise to the smallest observed values (Group 2). The underlying intention is to identify
two groups of variables that would likely be somewhat mutually correlated within a group, but
otherwise rather weakly dependent (Rothman, Levina & Zhu, 2009; Xue, Ma & Zou, 2012).
Data are centred within each class and then used for the analysis. In this section, to make each
variable at the same scale, we focus on the correlation matrix rather than the covariance matrix.

Figure 1 shows the heatmaps of the absolute values of the estimated correlation matrices
obtained from each method. It can be seen that for this data set, the IB method appears to have
a leading performance for identifying the expected sparse pattern with clear blocks, followed
by the proposed method, the BT and XMZ approaches, which are comparable to capture the
sparse structure with two diagonal blocks. All the rest approaches either result in a much sparser
matrix as diagonal matrix (i.e., RLZ) or fail to identify the sparsity pattern (i.e., S, BIC, BPA and
BL). We also observe that the IB and BL estimators yield negative eigenvalues, while the other
estimators guarantee the positive definiteness.

Next, we further examine the performance of the proposed method by means of classification
of the linear discriminant analysis (LDA). The whole data set is randomly split into the training
set with 50 observations and the testing set with the rest 52 observations. For this analysis,
we screen all 2,135 gene expressions by the two sample t-test based on the training data to
select the top 100 significant variables. Then all the compared methods use the training data to
estimate the covariance matrix of these 100 variables. Finally, each estimate is plugged into the
LDA rule to classify the testing data. Table 3 displays the averaged misclassification errors in
percentage and corresponding standard errors by each method for the above split procedure of
50 times. We see that although the proposed method is slightly inferior to the RLZ, it performs
better than others in classification for this set of data. Since we order the 100 variables by their
significance from two sample t-test, the variables far apart in distance from each other may have
weak correlations. Hence, the RLZ performs well as the covariance matrix of such 100 variables
may be banded.

7. DISCUSSION

In this article, we consider a positive definite estimate of covariance matrix based on the MCD.
The proposed method resolves the order dependency issue in the MCD by exploiting the multiple
estimates obtained from different variable orders. The positive definite constraint and L1 penalty
are added to the objective function to guarantee the positive definiteness and encourage the sparse
structure of the estimated covariance matrix. An efficient algorithm is developed to solve the
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constraint optimization problem. The proposed estimator does not require any prior knowledge
of the variable order used in the MCD, and performs well in the high-dimensional cases.
Simulation studies and an application from a prostate cancer study demonstrate the superiority
of our proposed method of estimation with respect to existing alternative methods.

The idea of addressing variable ordination in this research may also be applied in other
estimation problems, such as the inverse covariance matrix estimate. However, one potential
issue in practice is that the variables involved may have relations among themselves, e.g., a causal
relationship, or perhaps spatial information. This could mean that some orders of variables are
meaningful and reflect such relations, while others may not. This issue can be clearly identified
in the performances of the BIC and BPA methods in our simulation study. Hence, ruling out the
meaningless orders and only using those that are meaningful would improve the performance of
the proposed method. How to implement this idea in practice needs further study.

APPENDIX

Proof of Lemma 1. Since (𝚺+,𝚽+,𝚲+) is the optimal minimizer of Equation (7), based on the
Karush—Kuhn–Tucker conditions we have

(
− �̂�+ + 1

M

M∑
k=1

�̂�k − �̂�+
)

𝑗l

∈ 𝜆𝜕|�̂�+
𝑗l|, 𝑗 = 1,… , p, l = 1,… , p, and 𝑗 ≠ l (A1)

(
− �̂�+ + 1

M

M∑
k=1

�̂�k

)
𝑗𝑗

+ �̂�+
𝑗𝑗
= 0, 𝑗 = 1,… , p (A2)

�̂�+ = �̂�+
(A3)

�̂�+ ⪰ 𝜈I, (A4)

and ⟨�̂�+
,𝚽 − �̂�+⟩ ≤ 0, ∀𝚽 ⪰ 𝜈I. (A5)

The expressions in Equations (A1) and (A2) result from the stationarity, and the results in (A3)
and (A4) are valid because of the primal feasibility. By the optimality conditions of the problem
(8) with respect to 𝚽, we obtain⟨

𝚲i − 1
𝜏
(𝚽i+1 − 𝚺i),𝚽 −𝚽i+1

⟩
≤ 0, ∀𝚽 ⪰ 𝜈I.

This, together with 𝚲 step (10), yields⟨
𝚲i+1 − 1

𝜏
(𝚺i+1 − 𝚺i),𝚽 −𝚽i+1

⟩
≤ 0, ∀𝚽 ⪰ 𝜈I. (A6)

Now by setting 𝚽 = 𝚽i+1 in Expression (A5) and 𝚽 = �̂�+
in Expression (A6), it follows that

⟨�̂�+
,𝚽i+1 − �̂�+⟩ ≤ 0, (A7)

and

⟨𝚲i+1 − 1
𝜏
(𝚺i+1 − 𝚺i), �̂�+ −𝚽i+1⟩ ≤ 0. (A8)
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Summing Expressions (A7) and (A8) gives⟨
(𝚲i+1 − �̂�+) − 1

𝜏
(𝚺i+1 − 𝚺i),𝚽i+1 − �̂�+

⟩
≥ 0. (A9)

On the other hand, by the optimality conditions of the problem (9) with respect to 𝚺, we have

0 ∈
[

1
M

M∑
k=1

(𝚺i+1 − �̂�k) + 𝚲i + 1
𝜏
(𝚺i+1 −𝚽i+1)

]
𝑗l

+ 𝜆𝜕|𝚺i+1
𝑗l |, 𝑗 ≠ l, (A10)

and [
1
M

M∑
k=1

(𝚺i+1 − �̂�k) + 𝚲i + 1
𝜏
(𝚺i+1 −𝚽i+1)

]
𝑗𝑗

= 0, 𝑗 = 1,… , p. (A11)

Plugging 𝚲 step (10) into Expressions (A10) and (A11) respectively results in

(
− 𝚺i+1 + 1

M

M∑
k=1

�̂�k−𝚲i+1
)

𝑗l

∈ 𝜆𝜕|𝚺i+1
𝑗l |,

for 𝑗 = 1,… , p, l = 1,… , p, and 𝑗 ≠ l, (A12)

and

(
𝚺i+1 − 1

M

M∑
k=1

�̂�k

)
𝑗𝑗

+ 𝚲i+1
𝑗𝑗

= 0, 𝑗 = 1,… , p. (A13)

Since 𝜕| ⋅ | is monotonically non-decreasing, for 𝑗 ≠ l, Expressions (A1) and (A12) yield

(
− 𝚺i+1 + 1

M

M∑
k=1

�̂�k − 𝚲i+1
)

𝑗l

≥

(
− �̂�+ + 1

M

M∑
k=1

�̂�k − �̂�+
)

𝑗l

when 𝚺i+1
𝑗l ≥ �̂�+

𝑗l, and(
− 𝚺i+1 + 1

M

M∑
k=1

�̂�k − 𝚲i+1
)

𝑗l

≤

(
− �̂�+ + 1

M

M∑
k=1

�̂�k − �̂�+
)

𝑗l

when 𝚺i+1
𝑗l < �̂�+

𝑗l. That is,

(�̂�+ − 𝚺i+1 + �̂�+ − 𝚲i+1)𝑗l

⎧⎪⎨⎪⎩
≥ 0, if 𝚺i+1

𝑗l ≥ �̂�+
𝑗l

≤ 0, if 𝚺i+1
𝑗l < �̂�+

𝑗l

.

As a result, we obtain

(𝚺i+1 − �̂�+)𝑗l(�̂�
+ − 𝚺i+1 + �̂�+ − 𝚲i+1)𝑗l ≥ 0

for 𝑗 = 1,… , p, l = 1,… , p, and 𝑗 ≠ l. (A14)
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In addition, subtracting Expression (A13) from Expression (A2) implies

(�̂�+ − 𝚺i+1 + �̂�+ − 𝚲i+1)𝑗𝑗 = 0, 𝑗 = 1,… , p. (A15)

Then combining Expressions (A14) and (A15) leads to

⟨𝚺i+1 − �̂�+
, �̂�+ − 𝚺i+1 + �̂�+ − 𝚲i+1⟩ ≥ 0. (A16)

By summing Expressions (A9) and (A16), we have

⟨𝚺i+1 − �̂�+
, �̂�+ − 𝚲i+1⟩ + ⟨𝚲i+1 − �̂�+

,𝚽i+1 − �̂�+⟩
−1
𝜏
⟨𝚺i+1 − �̂�i

,𝚽i+1 − �̂�+⟩ ≥ ‖𝚺i+1 − �̂�+‖2
F.

This result, together with Expression (A3) and 𝚽i+1 = 𝜏(𝚲i − 𝚲i+1) + 𝚺i+1 from the 𝚲 step (10),
gives

𝜏⟨𝚲i+1 − �̂�+
,𝚲i − 𝚲i+1⟩ + 1

𝜏
⟨𝚺i+1 − �̂�+

,𝚺i − 𝚺i+1⟩
≥ ‖𝚺i+1 − �̂�+‖2

F − ⟨𝚲i − 𝚲i+1,𝚺i − 𝚺i+1⟩. (A17)

By �̂�+ −𝚽i+1 = (�̂�+ −𝚽i) + (𝚽i −𝚽i+1) and �̂�+ − 𝚺i+1 = (�̂�+ − 𝚺i) + (𝚺i − 𝚺i+1), Expres-
sion (A17) is reduced to

𝜏⟨𝚲i − �̂�+
,𝚲i − 𝚲i+1⟩ + 1

𝜏
⟨𝚺i − �̂�+

,𝚺i − 𝚺i+1⟩ ≥ 𝜏‖𝚲i − 𝚲i+1‖2
F

+1
𝜏
‖𝚺i − 𝚺i+1‖2

F + ‖𝚺i+1 − �̂�+‖2
F − ⟨𝚲i − 𝚲i+1,𝚺i − 𝚺i+1⟩. (A18)

Using the notation W+ and Wi, the left-hand side of Expression (A18) becomes

⟨(𝚲i − �̂�+
,𝚺i − �̂�+)′, [𝜏(𝚲i − 𝚲i+1), 1

𝜏
(𝚺i − 𝚺i+1)]′⟩

= ⟨(𝚲i,𝚺i)′ − (�̂�+
, �̂�+)′, J[(𝚲i,𝚺i)′ − (�̂�i+1

, �̂�i+1)′]⟩
= ⟨Wi − W+, J(Wi − Wi+1)⟩
= ⟨Wi − W+,Wi − Wi+1⟩J .

The first two terms on the right-hand side of Expression (A18) becomes

𝜏‖𝚲i − 𝚲i+1‖2
F + 1

𝜏
‖𝚺i − 𝚺i+1‖2

F

= 𝜏⟨𝚲i − 𝚲i+1,𝚲i − 𝚲i+1⟩ + 1
𝜏
⟨𝚺i − 𝚺i+1,𝚺i − 𝚺i+1⟩

= ⟨(𝚲i − 𝚲i+1,𝚺i − 𝚺i+1)′, [𝜏(𝚲i − 𝚲i+1), 1
𝜏
(𝚺i − 𝚺i+1)]′⟩

= ⟨(𝚲i,𝚺i)′ − (𝚲i+1,𝚺i+1)′, J[(𝚲i,𝚺i)′ − (𝚲i+1,𝚺i+1)′]⟩
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= ⟨Wi − Wi+1, J(Wi − Wi+1)⟩
= ‖Wi − Wi+1‖2

J .

As a result, Expression (A18) can be rewritten as

⟨Wi − W+,Wi − Wi+1⟩J ≥ ‖Wi − Wi+1‖2
J + ‖𝚺i+1 − �̂�+‖2

F

− ⟨𝚲i − 𝚲i+1,𝚺i − 𝚺i+1⟩.
Note that

‖W+ − Wi+1‖2
J = ‖W+ − Wi‖2

J − 2⟨W+ − Wi,Wi+1 − Wi⟩J

+ ‖Wi − Wi+1‖2
J .

Therefore,

‖W+ − Wi‖2
J − ‖W+ − Wi+1‖2

J

= 2⟨W+ − Wi,Wi+1 − Wi⟩J − ‖Wi − Wi+1‖2
J

≥ 2‖Wi − Wi+1‖2
J + 2‖𝚺i+1 − �̂�+‖2

F − 2⟨𝚲i − 𝚲i+1,𝚺i − 𝚺i+1⟩
− ‖Wi − Wi+1‖2

J

= ‖Wi − Wi+1‖2
J + 2‖𝚺i+1 − �̂�+‖2

F + 2⟨𝚲i+1 − 𝚲i,𝚺i − 𝚺i+1⟩. (A19)

Hence, next we only need to show ⟨𝚲i+1 − 𝚲i,𝚺i − 𝚺i+1⟩ ≥ 0. Now replacing i instead of i + 1
in Expressions (A12) and (A13) yields

(
− 𝚺i + 1

M

M∑
k=1

�̂�k − 𝚲i
)

𝑗l
∈ 𝜆𝜕|𝚺i

𝑗l|, 𝑗 = 1,… , p, l = 1,… , p, and 𝑗 ≠ l, (A20)

and

(
𝚺i − 1

M

M∑
k=1

�̂�k

)
𝑗𝑗

+ 𝚲i
𝑗𝑗
= 0, 𝑗 = 1,… , p. (A21)

So Expressions (A12), (A13), (A20) and (A21), together with the monotonically non-decreasing
property of 𝜕| ⋅ |, imply that

⟨𝚺i − 𝚺i+1,𝚲i+1 − 𝚲i + 𝚺i+1 − 𝚺i⟩ ≥ 0, (A22)

from which it follows that

⟨𝚺i − 𝚺i+1,𝚲i+1 − 𝚲i⟩ ≥ ‖𝚺i+1 − 𝚺i‖2
F ≥ 0.

Hence the last two terms on the right-hand side of Expression (A19) are both non-negative,
which proves Lemma 1. ◼
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Proof of Theorem 1. According to Lemma 1, we have

(a) ‖Wi − Wi+1‖2
J → 0, as i → +∞;

(b) ‖W+ − Wi‖2
J is non-increasing and thus bounded.

Result (a) indicates that 𝚺i − 𝚺i+1 → 0 and 𝚲i − 𝚲i+1 → 0. Based on Expression (10), it is easy
to see that 𝚽i − 𝚺i → 0. On the other hand, the result in (b) indicates that Wi lies in a compact
region. Accordingly, there exists a subsequence Wi𝑗 of Wi such that Wi𝑗 → W∗ = (𝚲∗,𝚺∗). In
addition, we also have 𝚽i𝑗 → 𝚽∗ ≜ 𝚺∗. Therefore, lim

i→∞
(𝚺i,𝚽i,𝚲i) = (𝚺∗,𝚽∗,𝚲∗).

Next we show that (𝚺∗,𝚽∗,𝚲∗) is an optimal solution of Equation (4). By letting i → +∞ in
Expressions (A12), (A13) and (A6), we have

(
− 𝚺∗ + 1

M

M∑
k=1

�̂�k − 𝚲∗
)

𝑗l
∈ 𝜆𝜕|𝚺∗

𝑗l|, 𝑗 = 1,… , p, l = 1,… , p, and 𝑗 ≠ l, (A23)

(
𝚺∗ − 1

M

M∑
k=1

�̂�k

)
𝑗𝑗

+ 𝚲∗
𝑗𝑗
= 0, 𝑗 = 1,… , p, (A24)

and

⟨𝚲∗,𝚽 −𝚽∗⟩ ≤ 0, ∀𝚽 ⪰ 𝜈I. (A25)

Expressions (A23), (A24) and (A25), together with 𝚽∗ = 𝚺∗, imply that (𝚺∗,𝚽∗,𝚲∗) is an
optimal solution of arg min L(𝚺,𝚽;𝚲) in Equation (7). Hence, we prove that the sequence
produced by Algorithm 1 from any initial point converges numerically to an optimal minimizer
of Equation (7). ◼

Proof of Lemma 2. The proof is very similar to that of Lemma A.2 in Jiang (2012), so we omit
it here. ◼

Proof of Lemma 3. We prove this lemma using the idea found in Jiang (2012) by constructing
a function G(⋅, ⋅) via the likelihood function, then decomposing G(⋅, ⋅) into several parts and
bounding each part separately.

To simplify the notation, we prove the results using the original order without the symbol
𝜋k. Note that the estimates L̂ and D̂ are based on a sequence of regressions derived from
𝝐 = L−1X ∼  (0,D). The loss functions for the sequence of regressions can be written as the
negative log likelihood,

∑n
i=1[log |D| + tr(x′iL

′−1D−1L−1xi)], up to some constant. Consequently,
adding the penalty terms to the negative log likelihood leads to the objective function

n∑
i=1

[log |D| + tr(x′iL
′−1D−1L−1xi)] +

p∑
𝑗=1

𝜂𝑗
∑
k<𝑗

|l𝑗k|.
Denote

Q(D,L) = (log |D| + tr(L′−1D−1L−1S) +
p∑

𝑗=1

𝜂𝑗
∑
k<𝑗

|l𝑗k|.
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TABLE A1: The averages and standard errors of estimates for Model 3.

F EN L1 MAE FSL (%)

p = 30

S 4.39 (0.04) 12.46 (0.09) 5.08 (0.06) 3.48 (0.02) 83.96 (0.01)

BIC 3.28 (0.03) 7.28 (0.10) 2.93 (0.04) 1.76 (0.01) 52.71 (0.51)

BPA 3.34 (0.03) 5.87 (0.09) 2.60 (0.05) 1.52 (0.02) 46.59 (0.78)

BT 4.73 (0.01) 7.77 (0.04) 2.14 (0.01) 1.85 (0.00) 6.94 (0.10)

BL 3.28 (0.05) – 2.24 (0.05) 1.14 (0.01) 6.62 (0.15)

XMZ 3.33 (0.04) 10.53 (0.14) 1.87 (0.01) 1.23 (0.01) 7.00 (0.15)

IB 2.99 (0.04) – 2.24 (0.04) 1.26 (0.03) 9.37 (0.44)

RLZ 4.37 (0.01) 16.75 (0.11) 2.28 (0.02) 1.68 (0.00) 15.55 (0.00)

Proposed 3.22 (0.04) 6.96 (0.10) 1.89 (0.02) 1.21 (0.01) 6.84 (0.13)

p = 50

S 7.25 (0.05) – 8.28 (0.08) 5.75 (0.03) 90.19 (0.01)

BIC 4.91 (0.03) 16.00 (0.21) 3.85 (0.08) 1.98 (0.02) 43.07 (0.50)

BPA 4.89 (0.03) 12.92 (0.16) 3.55 (0.08) 1.83 (0.02) 40.90 (0.65)

BT 6.18 (0.06) 15.58 (0.26) 2.45 (0.02) 1.96 (0.01) 11.21 (0.47)

BL 4.65 (0.05) – 2.46 (0.05) 1.27 (0.01) 4.79 (0.06)

XMZ 4.63 (0.06) 20.40 (0.32) 1.97 (0.01) 1.36 (0.01) 5.18 (0.07)

IB 4.35 (0.04) – 2.53 (0.05) 1.25 (0.02) 6.48 (0.32)

RLZ 6.03 (0.01) 31.67 (0.17) 2.43 (0.01) 1.90 (0.00) 11.36 (0.00)

Proposed 4.60 (0.03) 13.74 (0.11) 2.00 (0.01) 1.36 (0.01) 4.39 (0.07)

p = 100

S 14.41 (0.05) – 16.18 (0.10) 11.43 (0.03) 95.01 (0.00)

BIC 7.59 (0.03) 42.88 (0.52) 5.36 (0.10) 2.26 (0.01) 32.65 (0.37)

BPA 7.14 (0.03) 35.37 (0.43) 5.12 (0.12) 2.19 (0.02) 33.30 (0.41)

BT 8.62 (0.14) 28.78 (0.37) 2.36 (0.02) 1.89 (0.02) 3.91 (0.30)

BL 7.18 (0.05) – 2.58 (0.05) 1.41 (0.01) 2.83 (0.02)

XMZ 14.40 (0.05) 364.17 (0.16) 16.17 (0.10) 11.42 (0.03) 94.96 (0.00)

IB 7.11 (0.04) – 2.80 (0.05) 1.21 (0.01) 2.61 (0.07)

RLZ 8.57 (0.01) 64.68 (0.22) 2.50 (0.01) 1.92 (0.00) 5.72 (0.00)

Proposed 7.06 (0.03) 31.33 (0.15) 2.10 (0.01) 1.49 (0.00) 2.39 (0.02)

Define G(ΔL,ΔD) = Q(D0 + ΔD,L0 + ΔL) − Q(D0,L0). Let U1
= {ΔL ∶ ‖ΔL‖2

F ≤ U2
1s1

log(p)∕n} and U2
= {ΔD ∶ ‖ΔD‖2

F ≤ U2
2p log(p)∕n}, where U1 and U2 are constants. We

will show that for each ΔL ∈ 𝜕U1
and ΔD ∈ 𝜕U2

, probability P(G(ΔL,ΔD) > 0) is tending to
1 as n → ∞ for sufficiently large U1 and U2, where 𝜕U1

and 𝜕U2
are the boundaries ofU1

and
U2

, respectively. Additionally, since G(ΔL,ΔD) = 0 when ΔL = 0 and ΔD = 0, the minimum
point of G(ΔL,ΔD) is achieved when ΔL ∈ U1

and ΔD ∈ U2
; that is ‖ΔL‖2

F = Op(s1 log(p)∕n)
and ‖ΔD‖2

F = Op(p log(p)∕n).
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TABLE A2: The averages and standard errors of estimates for Model 4.

F EN L1 MAE FSL (%)

p = 30

S 4.41 (0.05) 12.48 (0.08) 5.16 (0.07) 3.49 (0.03) 46.66 (0.01)

BIC 3.35 (0.03) 5.22 (0.08) 2.89 (0.04) 1.90 (0.01) 43.03 (0.33)

BPA 3.13 (0.03) 4.48 (0.08) 2.79 (0.04) 1.76 (0.01) 42.66 (0.35)

BT 4.69 (0.01) 5.36 (0.04) 2.50 (0.01) 2.19 (0.00) 43.79 (0.08)

BL 3.47 (0.05) – 2.69 (0.06) 1.58 (0.02) 43.86 (0.20)

XMZ 3.51 (0.03) 5.86 (0.09) 2.24 (0.01) 1.64 (0.01) 42.31 (0.19)

IB 3.08 (0.04) 7.91 (0.21) 2.62 (0.05) 1.57 (0.02) 41.28 (0.39)

RLZ 4.55 (0.01) 11.57 (0.10) 2.67 (0.02) 2.15 (0.00) 50.67 (0.00)

Proposed 3.48 (0.03) 4.06 (0.05) 2.27 (0.01) 1.66 (0.01) 42.06 (0.16)

p = 50

S 7.24 (0.05) – 8.24 (0.08) 5.74 (0.03) 65.58 (0.01)

BIC 4.59 (0.03) 11.16 (0.21) 3.95 (0.08) 2.17 (0.01) 42.10 (0.24)

BPA 4.40 (0.03) 9.22 (0.15) 3.72 (0.08) 2.07 (0.01) 41.28 (0.30)

BT 6.09 (0.04) 10.41 (0.21) 2.71 (0.01) 2.27 (0.01) 30.31 (0.14)

BL 4.71 (0.04) – 2.79 (0.06) 1.68 (0.01) 29.50 (0.07)

XMZ 4.72 (0.04) 10.96 (0.19) 2.37 (0.01) 1.75 (0.01) 28.78 (0.08)

IB 4.21 (0.04) 14.23 (0.31) 2.86 (0.04) 1.62 (0.02) 27.98 (0.20)

RLZ 5.94 (0.01) 19.21 (0.11) 2.77 (0.01) 2.24 (0.00) 33.60 (0.00)

Proposed 4.74 (0.03) 7.29 (0.06) 2.41 (0.01) 1.78 (0.01) 28.56 (0.07)

p = 100

S 14.41 (0.08) – 16.10 (0.13) 11.44 (0.04) 81.85 (0.00)

BIC 6.92 (0.02) 30.15 (0.51) 5.39 (0.10) 2.46 (0.01) 33.63 (0.25)

BPA 6.80 (0.03) 23.53 (0.35) 5.39 (0.13) 2.43 (0.01) 33.92 (0.29)

BT 8.51 (0.11) 20.62 (0.33) 2.73 (0.02) 2.24 (0.02) 16.43 (0.17)

BL 7.20 (0.04) – 3.03 (0.06) 1.82 (0.01) 16.08 (0.02)

XMZ 14.40 (0.08) 369.42 (0.22) 16.09 (0.13) 11.43 (0.04) 81.82 (0.01)

IB 6.76 (0.05) 27.14 (0.39) 3.23 (0.04) 1.63 (0.01) 15.12 (0.06)

RLZ 8.54 (0.01) 40.19 (0.21) 2.89 (0.01) 2.31 (0.00) 18.44 (0.00)

Proposed 7.12 (0.03) 16.39 (0.08) 2.49 (0.01) 1.90 (0.00) 15.64 (0.02)

Assume ‖ΔL‖2
F = U2

1s1 log(p)∕n and ‖ΔD‖2
F = U2

2p log(p)∕n. From assumption (11) and by
Lemma 2, without loss of generality, there exists a constant h such that 0 < 1∕h < svp(L0) ≤
sv1(L0) < h < ∞ and 0 < 1∕h < svp(D0) ≤ sv1(D0) < h < ∞. Write D = D0 + ΔD and L =
L0 + ΔL. We decompose G(ΔL,ΔD) into three parts and then consider them separately.

G(ΔL,ΔD) = Q(D,L) − Q(D0,L0)

= log |D| − log ||D0
|| + tr(L′−1D−1L−1S) − tr(L′−1

0 D−1
0 L−1

0 S)
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TABLE A3: The averages and standard errors of estimates for Model 5.

F EN L1 MAE FSL (%)

p = 30

S 4.38 (0.03) 12.52 (0.08) 4.90 (0.05) 3.47 (0.02) 83.72 (0.01)

BIC 2.73 (0.02) 6.80 (0.12) 2.76 (0.07) 1.34 (0.02) 38.29 (0.51)

BPA 2.76 (0.03) 8.20 (0.13) 3.06 (0.09) 1.46 (0.02) 55.20 (0.78)

BT 3.49 (0.01) 10.15 (0.15) 2.06 (0.01) 1.21 (0.01) 10.23 (0.09)

BL 2.88 (0.02) – 1.92 (0.03) 0.96 (0.01) 11.65 (0.08)

XMZ 2.78 (0.02) 19.72 (0.28) 1.78 (0.02) 0.94 (0.01) 11.45 (0.09)

IB 2.90 (0.03) – 2.01 (0.04) 1.08 (0.02) 14.97 (0.50)

RLZ 3.21 (0.01) 23.74 (0.19) 2.18 (0.01) 1.22 (0.01) 18.44 (0.01)

Proposed 2.48 (0.02) 11.80 (0.29) 1.62 (0.02) 0.86 (0.01) 10.73 (0.11)

p = 50

S 7.25 (0.03) – 8.03 (0.06) 5.75 (0.02) 84.43 (0.01)

BIC 3.92 (0.02) 21.74 (0.41) 4.09 (0.11) 1.71 (0.01) 30.76 (0.37)

BPA 3.75 (0.02) 22.41 (0.28) 3.78 (0.09) 1.76 (0.02) 47.28 (0.72)

BT 4.46 (0.01) 20.83 (0.21) 2.58 (0.01) 1.48 (0.01) 13.25 (0.13)

BL 3.79 (0.01) – 2.44 (0.02) 1.26 (0.01) 13.37 (0.02)

XMZ 3.68 (0.01) 38.03 (0.23) 2.38 (0.01) 1.24 (0.01) 13.49 (0.01)

IB 4.07 (0.01) – 2.63 (0.02) 1.44 (0.01) 14.57 (0.05)

RLZ 3.90 (0.01) 37.04 (0.25) 2.48 (0.02) 1.44 (0.01) 16.96 (0.01)

Proposed 3.63 (0.01) 32.08 (0.26) 2.31 (0.01) 1.23 (0.01) 13.21 (0.04)

p = 100

S 14.26 (0.04) – 15.56 (0.09) 11.32 (0.03) 84.32 (0.01)

BIC 5.87 (0.02) 43.75 (0.47) 5.38 (0.11) 2.27 (0.01) 24.49 (0.22)

BPA 5.77 (0.02) 37.55 (0.28) 5.67 (0.13) 2.39 (0.02) 38.77 (0.45)

BT 6.76 (0.02) 31.42 (0.30) 3.37 (0.02) 2.12 (0.01) 15.99 (0.26)

BL 5.38 (0.02) – 3.09 (0.02) 1.87 (0.01) 14.69 (0.01)

XMZ 14.26 (0.04) 368.48 (0.19) 15.55 (0.09) 11.31 (0.03) 84.28 (0.01)

IB 6.07 (0.01) – 3.35 (0.02) 2.05 (0.01) 15.62 (0.02)

RLZ 5.51 (0.01) 38.82 (0.12) 3.23 (0.02) 1.94 (0.01) 16.22 (0.01)

Proposed 5.23 (0.01) 33.60 (0.09) 3.06 (0.01) 1.76 (0.01) 14.62 (0.01)

+
p∑

𝑗=1

𝜂𝑗
∑
k<𝑗

|l𝑗k| − p∑
𝑗=1

𝜂𝑗
∑
k<𝑗

|l0𝑗k|
= log |D| − log ||D0

|| + tr[(D−1 − D−1
0 )D0] − tr[(D−1 − D−1

0 )D0]

+ tr(L′−1D−1L−1S) − tr(L′−1
0 D−1

0 L−1
0 S)

+
p∑

𝑗=1

𝜂𝑗
∑
k<𝑗

|l𝑗k| − p∑
𝑗=1

𝜂𝑗
∑
k<𝑗

|l0𝑗k|
= M1 + M2 + M3,
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where

M1 = log |D| − log ||D0
|| + tr[(D−1 − D−1

0 )D0],

M2 = tr(L′−1D−1L−1S) − tr(L′−1
0 D−1

0 L−1
0 S) − tr[(D−1 − D−1

0 )D0],

M3 =
p∑

𝑗=1

𝜂𝑗
∑
k<𝑗

|l𝑗k| − p∑
𝑗=1

𝜂𝑗
∑
k<𝑗

|l0𝑗k|.
Based on the proof of Theorem 3.1 in Jiang (2012), we can show that M1 ≥

‖ΔD‖2
F

8h4 . For the
second term,

M2 = tr(L′−1D−1L−1S) − tr(L′−1D−1
0 L−1S) + tr(L′−1D−1

0 L−1S)

− tr(L′−1
0 D−1

0 L−1
0 S) − tr[(D−1 − D−1

0 )D0]

= tr(D−1 − D−1
0 )[L−1(S − 𝚺0)L′−1] + trD−1

0 (L−1SL′−1 − L−1
0 SL′−1

0 )

+ tr(D−1 − D−1
0 )(L−1𝚺0L′−1 − D0)

= tr(D−1 − D−1
0 )[L−1(S − 𝚺0)L′−1] + tr[D−1

0 (L−1(S − 𝚺0)L′−1

− L−1
0 (S − 𝚺0)L′−1

0 )] + tr[D−1
0 (L−1𝚺0L′−1 − L−1

0 𝚺0L′−1
0 )]

+ tr(D−1 − D−1
0 )(L−1𝚺0L′−1 − D0)

= tr(D−1 − D−1
0 )[L−1(S − 𝚺0)L′−1] + tr[D−1

0 (L−1(S − 𝚺0)L′−1

− L−1
0 (S − 𝚺0)L′−1

0 )] + tr[D−1(L−1𝚺0L′−1 − L−1
0 𝚺0L′−1

0 )]

= M(1)
2 + M(2)

2 + M(3)
2 ,

where the fourth equality uses the results L−1
0 𝚺0L′−1

0 = L−1
0 (L0D0L

′

0)L
′−1
0 = D0. The quantities

M(1)
2 , M(2)

2 and M(3)
2 are defined in the following

M(1)
2 = tr(D−1 − D−1

0 )[L−1(S − 𝚺0)L′−1],

M(2)
2 = tr[D−1

0 (L−1(S − 𝚺0)L′−1 − L−1
0 (S − 𝚺0)L′−1

0 )],

M(3)
2 = tr[D−1(L−1𝚺0L′−1 − L−1

0 𝚺0L′−1
0 )].

Based on the proof of Theorem 3.1 in Jiang (2012), for any 𝜖 > 0, there exists V1 > 0 and V2 > 0
such that

|M(1)
2 | ≤ V1

√
p log(p)∕n‖ΔD‖F

and

M(3)
2 − |M(2)

2 | > 1∕2h4‖ΔL‖2
F − V2

√
log(p)∕n

∑
(𝑗,k)∈Zc

|l𝑗k|
− V2

√
s1 log(p)∕n‖ΔL‖F,
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where Z = {(𝑗, k) ∶ k < 𝑗, l0𝑗k ≠ 0}, and l0𝑗k represents the element (𝑗, k) of the matrix L0. Next,
for the penalty term,

M3 =
p∑

𝑗=1

𝜂𝑗
∑

(𝑗,k)∈Zc

|l𝑗k| + p∑
𝑗=1

𝜂𝑗
∑

(𝑗,k)∈Z

(|l𝑗k| − |l0𝑗k|) = M(1)
3 + M(2)

3 ,

where

M(1)
3 =

p∑
𝑗=1

𝜂𝑗
∑

(𝑗,k)∈Zc

|l𝑗k|,
and

|M(2)
3 | = | p∑

𝑗=1

𝜂𝑗
∑

(𝑗,k)∈Z

(|l𝑗k| − |l0𝑗k|)| ≤ p∑
𝑗=1

𝜂𝑗
∑

(𝑗,k)∈Z

|(|l𝑗k| − |l0𝑗k|)|
≤

p∑
𝑗=1

𝜂𝑗
∑

(𝑗,k)∈Z

|l𝑗k − l0𝑗k|
≤

p∑
𝑗=1

𝜂𝑗
√

s1‖ΔL‖F,

where the last inequality uses the fact that (a1 + a2 + · · · + am)2 ≤ m(a2
1 + a2

2 + · · · + a2
m). Com-

bining all the terms above together, with probability greater than 1 − 2𝜖, we have

|G(ΔL,ΔD)| ≥ M1 − |M(1)
2 | + M(3)

2 − |M(2)
2 | + M(1)

3 − |M(2)
3 |

≥
‖ΔD‖2

F

8h4
− V1

√
p log(p)∕n‖ΔD‖F +

‖ΔL‖2
F

2h4
− V2

√
log(p)∕n

∑
(𝑗,k)∈Zc

|l𝑗k|
− V2

√
s1 log(p)∕n‖ΔL‖F +

p∑
𝑗=1

𝜂𝑗
∑

(𝑗,k)∈Zc

|l𝑗k| − p∑
𝑗=1

𝜂𝑗
√

s1‖ΔL‖F

=
U2

2

8h4
p log(p)∕n − V1U2p log(p)∕n +

U2
1

2h4
s1 log(p)∕n

− V2

√
log(p)∕n

∑
(𝑗,k)∈Zc

|l𝑗k| − V2U1s1 log(p)∕n +
p∑

𝑗=1

𝜂𝑗
∑

(𝑗,k)∈Zc

|l𝑗k|
− s1U1

√
log(p)∕n

p∑
𝑗=1

𝜂𝑗

=
U2p log(p)

n

(
U2

8h4
− V1

)
+

U1s1 log(p)
n

(
U1

2h4
−

∑p
𝑗=1 𝜂𝑗√

log(p)∕n
− V2

)

+
∑

(𝑗,k)∈Zc

|l𝑗k|( p∑
𝑗=1

𝜂𝑗 − V2

√
log(p)∕n

)
.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2020 ESTIMATION OF LARGE SPARSE COVARIANCE MATRIX 25

Here V1 and V2 are only related to the sample size n and 𝜖. Assume
∑p

𝑗=1 𝜂𝑗 = K(
√

log(p)∕n)
where K > V2 and choose U1 > 2h4(K + V2), U2 > 8h4V1, then G(ΔL,ΔD) > 0. This establishes
the lemma. ◼

Proof of Theorem 2. Based on the proof of Theorem 3.2 in Jiang (2012), it follows that

‖�̂�𝜋k
− 𝚺0𝜋k

‖2
F = Op(‖L̂𝜋k

− L0𝜋k
‖2

F) + Op(‖D̂𝜋k
− D0𝜋k

‖2
F)

= Op(s1 log(p)∕n) + Op(p log(p)∕n)

= Op((s1 + p) log(p)∕n),

where the second equality is provided by the proof of Lemma 3. Then

‖�̂�k − 𝚺0‖2
F = ‖P𝜋k

�̂�𝜋k
P′
𝜋k

− P𝜋k
𝚺0𝜋k

P′
𝜋k
‖2

F

= ‖P𝜋k
(�̂�𝜋k

− 𝚺0𝜋k
)P′

𝜋k
‖2

F

= ‖�̂�𝜋k
− 𝚺0𝜋k

‖2
F

= Op((s1 + p) log(p)∕n),

where the third equality uses the fact that the Frobenius norm of a matrix is invariant on the
permutation matrix.

Since 𝚺0 is positive definite, there exists 𝜖 > 0 such that 𝜖 < 𝜆min(𝚺0), where 𝜆min(𝚺0) is the
smallest eigenvalue of 𝚺0. By introducing 𝚫 = 𝚺 − 𝚺0, the expression of (4) can be rewritten in
terms of 𝚫 as

�̂� = arg min
𝚫=𝚫′,𝚫+𝚺0⪰𝜖I

1
2M

M∑
k=1

‖𝚫 + 𝚺0 − �̂�k‖2
F + 𝜆|𝚫 + 𝚺0|1

≜  (𝚫).

Note that it is easy to see �̂� = �̂�+ − 𝚺0. Now consider 𝚫 ∈ {𝚫 ∶ 𝚫 = 𝚫′,𝚫 + 𝚺0 ⪰ 𝜖I, ‖𝚫‖F =
5𝜆

√
s0 + p}. Define the active set of 𝚺0 as A0 = {(i, 𝑗) ∶ 𝜎0

i𝑗 ≠ 0, i ≠ 𝑗}, and BA0
= (bi𝑗 ⋅

I{(i,𝑗)∈A0})1≤i,𝑗≤p. Let Ac
0 be the complement set of A0. Denote element (i, 𝑗) of matrix 𝚫 by 𝚫i𝑗 .

Under the probability event {|�̂�k
i𝑗 − 𝜎0

i𝑗| ≤ 𝜆} where �̂�k = (�̂�k
i𝑗)p×p, we have

 (𝚫) −  (0) = 1
2M

M∑
k=1

‖𝚫 + 𝚺0 − �̂�k‖2
F − 1

2M

M∑
k=1

‖𝚺0 − �̂�k‖2
F

+ 𝜆|𝚫 + 𝚺0|1 − 𝜆|𝚺0|1
= 1

2
‖𝚫‖2

F + 1
M

M∑
k=1

< 𝚫,𝚺0 − �̂�k > +𝜆|𝚫Ac
0
|1

+ 𝜆(|𝚫A0
+ (𝚺0)A0

|1 − |(𝚺0)A0
|1)

≥
1
2
‖𝚫‖2

F − 𝜆(|𝚫|1 +∑
i

𝚫ii) + 𝜆|𝚫Ac
0
|1 − 𝜆|𝚫A0

|1
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≥
1
2
‖𝚫‖2

F − 2𝜆
(|𝚫A0

|1 +∑
i

𝚫ii

)

≥
1
2
‖𝚫‖2

F − 2𝜆
√

s0 + p‖𝚫‖F

= 5
2
𝜆2(s0 + p)

> 0.

Note that �̂� is also the optimal solution to the convex optimization problem

�̂� = arg min
𝚫=𝚫′,𝚫+𝚺0⪰𝜖I

 (𝚫) −  (0).

The rest of proof is the same as that of Theorem 2 in Xue, Ma & Zou (2012), and hence is
omitted. ◼
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