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Summary

Estimating time-varying covariance matrices of the vector of interest is challenging both
computationally and statistically due to a large number of constrained parameters. In this work,
we consider an order-averaged Cholesky-log-GARCH (OA-CLGARCH) model for estimating time-
varying covariance matrices through the orthogonal transformations of the vector based on the
modified Cholesky decomposition. The proposed method is to transform the vector at each time as
a linear transformation of uncorrelated latent variables and then to use simple univariate GARCH
models to model them separately. But the modified Cholesky decomposition relies on a given order
of variables, which is often not available, to sequentially orthogonalize the variables. The proposed
method develops an order-averaged strategy for the Cholesky-GARCH method to alleviate the
effect of order of variables. The merits of the proposed method are illustrated through simulations
and real-data studies.
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1 INTRODUCTION

Many tasks of financial management, such as portfolio selection, option pricing and risk
assessment, require modeling and prediction of time-varying covariance matrices of asset
returns to characterize the temporal and instantaneous dependence among several asset returns.
The estimation of time-varying covariance matrices is a challenging statistical and computa-
tional problem for large financial portfolios (Lanne & Saikkonen, 2007; Engle & Kelly, 2012;
Härdle et al., 2015; Pakel et al., 2017; Francq & Zakoïan, 2019; Neuberg & Glasserman, 2019).

A variety of extensions of the univariate generalized autoregressive conditional heteroscedas-
tic (GARCH) models (Bollerslev, 1986) has been developed for estimating time-varying
covariance matrices in the literature, see, for example, Engle and Kroner (1995), Ledoit et al.
(2003), Bauwens et al. (2006), Dellaportas and Pourahmadi (2012), and Jin and Maheu (2016).
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Bollerslev et al. (2018) proposed a novel asymmetric multivariate GARCH models, which
estimates variances and covariances based on the signs of returns. Brownlees (2019) intro-
duced the hierarchical GARCH model when the GARCH estimates obtained from financial
time series cluster. The hierarchical GARCH model is a nonlinear panel specification in which
each coefficient is modeled as a function of observed series characteristic and an unobserved
random effect.

However, many existing methods impose strong assumptions on the dynamics of the con-
ditional correlation matrices. For instance, Bollerslev (1990) assumed constant conditional
correlation for the GARCH model (CCC-GARCH), which may not be satisfied in real data.
Engle (2002) assumed the dynamic conditional correlation for the GARCH model (DCC-
GARCH), which is computationally expensive in high-dimensional cases, see Tse and Tsui
(2002). A number of models has been built based on the DCC-GARCH to improve the esti-
mation of large time-varying covariance matrix. For example, Engle et al. (2019) proposed
the so called DCC-L-GARCH model and DCC-NL-GARCH model. The former stands for
DCC-GARCH based on the linear shrinkage of Ledoit and Wolf (2004a) and Ledoit and
Wolf (2004b). The latter represents DCC-GARCH based on the nonlinear shrinkage. Kim
& Jung (2018) suggested a directional time-varying partial correlation method based on the
DCC model. It overcomes the limitation of the copula DCC based on vine structure, which
may produce unnecessary dependence in the multivariate structure due to the arbitrary vari-
able selection. Aziz et al. (2019) investigated the large asset modeling via the DCC models.
They explored the empirical applicability of the multivariate GARCH models by implementing
various copular-GARCH based models. There are also several Bayesian approaches for mul-
tivariate GARCH models (Ardia & Hoogerheide, 2010; Galeano & Ausín, 2010; Arakelian &
Dellaportas, 2012; Jacquier & Polson, 2012; Jensen & Maheu, 2013; Ausín et al., 2014; Burda,
2015; Woźniak, 2018). However, the Bayesian methods for multivariate time series are often
computationally intensive in high-dimensional cases.

Contemporaneous orthogonal transformation of the data is a popular method for overcoming
the curse of dimensionality in the finance literature. The key idea is to write a p-dimensional
data vector as a linear transformation of p orthogonal latent components and then univariate
GARCH models are used to model each independent latent component separately. For example,
principal component analysis (PCA) of the (unconditional) sample covariance matrix has been
used by Alexander (2001) to orthogonalize the vector of returns, and then univariate GARCH
models were used for each principal component, giving rise to the class of O-GARCH models.
Van der Weide (2002) developed the class of generalized orthogonal GARCH (GO-GARCH)
models by using independent component analysis (ICA). Broda and Paolella (2009) proposed
a CHICOGO model to incorporate non-Gaussian innovations distributions by separating the
estimation of the correlation structure from that of the univariate variance dynamics. Noureldin
et al. (2014) considered orthogonal transformations of the returns and focused on the BEKK
parameterization.

The modified Cholesky decomposition (MCD) of a covariance matrix is another important
technique of orthogonal transformations. The MCD provides an unconstrained and statistically
interpretable parameterization of a covariance matrix by sequentially orthogonalizing the vari-
ables in a random vector (Pourahmadi,, 1999; 2001). Pedeli et al. (2015) adopted the MCD
idea to estimate the time-varying covariance matrices of asset returns using the log-GARCH
(LGARCH) model (Geweke, 1986). Darolles et al. (2018) introduced a CHAR model, which
extended the work of Pourahmadi (1999) by considering time varying slope coefficients that
depend on their lagged values. Some early and implicit use of Cholesky-type decompositions
of the covariance matrix can be found in Vrontos et al. (2003) and Palandri (2009). A major
concern of adopting the MCD technique is that the final results could depend on the order of
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the variables in the vector. So far, we know there is no systematic study of its impact on the
final analysis and conclusions.

In this paper, we propose an order-averaged Cholesky-log-GARCH (OA-CLGARCH) model
for estimating time-varying covariance matrices of asset returns in a large portfolio of assets. It
significantly alleviates the impact of the variable order in the vector for incorporating the MCD
technique into the multivariate GARCH model. The proposed method is to estimate the time-
varying covariance matrices by accommodating a set of permutations of the variables instead of
a fixed order such as the BIC-based methods (Pedeli et al., 2015) or the best permutation algo-
rithm (BPA; Rajaratnam & Salzman 2013). Because of the desirable statistical interpretability
of the reparameterization in the MCD, our proposed method is able to employ penalized regres-
sions in the estimation of covariance matrices, making it suitable for high-dimensional time
series. Moreover, it guarantees the positive definiteness of the estimated covariance matrices
with meaningful statistical interpretation and computational convergence. Besides providing
accurate estimation of the time-varying covariance matrices, the proposed method also makes
accurate prediction of the covariance (volatility) matrices at future time points, whereas some
existing methods such as the hyperspherical specification approach for LGARCH (Pedeli et
al., 2015) lack the same capability. Additionally, in order to help readers better understand the
methodology, as well as to easily implement the proposed method, the corresponding R codes
are provided in the Appendix.

The remainder of our paper is organized as follows. We briefly review the MCD technique
in Section 2 and address the order issue of the MCD method for estimating a single covariance
matrix in Section 3. Section 4 details the proposed OA-CLGARCH model for estimating time-
varying covariance matrices. Numerical study and case studies of four real financial data sets
are conducted in Sections 5–7. We conclude our work with some discussion in Section 8.

2 BACKGROUND ON MCD

We first provide a brief review of the MCD for estimating a single covariance matrix † and
discuss its variable order dependency issue. Suppose Y D .Y1; : : : ; Yp/

0 is a p-dimensional
vector of mean zero random variables with the covariance matrix†. The key idea of MCD is to
make the covariance matrix† being diagonalized by a lower triangular matrix through a linear
transformation of Y,

� D .I � A/Y; (2.1)

where � D .�1; : : : ; �p/
0 is a vector with diagonal covariance matrix D D diag.d 2

1 ; : : : ; d
2
p/.

The matrix A is lower triangular and I is the p � p identity matrix. Denote T D I � A. Then
one can easily obtain from Var.�/ D VarŒTY� as

D D T†T0, † D T�1DT0�1
:

From the regression perspective, the formulation in (2.1) can be expressed as:

Yj D

j�1X
kD1

ajkYk C �j

D ZTj aj C �j ; for j D 2; : : : ; p;

(2.2)

where Zj D .Y1; : : : ; Yj�1/
0

. The aj D .aj1; : : : ; aj;j�1/
0

is the corresponding vector of
regression coefficients, which forms the lower triangular matrix A as
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A D

0
BBBB@

0 0 0 : : : 0
a21 0 0 : : : 0
a31 a32 0 : : : 0
:::

:::
: : :

:::
:::

ap1 ap2 : : : ap;p�1 0

1
CCCCA :

As a result, the decomposition (2.2) converts the constraint entries of † into two groups of
unconstrained “regression” and “variance” parameters. Conceptually, this approach reduces the
challenge of modeling a covariance matrix into dealing with p regression problems.

Let y1; : : : ; yn be n independent and identically distributed observations following a multi-
variate normal distribution N .0;†/. A straightforward estimate OT of T can be obtained from
the least squares estimates of the regression coefficients

Oaj D arg min
aj
ky.j / � Z.j /aj k

2
2; j D 2; : : : ; p;

where y.j / is the j th column of the data matrix Y D .y1; : : : ; yn/0, and Z.j / D
.y.1/; : : : ; y.j�1// represents the first (j -1) columns of Y . The estimate OD of D is constructed
from the corresponding residual variances

Od 2
j D

´
bVar.y.1//; j D 1;

bVar.y.j / � Z.j / Oaj k2
2/; j D 2; : : : ; p;

(2.3)

where bVar.�/ denotes the sample variance.
Please refer to “R codes-Part I” in the Appendix for the R codes to implement the modeling

of a series of regressions (2.2) and construction of the Cholesky factor matrices T and D.
From regressions (2.2), one can notice that the MCD relies on a pre-specified order of

Y1; : : : ; Yp when constructing the matrices T and D. Different orders of variables result in
different regression coefficients, and hence, different Cholesky factors matrices T and D. A
discussion of the order for the MCD-based approach is thus important and pursued next.

2.1 Variable ordination

Suitable order of variables in a random vector is a long-standing problem in statistics going
back at least to the introduction of factor analysis in 1903 and the associated problem of factor
rotation and identifiability of the loading matrix.

Basford & Tukey (1999) were perhaps the first to propose the greedy close algorithm, which
orders the variables so that the scatterplot matrix looks “nice” in the sense that one brings the
more correlated variables closer to the main diagonal. This simple exploratory data analysis
idea has led to the more powerful conceptual idea of banded sample covariance matrix estima-
tion (Bickel & Levina, 2008; Bickel & Gel, 2011) and the related isoband algorithm (Wagaman
& Levina, 2009) using multi-dimensional scaling. In a different direction and in the context
of “order-selection” in regression, (Dellaportas & Pourahmadi, 2012) suggested a search algo-
rithm to choose the order of variables for MCD based on Akaike information criterion (AIC)
or Bayesian information criterion (BIC).

To date, by far the most principled formulation of the variable ordination is due to Rajaratnam
& Salzman (2013) who introduced the BPA, which is able to recover consistently the natural
order of the variables in an underlying autoregressive model. It is formulated as a well-defined
optimization problem where the optimal order is defined as the one minimizing the sum of
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squared innovation variances or squared diagonal entries of D in the MCD. More precisely, let
us define a permutation mapping � W ¹1; : : : ; pº ! ¹1; : : : ; pº by

.�.1/; �.2/; : : : ; �.p// : (2.4)

Let Sp be the symmetric group of all permutations of the integers 1; : : : ; p. For a given
� 2 Sp , let †� be the covariance matrix corresponding to the variables permuted by � and

†� D T�1
� D�T0�1

�

be its MCD. The goal of the BPA is to find an order �� in Sp to minimize jjD�� jj2F , where jj�jjF
represents the Frobenius norm. Of course, this is a computationally intractable problem. Their
computationally less demanding greedy search algorithm will order the variables to minimize
the sequential sum of squared diagonal entries of D in the MCD of the sample covariance
matrix. When would such a greedy search succeed? Rajaratnam & Salzman (2013) showed
the consistency of the approach in determining the natural order of variables in an underlying
autoregressive models or when the true precision matrix is banded.

However, the order chosen by any of the above algorithms may not lead to a good estimate
of the covariance matrix because in practice, there may not be natural order or a meaningful
optimal order for the assets (variables). In the next section, we propose an order-averaged esti-
mate of the covariance matrix based on a random sample from the population of all possible
permutations which can lead to an accurate estimate of the covariance matrix.

3 ORDER-AVERAGED ESTIMATION OF A SINGLE COVARIANCE MATRIX

Note that the MCD-based covariance matrix estimation depends on the order of vari-
ables Y1; : : : ; Yp . In this section, we address the role of a random sample of permutations in
estimating a covariance matrix more systematically.

Given a permutation mapping � 2 Sp as defined in (2.4), let P� be the corresponding
permutation matrix where the entries in the j th column are all 0 except 1 at the position �.j /
for j D 1; : : : ; p. The transformed data matrix is

Y� D YP� D .y
.1/
� ; : : : ; y

.p/
� /; (3.1)

where y.j /� is the j th column of Y� , j D 1; 2; : : : ; p.
Please refer to “R codes- Part II” for the R codes to construct the matrix P� and the permuted

data matrix under � in (3.1).
When estimating the Cholesky factor matrices T and D for a fixed permutation � , we use the

Lasso technique (Tibshirani, 1996) in the situation where p is close to n or even larger than n.
Such a technique is also used in Huang et al. (2006), Rothaman et al. (2010) and Chang and
Tsay (2010). Thus, for a given permutation � , let

Oa�.j / D arg min
a�.j/
ky.�.j //� � Z.�.j //� a�.j /k

2
2 C ��.j /ka�.j /k1; for �.j / ¤ 1; (3.2)

and

Od 2
�.j / D

´
bVar.y.1/� /; �.j / D 1;
bVar.y.�.j //� � Z.�.j //� Oa�.j //; otherwise;

where Z.j /� represents the first (j -1) columns of Y� , � � 0 is a tuning parameter, and k � k1

stands for the vector L1 norm.
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Please refer to “R codes- Part III” for the implementation of Lasso regression in R for (3.2).
Then we can obtain the lower triangular matrix OT� with ones on its diagonal and Oa

0

�.j /
as its

�.j /th row. Meanwhile, the diagonal matrix OD� has its �.j /th diagonal element equal to Od 2
�.j /

.

Correspondingly, O†� D OT�1
�
OD� OT0

�1
� is a covariance matrix estimate under � . Transforming

back to the original order, we can estimate † as

O† D P� O†�P0�

D P� OT
�1
�
OD� OT0

�1
� P0�

D .P� OT
�1
� P0�/.P� OD�P0�/.P� OT

0
�1
� P0�/

, OT�1 OD OT0
�1
;

(3.3)

where OT D P� OT�P0� may not be a lower triangular matrix any more and OD D P� OD�P0� is still
a diagonal matrix.

Suppose we generate a sample ofM different permutations �k , k D 1; : : : ;M and obtain the
corresponding estimates O†, OT, and OD in (3.3), denoted as O†k , OTk , and ODk for the permutation
�k . Clearly, each MCD-based covariance matrix estimate O†k depends on the permutation order
�k . To alleviate the order issue of the MCD method, we propose the order-averaged estimate as

Q† D QT�1 QD QT0
�1

with QT D
1

M

MX
kD1

OTk; QD D
1

M

MX
kD1

ODk : (3.4)

Such an estimate can reduce the variability in the estimates QT and QD directly by averaging
OTk and ODk , respectively. It hence leads to a small variability in Q̇ in comparison with a naive
estimate N† D 1

M

PM
kD1
O†k , because the estimation error of O†k has been aggregated by the

estimation error of OTk and ODk .
The codes in “R codes- Part IV” in the Appendix demonstrate how to obtain the above order-

averaged estimate Q† in (3.4) based on the MCD.

4 ORDER-AVERAGED ESTIMATION OF TIME-VARYING COVARIANCE
MATRICES

In the financial management with high-dimensional times-series, a major task is to estimate
the time-varying covariance (volatility) matrices ¹†tº based on the (conditionally) indepen-
dently distributed data yt � N .0;†t /, t D 1; 2; : : : ; n. The data of yt can be viewed as the
returns of p assets in a portfolio at time t .

Based on the order-averaged estimation of covariance matrix using the MCD in Section 3,
we consider the estimation of the time-varying volatility matrices by

†t D T�1DtT
0�1 with T D

1

M

MX
kD1

T.k/; Dt D
1

M

MX
kD1

D.k/t ; (4.1)

where T.k/ and D.k/t are the Cholesky factor matrices from the MCD under the permutation �k .
Here, we assume a time-invariant Cholesky factor matrix T D Tt for all t , following the similar
spirit as in CCC-GARCH and Pedeli et al. (2015), to reduce a large number of parameters.
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For the time-varying diagonal matrix D.k/t from the MCD, it implies an orthogonal transfor-
mation of the vector of returns. For notation convenience, we omit the superscript for the index
of a permutation order �k and write D.k/t as Dt . That is, under each permutation �k , we adopt
the Cholesky factor T to transform yt such that

Tyt � �t � N .0;Dt /with Dt D diag.d 2
1It ; : : : ; d

2
pIt /: (4.2)

Then, for each d 2
j It ; j D 1; 2; : : : ; p, we consider to model log d 2

j It using a suitable
LGARCH(u, v) defined recursively in time as

log d 2
j It D ˇ

.j /
0 C

vX
iD1

.˛
.j /
iC 1¹�j It�i>0ºC˛

.j /
i� 1¹�j It�i<0º/log �2

j It�iC

uX
kD1

ˇ
.j /

k
log d 2

j It�k : (4.3)

where 1¹�º is the indicator function, and ˇ.j /0 ; ˇ
.j /

k
; ˛
.j /
iC ; ˛

.j /
i� are corresponding coefficients.

Thus the formulations in (4.1) together with (4.2) and (4.3) define the proposed order-
averaged CLGARCH model, denoted as OA-CLGARCH. The proposed model guarantees the
positive definiteness property for estimating †t because of the MCD and the model of d 2

j It
in (4.3). It also allows for asymmetric effects between positive and negative latent factors for
variance estimation. Moreover, the model incorporates information from the past reflecting the
time-varying nature of the financial data.

4.1 Parameter estimation

To estimate the parameters in (4.3) for the proposed OA-CLGARCH model, we employ a
quasi-maximum likelihood approach similar to that in Francq & Zakoïan (2016). It requires
the initial values Ld 2

j It of d 2
j It and L�.j / of �.j / D .�j I1; : : : ; �j In/

0. We obtain Ld 2
j It as in Pedeli,

Fokianos and Pourahmadi (2015) based on the moving block approach (Lopes, McCullogh, and
Tsay, 2012). That is, at each time t , a moving block is constructed with m observations that are
centered at t . At both left and right end of the data range, the block size m is truncated when it
exceeds the observed time window. Then Ld 2

j It is the residual variance when the j th variable is
regressed on all the other regressors using observations yht�m�1

2 i
; : : : ; yhtCm�1

2 i
, where h´i D 1

if ´ � 1, h´i D n if ´ � n, and otherwise equals the largest integer not greater than ´. More
precisely, with the data matrix Yt D .yht�m�1

2 i
; : : : ; yhtCm�1

2 i
/0, define its j th column to be

y.j /t . Let Y .�j /t be Yt without the column y.j /t , then for each j we have

Ld 2
j It D

bVar.y.j /t � Y .�j /t
Ob.j /t /; (4.4)

where Ob.j /t D arg min
b.j/t

ky.j /t � Y .�j /t b.j /t k
2
2

Please refer to “R codes-Part V” for the implementation of the moving block approach to
obtain Ld 2

j It in (4.4).

In addition, the initial value L�.j / in (4.3) is the residual from (2.2) of the MCD approach
using all the observations. More precisely, with the data matrix Y D .y1; : : : ; yn/0, define its
j th column to be y.j /, and Z.j / D .y.1/; : : : ; y.j�1// represents the first (j -1) columns of Y .
We have

L�.j / D

²
y.1/; j D 1;
y.j / � Z.j / Oc.j /; j D 2; : : : ; p;

(4.5)
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where Oc.j / D arg min
c.j/

ky.j / � Z.j /c.j /k2
2. With Ld 2

j It and L�.j / available, the parameter vec-

tor �.j / D .ˇ.j /0 ; ˇ
.j /
1 ; : : : ; ˇ

.j /
u ; ˛

.j /
1C ; : : : ; ˛

.j /
vC; ˛

.j /
1� ; : : : ; ˛

.j /
v� /
0 can be estimated by fitting the

model in (4.3).
Thus, we are able to obtain the estimate Od 2

j It of d 2
j It . The sample variance of the first 5

values of L�.j / is used as Od 2
j I1 (Francq et al., 2013). Then the estimates Od 2

j It , t D 2; 3; : : : ; n,
can be obtained using the fitted model of (4.3) recursively. If a permutation mapping � is under
consideration, j represents the j th variable of the sequence .�.1/; �.2/; : : : ; �.p//.

The parameter estimation of (4.3) can be conducted using the R codes displayed in “R codes-
Part VI” in the Appendix.

In summary, the algorithm of the proposed OA-CLGARCH model for estimating †t for a
multivariate time series is described as follows. The full R codes for implementing Algorithm
1 is available at https://github.com/xiaoningmike/OA-CLGARCH-mode/tree/123.

Algorithm 1 (Parameter estimation)
Step 1: Input centered time series data y1; : : : ; yn.
Step 2: Generate M permutation mappings �k as in (2.4), k D 1; 2; : : : ;M .
Step 3: For each permutation �k , construct OT�k from the estimates of regression coefficients
in (3.2) using y1; : : : ; yn. At each time t , the diagonal of OD.k/t is obtained from the model (4.3)
using Ld 2

j It in (4.4) and L�j It in (4.5).

Step 4: Transform OT�k back to the original order: OT.k/ D P�k OT�kP0�k .

Step 5: QT D 1
M

PM
kD1
OT.k/, QDt D 1

M

PM
kD1
OD.k/t as in (3.4).

Step 6: At each time t , Q†t D QT�1 QDt QT0
�1

.

We would like to remark that, before applying the model fitting in Step 3, the initial values
L�2
j It and Ld 2

j It need to be arranged to the original order based on j such that the order of variables

in OD.k/t is the same as that in OT.k/ computed in Step 4.
Note that the implementation of Algorithm 1 needs the value of M , the number of random

permutations. Because the number of all possible permutations p increases rapidly as the num-
ber of variables p increases, we need to choose an appropriateM for efficient computation. We
have tried M D 10; 30; 50; 100; 150 under a moderate size of p. It is found that the proposed
method gives slightly better performance as M increases when M � 30. In the simulation and
case studies, we thus chooseM D 100 for different sizes of p as a trade-off between estimation
accuracy and computational efficiency for the proposed OA-CLGARCH model. In practice,
a relatively large value of M would be preferred for obtaining an accurate estimation if the
computational resources are available. Otherwise, a moderate value of M can be considered to
balance the estimation accuracy and the computational efficiency.

4.2 Model prediction

Prediction of the volatility given the past information is of central importance in the financial
markets. We now develop a procedure to predict the covariance (volatility) matrices at future
time points using the proposed OA-CLGARCH models.

With n observations yt , t D 1; 2; : : : ; n, the goal is to predict the covariance matrix at time
t D n C h. To start, all the observations are used to estimate the parameter vector �.j / in
(4.3), and the fitted model is used to predict d 2

j InC1. Then the h-step ahead prediction is easily
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implemented by recursively generating O�j It D Odj It�t and calculating Od 2
j It with h-1 times in

time t until Od 2
j InCh

is obtained to form the diagonal of ODnCh. Incorporating this process into
the framework of Algorithm 1 leads to the following h-step ahead prediction for the volatility
by the proposed OA-CLGARCH model:

Algorithm 2 (Model prediction)

Step 1: For each permutation �k , use O�
.j /

to predict Od 2
j InC1 by the model (4.3).

Step 2: Generate O�j InC1 D Odj InC1�nC1, where �nC1 � tdfD5 distribution, j D 1; 2; : : : ; p.

Step 3: Predict Od 2
j InC2 using O�

.j /
, Od 2
j InC1 and O�j InC1 in the model (4.3).

Step 4: Recursively repeat Steps 2–3 in time until Od 2
j InCh

is obtained.

Step 5: Construct OD.k/
nCh

with Od 2
j InCh

as its diagonal elements and transform OT�k back to the

original order: OT.k/ D P�k OT�kP0�k .

Step 6: QT D 1
M

PM
kD1
OT.k/, QDnCh D

1
M

PM
kD1
OD.k/
nCh

as in (3.4).

Step 7: Q†nCh D QT�1 QDnCh QT0
�1

.

Algorithm 2 not only provides the prediction of the varying covariance matrix at time t D nC
h but also enables us to forecast the covariance matrices at time t D nC1; nC2; : : : ; nCh�1,
by using OD.k/nC1;

OD.k/nC2; : : : ;
OD.k/
nCh�1 instead of OD.k/

nCh
in Step 5.

5 COMPETING MODELS & MEASURES OF ACCURACY

This section considers the comparison of three classes of multivariate GARCH models for
estimating the varying covariance matrices.

The first class is composed of two versions of the proposed OA-CLGARCH model, denoted
by M1 and M2, which represent the method in (4.1) with the lower triangular matrix T.k/

estimated using Lasso and the least squares, respectively. It provides an opportunity to compare
the performance of the Lasso and least squares estimators of T.k/.

The second class of benchmark methods considers the conventional CLGARCH models,
which use one fixed order of variables in the MCD instead of considering multiple orders as
described in our proposed method. These methods include the conventional CLGARCH model
with the variable order in MCD selected by the original order (Pedeli et al., 2015), the BIC
(Dellaportas & Pourahmadi, 2012) and the (BPA; Rajaratnam & Salzman 2013), denoted by
ORIG, BIC and BPA, respectively. Here, the Cholesky factor T is modeled using Lasso esti-
mates. The BIC method determines the order of variables in the MCD in a forward selection
fashion. That is, in each step, it selects a new variable having the smallest value of BIC when
regressing it on the rest of the candidate variables. For example, suppose that C D ¹Yi1 ; : : : ; Yik º
is the candidate set of variables and there are p � k variables already chosen and ordered. By
regressing each Yj , j D i1; : : : ; ik on the rest of the variables in C, we can assign the variable
corresponding to the minimum BIC value among the k regressions to the kth position of the
order. The BPA method is to recover the natural order of the variables in an underlying autore-
gressive model. It is formulated as an optimization problem where the optimal order is defined
as the one minimizing the sum of squared diagonal entries of D in the MCD. Specifically, for a
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10 X. KANG ET AL.

given permutation � 2 Sp , let †� D T�1
� D�T0�1

� be the MCD-based covariance matrix corre-
sponding to the variables permuted by � , and the BPA method is to find an order �� in Sp to
minimize the Frobenius norm jjD�� jj2F .

The second class includes the hyperspherical specification approach for LGARCH models
(Pedeli et al., 2015), denoted by HS. It relies on the standard Cholesky factor of the correla-
tion matrix and its hyperspherical parameterization (Rebonato & Jäckel, 2000). Specifically,
consider the variance-correlation decomposition † D LRL, where L D diag.�1; : : : ; �p/ is
the diagonal matrix of standard deviations of the variables in Y. R is the correlation matrix of
Y with its standard Cholesky decomposition R D BB0, where B D .bij /p�p is a lower trian-
gular matrix. The entries of B are then parameterized using the hyperspherical coordinates as
b11 D 1; bi1 D cos.�i1/; i D 2; : : : ; p and

bij D

´
cos.�ij /…

j�1
kD1sin.�ik/; j D 2; : : : ; i � 1I i D 3; : : : ; pI

…
j�1
kD1sin.�ik/; j D i I i D 2; : : : ; p;

where �ij ’s are unconstrained parameters in the range of .0; �) (Rapisarda et al., 2007).
The last class of methods consists of two well-known models in the finance literature. They

are the dynamic conditional correlation (DCC) GARCH and the generalized orthogonal (GO)
GARCH models of order (1,1), denoted by DCC and GO, respectively. The DCC imposes a
simple dynamic structure on the conditional correlation matrices. The GO model replaces the
rotation matrix by an invertible matrix. We use the R function dccfit(�) to implement DCC
model. For the implementation of GO model, the function routine gogarchfit(�) from package
rmgarch in R is used. The option of radical algorithm is chosen for the ICA method when using
gogarchfit(�) function.

We also consider five measures of accuracy to evaluate the performance of these comparison
methods. Let O†t D . O!ij It /p�p be the estimate of the covariance matrix †t D .!ij It /p�p , t D
1; : : : ; n. There are various measures commonly used to assess the accuracy of such covariance
matrix estimators. Here, we consider the following: the entropy loss 	1t , the Kullback–Leibler
loss 	2t and the quadratic loss functions 	3t (up to some scale) defined as

	1t D
1

p2
ŒtrŒ†�1

t
Ȯ
t � � log j†�1

t
O†t j � p�;

	2t D
1

p2
ŒtrŒ O†

�1

t †t � � log j O†
�1

t †t j � p�;

	3t D
1

p2
Œtr. O†

�1

t †t � I/�2:

We also use the mean absolute error and mean squared error loss functions given by

MAEt D
1

p2

pX
iD1

pX
jD1

j O!ij It � !ij It j and MSEt D
1

p2

pX
iD1

pX
jD1

. O!ij It � !ij It /
2:

For each of five loss functions, we report their averages over the time t , that is, MAE DPn
tD1 MAEt=n, MSE D

Pn
tD1 MSEt=n, and 	i D

Pn
tD1	it=n, i D 1; 2; 3.

6 SIMULATION

In this section, we present a numerical study to evaluate the performance of the proposed
OA-CLGARCH method. The setting of the simulation is similar to that in Francq and Zakoian
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Time-Varying Covariance Estimation 11

Table 1. The averages and standard errors (in parenthesis) of loss measures for each method in
simulation

�1 �2 �3 MAE MSE

ORIG 2.279 (0.025) 2.761 (0.070) 11.69 (0.840) 5.324 (0.021) 2.358 (0.035)
BIC 1.085 (0.037) 1.889 (0.034) 1.600 (0.222) 4.026 (0.024) 1.260 (0.011)
BPA 0.297 (0.045) 0.456 (0.088) 0.714 (0.183) 1.648 (0.123) 0.267 (0.046)
HS 0.115 (0.012) 0.134 (0.014) 0.173 (0.038) 1.151 (0.037) 0.115 (0.007)
DCC 0.118 (0.012) 0.135 (0.016) 0.279 (0.048) 1.022 (0.032) 0.126 (0.007)
GO 0.132 (0.014) 0.153 (0.021) 0.432 (0.098) 0.934 (0.047) 0.125 (0.009)
M1 0.135 (0.007) 0.118 (0.007) 0.038 (0.009) 1.028 (0.040) 0.100 (0.008)

Note: The method M2 has similar performance to the method M1, and thus is omitted

(2016). Specifically, consider the multivariate GARCH (v; u) model

xt D H1=2
t �t

Ht D GtRtGt

ht D � C
vX
iD1

Aixt�i C
uX
kD1

Bkht�k;

where xt D .x1It ; : : : ; xpIt /
0, �t � N .0; Ip/. The ht is the vector of diagonal elements of Ht ,

that is, ht D diag.Ht / D .d
2
1It ; : : : ; d

2
pIt /
0. The � D .
1; : : : ; 
p/

0 is a vector of strictly positive
entries, and Gt is a diagonal matrix with diagonal elements as d1It ; : : : ; dpIt . The Ai and Bk
are p � p matrices with positive entries, and xt D .x2

1It ; : : : ; x
2
pIt /
0. We generate return series

of length n D 100 and dimension p D 5 using the multivariate GARCH (1,1) model with
� D 0:011p , A1 D 0:05Ip and B1 D 0:9Ip . The correlation matrix Rt D 0:9Rt�1 C 0:1St�1,
where St�1 is the sample correlation matrix of data x1; : : : ; xt�1. For estimating the parameters
using the idea of moving block, the block size is set to be 50.

Table 1 summarizes the averaged losses of the estimates Ȯ t over time t and their corre-
sponding standard errors (in parenthesis) for different methods of Section 5. From Table 1, it is
evident that the proposed method M1 generally gives better performance than other approaches.
The superiority of the M1 method over the ORIG and BIC methods demonstrates the advan-
tages of averaging over multiple order permutations. In addition, it appears that although the
BIC-based CLGARCH model improves the estimation accuracy over ORIG, it produces larger
loss measures than the proposed M1 method. Moreover, among other order selection (permu-
tations of the assets), our proposed method clearly outperforms the BPA approach. Finally, the
HS, DCC, and GO models are comparable, but not as good as the M1 method.

7 REAL-DATA CASE STUDIES

In this section, we analyze four real data sets of financial time series with increasing dimen-
sions (p D 5; 12; 97; 200) and examine the performance of the proposed OA-CLGARCH
model. Because the ORIG gives inferior performance to the proposed methods based on simu-
lation study, it is omitted in this section for comparison. The GO model is not included for the
cases p D 97 and p D 200 due to its convergence issue when using the R function gogarchfit(�),
caused by the large dimensionality of p.

The first data set is the daily stock returns of p D 5 U.S. bluechips with n D 251 observa-
tions. The second data set is the monthly stock returns of p D 12 U.S. bluechips with n D 251
observations. The third is composed of n D 436 weekly returns of p D 97 stocks in the
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12 X. KANG ET AL.

Figure 1. Scatter plots between log Ld 2
j It and log Ld 2

j It�1, j D 1; 2; : : : ; 5, for the daily returns of 5 U.S. bluechips

Standard and Poor’s 100 index (S&P100), and the fourth data set of a higher dimension with
p D 200 is an expansion of the third data set with additional 103 stocks selected from the
Standard and Poor’s 500 index (S&P500).

A notable challenge in computing measures of accuracy, MAE, MSE, 	1, 	2, and 	3, for
the real data is that the true covariance matrix †t D .!ij It /p�p is unknown. We resolve this
challenge by employing a moving block technique to obtain a reliable proxy for it (Lopes et
al., 2012). That is, a sample covariance matrix is calculated within each moving block as a
benchmark to measure the accuracy of a covariance matrix estimate. In practice, the block size
m is selected using a data-based procedure from a pre-specified set ¹m1; : : : ; mBº with their
values ordered ascendingly. The averaged loss functions O	i D

Pn
tD1
O	it=n, i D 1; 2; 3, are

calculated for each mj ; j D 1; : : : ; B . The optimal mk is chosen so that the relative differ-
ence j O	.mk/i � O	

.mk�1/
i j= O	

.mk�1/
i does not change significantly for at least two loss functions.

Such a procedure of selecting the block size can stabilize the measurement of losses. Using
this procedure, m D 100 was selected for the first data set, m D 130 was selected for the
second data set, and m D 300 for the third and fourth data sets analyzed in the following
section.
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Table 2. The averages and standard errors (in parenthesis) of loss measures for the daily returns of
5 U.S. bluechips

�1 �2 �3 MAE MSE

BIC 0.078 (0.001) 0.221 (0.006) 4.303 (0.218) 1.053 (0.032) 1.838 (0.068)
BPA 0.079 (0.002) 0.217 (0.012) 5.539 (0.725) 0.998 (0.032) 1.720 (0.062)
HS 0.074 (0.002) 0.185 (0.005) 3.827 (0.179) 0.992 (0.032) 1.718 (0.064)
DCC 0.071 (0.002) 0.177 (0.005) 3.526 (0.170) 1.002 (0.032) 1.726 (0.063)
GO 0.078 (0.002) 0.200 (0.006) 4.344 (0.212) 0.968 (0.031) 1.666 (0.061)
M1� 0.066 (0.001) 0.167 (0.005) 3.023 (0.149) 1.000 (0.033) 1.741 (0.064)

Note. �The method M2 has similar performance to the method M1, and thus is omitted.

7.1 Daily stock returns of 5 U.S. bluechips

This data contain p D 5 stocks randomly selected from 12 bluechips: aapl , am´n, axp,
bac, and c. The data were daily collected from January 1, 2015 to December 31, 2015 with
the number of observations n D 251. The observational values are multiplied by 100 for the
practical purposes. The appropriateness of using u D 1 and v D 1 in the LGARCH (u, v)
model (4.3) for estimating Dt is examined by Figure 1, which plots log Qd 2

j It against its lag-1

values log Qd 2
j It�1, j D 1; 2; : : : ; 5. As each plot shows a roughly linear relationship between

log Qd 2
j It and log Qd 2

j It�1, the LGARCH (1,1) model appears to be a reasonable choice.
Table 2 summarizes the averaged loss measures over time t and their standard errors in paren-

thesis for methods in comparison. From the results in Table 2, one can see that the proposed
method M1 generally outperforms other approaches regarding 	1, 	2, and 	3, and its perfor-
mance is comparable with some other methods in terms of MAE and MSE. We also note that
the BIC and BPA approaches, which only use a single fixed order of variables, do not provide
accurate estimates. The performance of the GO model is slightly better than other methods such
as the HS and DCC models in terms of MAE and MSE, but it is inferior to other methods under
loss measures 	1, 	2, and 	3. It is worth pointing out that the advantage of the proposed M1
method may not be apparent for small dimensionality of p, but its advantage is more evident in
the high-dimensional case for p as seen in the following examples.

7.2 Monthly stock returns of 12 U.S. bluechips

This data set with n D 251 returns and p D 12 stocks was monthly stock returns from
January 1990 to December 2010. The observational values are multiplied by 10 for the practical
purposes. The linear relationship between log Qd 2

j It and log Qd 2
j It�1 depicted in Figure 2 justifies

the proper use of u D 1 and v D 1 in the LGARCH (u, v) model.
Table 3 reports the averaged loss measures of the estimates over time t and their correspond-

ing standard errors (in parenthesis) for each method. From the results in Table 3, the proposed
methods M1 and M2 are comparable with the BPA method and considerably outperform other
approaches. In comparison with BPA, the proposed methods are better under 	2, 	3 and com-
parable regarding 	1, MAE and MSE. The HS and DCC models perform better than the BIC
method under all loss measures except MSE. The GO model shows the advantages in terms
of 	1, 	2, and 	3 compared with DCC model. By addressing the order issue of the MCD-
based approach, the proposed OA-CLGARCH models perform much better than the HS, DCC,
and GO models. Additionally, the performances of the M1 and M2 are very comparable in this
example. One explanation is that the number of variable p D 12 is relatively small for n D 251
observations so that the Lasso technique may not be able to show its full advantage.
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Figure 2. Scatter plots between log Ld 2
j It and log Ld 2

j It�1, j D 1; 2; : : : ; 12, for the monthly returns of 12 U.S. bluechips

Next, we consider one-step, two-step, and five-step ahead predictions for the proposed meth-
ods based on Algorithm 2. Specifically, we use the first k observations to estimate the model
and then predict the covariance matrices at time t D k C h, h D 1; 2; 5. For values of
k D 200; 201; : : : ; 250, Table 4 shows the results of one-step, two-step, and five-step ahead
predictions in terms of averaged loss measures over k and corresponding standard errors for dif-
ferent methods in comparison. The HS method can only give one-step ahead prediction because
its prediction at a future time point t� requires all the observations before time t�. From Table 4,
it is clear that the proposed methods are generally superior to the BIC, HS, DCC, and GO mod-
els and perform comparably with the BPA method. We also note that in terms of MSE, the
proposed methods are not as good as the BIC and BPA methods for the five-step ahead predic-
tion. One possible explanation is that the data in 2009 could contain abnormal observations due
to the financial crisis. Consequently, the proposed methods could be inferior to some extent for
conducting five-step ahead prediction at those time points. Extension of the proposed methods
for robustness will be discussed in Section 8.
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Table 3. The averages and standard errors (in parenthesis) of loss measures for the multivariate
series of monthly returns of 12 U.S. bluechips

�1 �2 �3 MAE MSE

BIC 8.850 (0.150) 8.909 (0.186) 0.820 (0.059) 0.321 (0.004) 0.192 (0.004)
BPA 2.250 (0.056) 2.218 (0.088) 0.111 (0.011) 0.170 (0.003) 0.059 (0.002)
HS 4.072 (0.148) 3.026 (0.109) 0.156 (0.015) 0.236 (0.005) 0.120 (0.006)
DCC 4.770 (0.455) 5.183 (0.330) 0.754 (0.089) 0.239 (0.011) 0.355 (0.098)
GO 3.105 (0.177) 2.807 (0.112) 0.168 (0.016) 0.260 (0.024) 0.469 (0.160)
M1 2.354 (0.084) 1.407 (0.033) 0.037 (0.002) 0.176 (0.003) 0.055 (0.002)
M2 2.379 (0.085) 1.404 (0.033) 0.038 (0.002) 0.193 (0.004) 0.065 (0.003)

Table 4. The averages and standard errors (in parenthesis) of loss measures for predictions at time points
t D k C h; k D 200; 201; : : : ; 250 of the monthly returns of 12 U.S. bluechips

�1 �2 �3 MAE MSE

h D 1

BIC 0.082 (0.004) 0.098 (0.005) 2.040 (0.215) 0.417 (0.015) 0.241 (0.012)
HS 1.192 (1.139) 0.060 (0.010) 0.871 (0.203) 0.322 (0.015) 0.255 (0.027)
BPA 0.041 (0.001) 0.048 (0.002) 0.286 (0.033) 0.274 (0.004) 0.139 (0.006)
DCC 0.068 (0.009) 0.084 (0.011) 2.683 (0.619) 0.390 (0.029) 0.809 (0.237)
GO 0.058 (0.009) 0.046 (0.003) 0.473 (0.076) 0.609 (0.099) 1.833 (0.767)
M1 0.032 (0.001) 0.037 (0.002) 0.373 (0.049) 0.279 (0.012) 0.177 (0.018)
M2 0.033 (0.001) 0.038 (0.002) 0.376 (0.054) 0.318 (0.013) 0.218 (0.021)

h D 2

BIC 0.061 (0.003) 0.107 (0.005) 2.294 (0.219) 0.457 (0.011) 0.286 (0.013)
BPA 0.039 (0.001) 0.047 (0.002) 0.246 (0.039) 0.317 (0.013) 0.140 (0.010)
DCC 0.086 (0.015) 0.080 (0.010) 2.239 (0.491) 0.448 (0.048) 1.626 (0.591)
GO 0.060 (0.009) 0.047 (0.003) 0.480 (0.077) 0.615 (0.101) 1.860 (0.780)
M1 0.034 (0.001) 0.043 (0.002) 0.376 (0.062) 0.287 (0.011) 0.250 (0.034)
M2 0.035 (0.001) 0.043 (0.002) 0.357 (0.055) 0.274 (0.016) 0.261 (0.043)

h D 5

BIC 0.078 (0.004) 0.117 (0.005) 2.314 (0.232) 0.470 (0.016) 0.350 (0.014)
BPA 0.047 (0.004) 0.055 (0.005) 0.424 (0.202) 0.336 (0.014) 0.170 (0.013)
DCC 0.110 (0.018) 0.086 (0.011) 2.436 (0.646) 0.518 (0.057) 2.649 (0.788)
GO 0.062 (0.009) 0.049 (0.003) 0.502 (0.082) 0.632 (0.106) 1.947 (0.822)
M1 0.083 (0.018) 0.044 (0.001) 0.425 (0.039) 0.430 (0.074) 0.899 (0.252)
M2 0.091 (0.010) 0.046 (0.001) 0.336 (0.039) 0.422 (0.068) 1.044 (0.354)

7.3 Weekly stock returns of 97 stocks in the S&P100

The third data set comprises n D 436 observations and p D 97 stocks in the S&P100 weekly
recorded from August 23, 2004 to December 12, 2012. The observational values are multiplied
by 100 for the practical purpose. Here, we also employ the LGARCH (1, 1) model for the
estimate of Dt . To justify the properness of employing LGARCH (1,1) model, Figure 3 reports
the scatter plots between log Qd 2

j It and log Qd 2
j It�1 for nine randomly selected stocks. The rest of

the stocks have similar linear patterns and hence their plots are omitted.
Table 5 reports the results for the performance measures 	1, 	2, 	3, MAE, and MSE. It

shows that the proposed method M1 appears to provide the best performance among all meth-
ods. It significantly dominates all other approaches in terms of MAE and MSE. Note that these
two criteria focus on the element-wise errors of O†, and the Lasso plays an effective role in
shrinking each element in the estimated covariance matrix. In contrast, the M2 method (using
the least squares) produces large values of MAE and MSE because the least squares estimation
does not perform as well as Lasso in large dimensional case p D 97. In comparison with the
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Figure 3. Scatter plots between log Ld 2
j It and log Ld 2

j It�1, j D 1; : : : ; 9, for the weekly returns of nine randomly selected
stocks in the S&P100

Table 5. The averages and standard errors (in parenthesis) of loss measures for the weekly returns of 97
stocks

�1 �2 �3 MAE MSE

BIC 0.0311 (0.0008) 0.0348 (0.0005) 12.12 (0.337) 9.004 (0.486) 364.0 (87.92)
BPA 0.0077 (0.0003) 0.0046 (0.0001) 0.154 (0.010) 3.877 (0.096) 36.12 (1.594)
HS 0.0078 (0.0003) 0.0100 (0.0004) 2.403 (0.213) 4.688 (0.169) 72.33 (6.354)
DCC 0.0093 (0.0005) 0.0085 (0.0003) 1.467 (0.117) 5.338 (0.223) 172.8 (27.32)
M1 0.0083 (0.0003) 0.0035 (0.0001) 0.045 (0.002) 2.963 (0.081) 28.69 (1.933)
M2 0.0087 (0.0005) 0.0023 (0.0001) 0.032 (0.002) 14.99 (0.241) 364.1 (15.88)

BPA method, the proposed methods is comparable under 	1 and perform better in terms of the
other loss measures.

We also evaluate the performances of one-, two-, and five-step ahead predictions for differ-
ent methods in comparison. With the estimated model from the first k observations, we make
predictions of the covariance matrices at time t D k C h, where h D 1; 2; 5. For values of
k D 350; 351; : : : ; 435, Table 6 summarizes the results from different methods by averaging
the loss measures over k. The results further confirm that the M1 method works substantially
better than other methods, especially in terms of	3, and the M2 seems to be the best regarding
the loss 	2.
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Table 6. The averages and standard errors (in parenthesis) of loss measures for predictions at time points
t D k C h; k D 350; 351; : : : ; 435 of the weekly returns of 97 stocks

�1 �2 �3 MAE MSE

h D 1

BIC 0.0414 (0.0010) 0.0314 (0.0013) 9.194 (0.954) 6.212 (0.266) 83.52 (7.579)
BPA 0.0111 (0.0005) 0.0066 (0.0001) 0.347 (0.043) 3.682 (0.262) 38.68 (4.877)
HS 0.0130 (0.0005) 0.0074 (0.0003) 0.564 (0.110) 3.146 (0.245) 31.25 (4.874)
DCC 0.0122 (0.0004) 0.0062 (0.0003) 0.325 (0.087) 3.263 (0.260) 34.38 (5.317)
M1 0.0152 (0.0006) 0.0047 (0.0001) 0.033 (0.003) 2.595 (0.201) 20.65 (2.942)
M2 0.0181 (0.0009) 0.0042 (0.0001) 0.043 (0.003) 13.92 (0.324) 279.9 (11.25)

h D 2

BIC 0.0412 (0.0010) 0.0315 (0.0013) 9.273 (0.962) 6.231 (0.269) 84.09 (7.647)
BPA 0.0116 (0.0005) 0.0065 (0.0001) 0.293 (0.374) 3.595 (0.260) 37.35 (4.750)
DCC 0.0123 (0.0004) 0.0060 (0.0003) 0.277 (0.076) 3.176 (0.259) 33.40 (5.240)
M1 0.0162 (0.0006) 0.0047 (0.0001) 0.037 (0.002) 2.692 (0.189) 20.97 (2.726)
M2 0.0191 (0.0010) 0.0043 (0.0001) 0.051 (0.003) 14.61 (0.351) 312.1 (12.87)

h D 5

BIC 0.0406 (0.0010) 0.0319 (0.0013) 9.532 (0.986) 6.293 (0.276) 85.94 (7.853)
BPA 0.0159 (0.0008) 0.0069 (0.0001) 0.234 (0.035) 3.385 (0.252) 35.02 (4.233)
DCC 0.0129 (0.0004) 0.0057 (0.0002) 0.191 (0.054) 2.982 (0.256) 31.08 (5.035)
M1 0.0231 (0.0010) 0.0052 (0.0001) 0.058 (0.004) 3.789 (0.104) 40.46 (2.299)
M2 0.0253 (0.0013) 0.0047 (0.0001) 0.082 (0.004) 18.83 (0.446) 566.6 (24.86)

Table 7. The averages and standard errors (in parenthesis) of loss measures for the weekly returns of 200
stocks

�1 �2 �3 MAE MSE

BIC 0.7780 (0.0531) 0.4720 (0.0108) 93.946 (2.169) 52.067 (8.873) 91.231 (14.44)
BPA 0.2942 (0.0274) 0.0073 (0.0002) 1.6353 (0.199) 5.3089 (0.129) 31.041 (1.029)
HS 0.3457 (0.0472) 0.0096 (0.0003) 1.5940 (0.074) 6.0723 (0.243) 20.892 (0.543)
DCC 0.5094 (0.0176) 1.0711 (0.0290) 1.5073 (0.080) 2.1448 (0.036) 30.173 (0.810)
M1 0.3119 (0.0279) 0.0061 (0.0001) 0.4445 (0.026) 5.0369 (0.124) 20.167 (1.072)
M2 0.5890 (0.0591) 0.0033 (0.0001) 0.2132 (0.004) 28.335 (0.280) 37.537 (0.413)

7.4 Weekly stock returns of 200 stocks from the S&P500

The fourth data set is used for evaluating the performance of the proposed methods in a
much higher dimensional situation, which has n D 436 observations and p D 200 variables.
It combines the third data set with additional 103 stocks chosen from the S&P500, weekly
recorded from August 23, 2004 to December 12, 2012. The observational values in the data
are multiplied by 100 for the practical purpose. The LGARCH (1, 1) model is used in the
estimation.

Table 7 reports the performance measures	1,	2,	3, MAE, and MSE obtained from differ-
ent methods in comparison. The proposed M1 appears to be the best among all approaches. It
outperforms other methods regarding MAE and MSE. In terms of	2 and	3, the proposed M2
dominates all other approaches, and the M1 method is the second best. In addition, when the
number of variables p is large, the performance of the BPA is not very promising any more. In
contrast, the proposed OA-CLGARCH models work consistently well in the high-dimensional
settings.

7.5 Portfolio optimization

To further investigate the performance of the proposed models, we apply the portfolio opti-
mization as a case study. A minimum variance portfolio optimization problem (Engle, Ledoit
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Table 8. The comparison of portfolio performance measures for monthly stock
returns of 12 U.S. bluechips.

BIC HS BPA DCC GO M1 M2

AVG 1.902 0.599 1.853 1.432 0.625 1.689 1.627
SD 2.599 2.466 2.170 2.220 2.125 2.020 2.146
AVG/SD 0.732 0.243 0.854 0.645 0.294 0.836 0.758

Table 9. The comparison of portfolio performance measures for weekly
stock returns of 97 stocks in the S&P100

BIC HS BPA DCC M1 M2

AVG 10.93 9.988 10.70 8.738 9.934 9.572
SD 17.09 11.14 8.007 8.800 7.338 8.229
AVG/SD 0.640 0.897 1.336 0.993 1.354 1.163

& Wolf, 2017) is formulated as

min
w

w0†w

subject to w01 D 1;
(7.1)

where w D .w1; : : : ; wp/ is a portfolio, and 1 denotes a p � 1 vector of ones. The † is the
covariance matrix of asset returns. In practice, the natural strategy of obtaining a solution of
the portfolio w is to replace the unknown covariance matrix † in (7.1) by an estimate O†. Now,
we report the performance measures of each approach for monthly stock returns of 12 U.S.
bluechips and weekly stock returns of 97 stocks in the S&P100.

In the 12 U.S. bluechips data set, we use the first k observations to estimate the model and
then predict the covariance matrices O†kC1 at time kC1; k D 200; 201; : : : ; 250. The estimated
portfolio OwkC1 is the solution of (7.1) by replacing † with O†kC1. The performance measures
of interest include the average annual realized return

AVG D
1

51

250X
kD200

12 	 Ow0kC1ykC1;

their standard deviation (SD) and the information ratio AVG/SD. The results are summarized in
Table 8. Similarly, for the 97 stocks in the S&P100, the first k observations are used to estimate
the model. Then we predict the covariance matrices Ȯ kC1 at time kC1; k D 350; 351; : : : ; 435.
The performance is measured by the average annual realized return

AVG D
1

86

435X
kD350

52 	 Ow0kC1ykC1;

their SD and the information ratio AVG/SD. The results are summarized in Table 9.
Note that the objective function in the portfolio optimization (7.1) is to minimize the variance

rather than maximize the realized returns. Thus, the performance of the estimated portfolio
should be primarily examined by how successfully it produces a small SD. A high value of AVG
and a large ratio of AV/SD are also surely desirable as a secondary importance in evaluating the
performance of the proposed methods.

From the results in Table 8, it is clear that the proposed M1 provides the smallest value
of SD in comparison with other methods. In terms of the ratio AVG/SD, the proposed M1
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performs as the second best right after the BPA method, which produces higher value on AVG
but with relatively larger SD. It is seen that although the BIC approach produces the highest
value on AVG, its SD value is the largest. For the case of the dimensionality p D 97 being
large as reported in Table 9, the proposed M1 works substantially well with the largest AVG/SD
and the smallest value for SD. The BPA method produces relatively high AVG value, but also
large SD value, hence, resulting in slightly lower AVG/SD than the M1 method. Although the
BIC method aslo produces the largest AVG value, its SD is the worst among the methods in
comparison. The HS and DCC do not perform as well as BPA and the proposed methods. We
also note that there are some convergence problems in the implementation of the HS method,
especially for the case of large p.

8 DISCUSSION

In this paper, we have introduced an order-averaged CLGARCH (OA-CLGARCH) model
based on the MCD of covariance matrix by using a random sample from the population of
all permutations of p variables. It provides accurate covariance matrix estimation and accurate
prediction of the covariance or volatility matrices at future time points. Analysis of simulations
and four real data examples of growing dimensions shows the superior performance of our
proposed OA-CLGARCH model. It is worth pointing out that the proposed method is, indeed,
in the spirit of O-GARCH, GO-GARCH, and RARCH (Noureldin et al., 2014). But the MCD-
based transformation in the proposed method is more efficient in estimation and computation
than PCA or ICA-based transformation used in O-GARCH and GO-GARCH.

In finance applications, robustness of the estimation is an important concern because the data
may have heavy-tails and outliers, especially due to financial crisis. We will examine the impact
of the normality assumption and consider to relax the normality assumption for the proposed
method. One possibility is to consider the assumption of the multivariate t distribution. We
have also experimented with the alternative estimator using element-wise median of OTk and
ODk instead of taking their averages. This idea was applied to the 12 U.S. bluechips data set in
Section 7.2, showing a promising performance on robust estimation for covariance matrices.
Note that the proposed method can be potentially exposed to biases due to the robustness issue
of the loss function. Some development on these aspects (Laurent et al., 2012, 2013; Patton,
2011) can be used to further improve the proposed model.
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APPENDIX A

In the Appendix, we provide the R codes for the implementation of the proposed method in
order to help readers better understand the methodology. The full R codes for implementing
Algorithm 1 is available at https://github.com/xiaoningmike/OA-CLGARCH-mode/tree/123.

R codes-Part I

Below are the R codes to define the Cholesky factor matrices T and D and then solve the
regressions (2.2). We use data_x, T and d to respectively represent the data matrix, the matrix
T and the diagonal of matrix D.
## data_x: data matrix

## T: Cholesky factor matrix T

## d: the diagonal of Cholesky factor matrix D

p = ncol(data_x) # p is the number of variables

n = nrow(data_x) # n is the sample size

T = diag(rep(1,p))

d = rep(1,p)
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## d[1] is the first diagonal element of matrix D according to (2.3)

d[1] = var(data_x[,1])

## e records residuals for each regression in (2.2)

e = matrix(data = NA, nrow = n, ncol = p)

e[,1] = data_x[,1]

Next, the for loop is used to fit a series of regressions (2.2), when each variable is regressed
on its predecessors. We first consider the last variable Yp , and then sequentially Yp�1; Yp�2; : : :,
as the responses.

for(i in c(p:2))

{

y = data_x[,i] # y is the response for the ith regression

x = data_x[,(1:(i-1))] # x is the data matrix for the ith regression

beta = solve(t(x) %*% x) %*% t(x) %*% y # the least squares estimates

T[i,(1:(i-1))] = -beta # the ith row of matrix T is -beta

e[,i] = y - x %*% beta # e[,i] is the residual for the ith regression

d[i] = var(e[,i]) # d[i] is the ith element of matrix D

}

A1 R codes-Part II

The following codes construct the matrix P� and the permuted data matrix Y� D YP� in
(3.1) for a permutation order � .

## order: a permutation order

## P_pi: the permutation matrix corresponding to the order

P_pi = matrix (data=0, nrow=p, ncol=p)

for(k in 1:p)

{P_pi[order[k], k] = 1} # construct the permutation matrix

new_x = data_x %*% P_pi # new_x is the permuted data matrix under the order

A2 R codes-Part III

The Lasso regressions (3.2) can be easily implemented in R by function glmnet.�/ from
Package glmnet as follows
## x: data matrix

## y: response variable

library(glmnet)

lasso.fit = glmnet(x, y, family = ’gaussian’, alpha = 1)

## use 10-fold cross validation to choose the optimal tuning parameter

lambda = cv.glmnet(x, y, nfolds=10, alpha = 1)$lambda.min

beta = as.vector(coef(lasso.fit, s = lambda))

A3 R codes-Part IV

The following R codes demonstrate how to obtain the order-averaged estimate Q† in (3.4)
based on the MCD. We use T_{l} and d_{l} to record estimates of T and diagonal elements of
matrix D for each order of variables. The for loop goes through all of M permutation orders
to construct the estimates of matrices T and D under each order. The variable perm is a M � p
matrix with each row representing a permutation order.
T_l = array(data=0, dim=c(p,p,M))

d_l = array(data=0, dim=c(M,p))

## estimate matrices T and D for each order of variables
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for(i in 1:M)

{

order = perm[i,] # take one order out of M orders

## construct permutation matrix

P_pi = matrix(data=0, nrow=p, ncol=p)

for(k in 1:p)

{P_pi[order[k], k] = 1}

new_x = data_x %*% P_pi # permute data matrix based on the order

## Next, we combine R Part One and Two to estimate matrix T and D for

## a given order, employing Lasso regression in R Part Three.

## The variables T and d in the following codes are the resultant

## estimates of matrix T and diagonal elements of matrix D.

## Finally, we transform them back to the original order, recorded

## as variables T_l and d_l.

...

T_l[,,i] = P_pi %*% T %*% t(P_pi) # transform to the original order

d_l[i,] = diag(P_pi %*% diag(d) %*% t(P_pi))

}

## take average of estimates of T and D according to (3.4)

T_ave = apply(T_l, 1:2, mean)

d_ave = colMeans(d_l)

## sigma_est is the order-averaged estimate

sigma_est = solve(T_ave) %*% diag(d_ave) %*% solve(t(T_ave))

A4 R codes-Part V

The R codes below implement the moving block approach and obtain Ld 2
j It in (4.4). We use

d.sq.mw to record the values of Ld 2
j It . The for loop goes through all the number of observations

to construct the moving blocks for the return at each time t . The variable x.block in the codes
represents the data matrix Yt .
n = nrow(data_x) # sample size

p = ncol(data_x) # number of variables

s.square = NULL # record sample variance of predictors

d.sq.mw = matrix(NA, n, p-1)

for (i in 1:n)

{

## construct moving blocks

if ((i-(q-1)/2>0) & (i+(q-1)/2<=n))

{x.block = data_x[(i-(q-1)/2):(i+(q-1)/2),]}

else if (i-(q-1)/2<=0)

{x.block = data_x[1:(i+(q-1)/2),]}

else if (i+(q-1)/2>n)

{x.block = data_x[(i-(q-1)/2):n,]}

s.square = rbind(s.square, diag(cov(x.block)))

## fit linear regressions to obtain values of (4.4)

for (j in 2:p)

{

## each variable is regressed on its predecessors
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mod.mw = lm(x.block[,j] ~ x.block[,1:(j-1)]-1)

d.sq.mw[i,j-1] = var(mod.mw$residuals) # variance of the residuals

}

}

d.sq.mw = cbind(s.square[,1], d.sq.mw)

A5 R codes-Part VI

The following codes implement the parameter estimation of (4.3). Here, we use u D 1 and
v D 1 as an example.
n = nrow(e)

p = ncol(e)

s.sq.lag1 = log(d.sq.mw[1:(n-1),]) # initial value to fit model (4.3)

s.sq.lag0 = log(d.sq.mw[2:n,]) # initial value to fit model (4.3)

e.lag1 = log(e[1:(n-1),]^2+10^-6)

I1 = I(e.lag1>=0) # indicator function in (4.3)

I2 = I(e.lag1<0) # indicator function in (4.3)

lambda = NULL # the parameter estimates of (4.3)

log.d.sq = NULL # the log of diagonal elements of

# matrix D for time series data

for (j in 1:p)

{

## obtain the initial values from least squares

start = lm(s.sq.lag0[,j]~I(I1[,j]*e.lag1[,j])+I(I2[,j]*e.lag1[,j])

+s.sq.lag1[,j])

s.coef = start$coef

## function estimLogGARCH fits the log-GARCH model (4.3) using

## the quasi-maximum likelihood method

fit = estimLogGARCH(s.coef[1],s.coef[2],s.coef[3],s.coef[4],e[,j],1e4)

lambda = rbind(lambda, fit$coef)

log.d.sq = cbind(log.d.sq, fit$log.sig2)

}

In the above codes, the variable e is an n � p matrix with its j th column being L�.j /. The vari-
ables s.sq.lag0 and s.sq.lag1 are the initial values for log d 2

j It and log d 2
j It�1. The variable

e.lag1 is the initial value for log �2
j It�1. The variables I1 and I2 are the indicator functions in

(4.3). The variable lambda denotes the parameter estimates obtained by quasi-maximum like-
lihood approach. We use log.d.sq to record the estimates of log d 2

j It obtained from model
(4.3), that is, the log of diagonal elements of matrix D for the time series data. The self-
written function estimLogGARCH is used to estimate the parameters in the log-GARCH model
(4.3) via the quasi-maximum likelihood approach. It calls another two functions VarAsymp and
objf.loggarch, which are provided together in the following

# Function estimLogGARCH estimates the parameters in the log-GARCh model.

estimLogGARCH = function(omega, alpha.plus, alpha.moins, beta,eps, factor,

petit = sqrt(.Machine$double.eps), r0=10)

{

petit = factor*petit

n = length(eps)

eps.plus = rep(0,n)
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eps.moins = rep(0,n)

for(i in 1:n)

{

{if(eps[i]>=0) eps.plus[i] = log(max(eps[i],petit)^2)}

{if(eps[i]<0) eps.moins[i] = log(max(-eps[i],petit)^2)}

}

valinit = c(omega, alpha.plus, alpha.moins, beta)

sig2init = var(eps[1:min(n,5)])

res = nlminb(valinit,objf.loggarch,lower = c(-Inf,-Inf,-Inf,-1+petit),

upper = c(Inf,Inf,Inf,1-petit), eps=eps, n=n, sig2init=sig2init,

eps.plus=eps.plus, eps.moins=eps.moins, r0=r0)

# record the estimates of the parameters in log-GARCH model

omega = res$par[1]

alpha.plus = res$par[2]

alpha.moins = res$par[3]

beta = res$par[4]

var = VarAsymp(omega,alpha.plus,alpha.moins,beta,eps,sig2init,petit,r0)

return(list(coef = res$par, residus = var$residus, var=var$var,

log.sig2 = var$log.sig2, loglik = res$objective))

}

# Function VarAsymp is used in function estimLogGARCH.

VarAsymp = function(omega,alpha.plus,alpha.moins,beta,eps,sig2init,petit,r0)

{

n = length(eps)

derlogsigma2 = matrix(0, nrow=4, ncol=n)

log.sig2 = rep(0,n)

log.sig2[1] = log(sig2init)

derlogsigma2[1:4,1] = 0

for(t in 2:n)

{

vec = c(1,0,0,0)

log.sig2[t] = omega + beta*log.sig2[t-1]

if(eps[t-1] > petit)

{

log.sig2[t] = log.sig2[t] + alpha.plus * log(eps[t-1]^2)

vec[2] = log(eps[t-1]^2)

}

if(eps[t-1] < -petit)

{

log.sig2[t] = log.sig2[t] + alpha.moins * log(eps[t-1]^2)

vec[3] = log(eps[t-1]^{2})

}

vec[4] = log.sig2[t-1]

derlogsigma2[1:4,t] = vec+beta*derlogsigma2[1:4,(t-1)]

}

sig2 = exp(log.sig2[(r0+1):n])

eta = eps[(r0+1):n]/sqrt(sig2)
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eta = eta/sd(eta)

J = derlogsigma2[1:4,(r0+1):n] %*% t(derlogsigma2[1:4,(r0+1):n])/(n-r0)

kappa4 = mean(eta^4)

{if(kappa(J)<1/petit) inv = solve(J) else inv = matrix(0,nrow=4,ncol=4)}

var = (kappa4-1)*inv

return(list(var = var, residus = eta, log.sig2 = log.sig2))

}

# Define the function which needs to be minimized in estimLogGARCH function.

objf.loggarch = function(vartheta, eps, n, sig2init, eps.plus, eps.moins, r0)

{

omega = vartheta[1]

alpha.plus = vartheta[2]

alpha.moins = vartheta[3]

beta = vartheta[4]

log.sig2 = rep(0,n)

log.sig2[1] = log(sig2init)

for(t in 2:n){

log.sig2[t] = omega + beta*log.sig2[t-1] + alpha.plus*eps.plus[t-1]

+ alpha.moins*eps.moins[t-1]}

sig2 = exp(log.sig2[(r0+1):n])

qml = mean(eps[(r0+1):n]^2/sig2 + log(sig2))

qml

}

[Received June 2018, accepted October 2019]
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