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A Cost-Efficient Data-Driven
Approach to Design Space
Exploration for Personalized
Geometric Design in Additive
Manufacturing

Additive manufacturing (AM) is considered as a key to personalized product realization as it
provides great design flexibility. As the flexibility radically expands the design space,
current design space exploration methods for personalized geometric designs become
time-consuming due to the use of physically based computer simulations (e.g., finite
element analysis or computational fluid dynamics). This poses a significant challenge in
design for an efficient personalized product realization cycle, which imposes a tight compu-
tation cost constraint to timely respond to every new requirement. To address the challenge,
we propose a cost-efficient data-driven design space exploration method for personalized
geometric design in AM, enabling feasible design regions under the computation constraint.
Specifically, the proposed method adopts surrogate modeling of efficient voxel model-based
design rules to identify feasible design regions considering both manufacturability and per-
sonalized needs. Since design rules take much less time for evaluation than physically based
simulations, the proposed method can contribute to timely providing feasible design regions
for an efficient personalized product realization cycle. Moreover, we develop a cost-based
experimental design for surrogate modeling, which enables the evaluation of additional
design points to provide more precise feasible design regions under the computation cost
constraint. The merits of the proposed method are elaborated via additively manufactured
microbial fuel cell (MFC) anode design. [DOI: 10.1115/1.4050984]

Keywords: computational foundations for additive manufacturing, computer aided design,
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1 Introduction

Additive manufacturing (AM) allows unprecedented design
freedom in manufacturing a large variety of parts with complex geo-
metric structures [1]. Therefore, AM is considered as the key to
popularizing personalized product, so that every product can be
highly optimized to a specific personalized need or special function-
ality. A motivating example is designing a personalized anode
structure for a microbial fuel cell (MFC), which has been inten-
sively studied to harvest electricity from wastewater through
bio-electrochemical reactions [2]. Specifically, to achieve optimal
performance, the MFC anode structure should be personalized to
maximize the performances (e.g., power density) in specific waste
water treatment conditions. First, the overall geometric shape of
MEFC anode will be tailored according to the chamber design. The
requirements on power density, operating condition (e.g., seawater),
and/or the necessity of stack-ability [3] call for different chamber
designs, which involves the decisions on MFC chamber design,
such as tubular type, flat plate type, and H-shaped type.
Second, the cavity size of the MFC anode should be optimized
according to the operating condition of the MFC. Typically, a
smaller cavity size is preferred to provide a larger surface area for
bio-electrochemical reactions, but too small cavity size could
result in clogginess to impact the long-term operability of a MFC
[4]. The feasible range of cavity size is related to the materials
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selected for the anode structure and the bacteria types. For
example, when a bamboo charcoal tube is used as the electrode
material, it is reported that the cavity size is preferred to be larger
than 2 mm to prevent clogginess after a long-term operation [5].
On the other hand, it is known that a certain combination of bacteria
species and anode material (e.g., Geobacter species and gold elec-
trode) form thicker bio film (i.e., requires larger cavity), while
another combination (e.g., Shewanella species and gold electrode)
does not form biofilm at all (i.e., allowing smaller cavity) [6].
Thus, different operating condition necessitate the personalization
of MFC anode structure not only in terms of the overall shape but
also in terms of internal anode structure.

In the context, AM is regarded as a promising option to fabricate
a personalized MFC anode as it can provide personalized geometry
with a high surface-volume ratio for optimal performance [7,8].
However, to fully take advantage of the potential of AM in popular-
izing personalized products, it is necessary to timely identify an
optimal geometric design for every new personalized need, which
imposes a tight computation cost constraint in design space
exploration.

Therefore, an efficient design exploration method is needed for
timely identifying feasible design regions conforming to a person-
alized need, especially within a tight computation cost constraint.
However, as AM’s design freedom has radically expanded the
design space, design space exploration relying on physically
based simulations (e.g., finite element analysis or computational
fluid dynamics) typically takes too much time, which results in
the computation bottleneck to the efficient exploration of the
product design [9,10]. For example, in the case of the motivating
example, it is necessary to simulate the biofilm build-up on the MFC
anode surface to identify potential clogginess after a long-term
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operation, which takes too much time (e.g., at least several hours per
each run) to timely explore the design space [11]. In the context,
efficient exploration of the design space for AM, especially applica-
ble to a tight computation cost constraint, is an important catalyst to
popularize personalized product realization via AM.

Providing an efficient design space exploration for personalized
geometric design, which is applicable to a tight computation cost
constraint, is important due to the following advantages. First, an
efficient design space exploration can address the design bottleneck,
which is not feasible with design space exploration relying on phys-
ically based computer simulations. Second, a design space explora-
tion method, designed to provide feasible design regions within a
tight computation cost constraint, will provide a practical mecha-
nism to enable efficient personalized product realization in a wide
variety of application domains. Third, a design space exploration
method capable of supporting personalized geometric design will
provide a quantitative method to evaluate how design variables
and process parameters interact with the manufacturability and con-
formance to personalized needs. In other words, addressing the
design bottleneck for the personalized geometric design for AM
will contribute to popularizing personalized product realization,
and thus open a wide variety of new opportunities. However, exist-
ing design methods are not suitable to satisfy the needs of timely
delivering personalized geometric design for AM.

To support the design process tailored for AM, a new family of
methods called design for additive manufacturing has been
studied. In terms of geometric design, optimization-based design
is receiving much attention as AM affords extensive design
freedom. Specifically, the methods utilize iterative topology optimi-
zation to derive an unconventional optimal design, which is enabled
via AM’s design flexibilities [12-14]. However, it is extremely
challenging to timely explore a comprehensive design space (i.e.,
the design space incorporates both design variables and process
parameters) with physically based simulations, especially in the
case of multi-physics applications [15] similar to the motivating
example. To address the issue, some design approaches consider
avoiding comprehensive physically-based simulations, such as pro-
cedural design via homogenization of stochastic foam structure
[16]. However, such method cannot easily control local features,
and they may not applicable to general product design where
local features need to be well controlled (e.g., for MFC anode,
local cavity size should be carefully controlled to prevent cloggi-
ness). Also, as existing optimization-based designs do not properly
consider user needs and the interaction between design variables
and process parameters yet [9], they are not suitable to support per-
sonalized design for AM in a timely manner. On the other hand,
some of the existing works have tried extending conventional
Design for Manufacturing (DfM) for AM by employing design
for manufacturing rules. Specifically, efficient mechanisms to eval-
uate design constraints related to layer-wise AM, such as minimum
feature size, overhang angle, and surface roughness, have been
developed to identify the manufacturability of the arbitrary
design. For example, voxel model-based implementation of
design rules [17] and heat kernel signature-based implementation
of design rules [18] have been proposed for the efficient implemen-
tation of design for manufacturability. While the methods provide a
relatively more efficient method to evaluate the feasibility of a
design, the methods have not translated the feasibility into a quan-
titative design space incorporating both design variables and
process parameters, nor considered translating user needs into quan-
titative design rules. In the meantime, a few studies have investi-
gated the application of data-driven methods to support design for
AM, including the use of Bayesian network classifiers [19] and
Gaussian process regression model [20] for design space explora-
tion. Even though data-driven methods seem promising to speed
up the design process to support timely personalized product reali-
zation, the existing works still do not properly consider personalized
needs [19] or still require physically based simulations for meta-
modeling [20], which limit their applications to timely deliver per-
sonalized product realization.
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In short, current optimization-based design and design space
exploration methods are not sufficiently efficient to satisfy a tight
computation cost constraint due to the computation cost of physi-
cally based computer simulations. Moreover, even though the inter-
action between design variables/process parameters and
personalized needs are important considerations, the existing
methods do not properly consider such needs in design space explo-
ration. Such a lack of efficient design space exploration for the per-
sonalized geometric design for AM seems to limit AM’s capability
to popularize personalized product realization.

To address the challenges, we propose a cost-efficient data-
driven design exploration method in the personalized geometric
design for AM, which can efficiently provide tailored feasible
regions to facilitate the follow-up design exploitation (e.g., more
detailed simulation-based exploration or design optimization). Spe-
cifically, the proposed design exploration method relies on the sur-
rogate modeling of efficient design rules and the cost-based
experimental design, founded on a quantitative design space incor-
porating both design variables and process parameters. The pro-
posed method has three steps. First, a quantitative design space
for AM is proposed, which is built upon the combination of
bottom-up design strategy and voxel modeling to incorporate
both design variables and process parameters. Specifically, the
bottom-up design strategy allows a small number of design vari-
ables to define the overall geometry with a lattice structure, and
voxel modeling allows AM process parameters (e.g., layer thick-
ness) to represent the overall geometry with as-fabricated voxel
model [21]. Second, using efficient voxel model-based design
rules, the distribution of feasibility-related features are timely
derive via surrogate modeling. It should be noted that the
feasibility-related features include the features related to the manu-
facturability (e.g., minimum feature size) and conformance to per-
sonalized needs (e.g., MFC anode cavity size) to incorporate
personalization in design space exploration. In surrogate modeling,
we propose the cost-based experimental design that adaptively
favors design points with lower evaluation costs while maintaining
space-filling-ness as possible. Lastly, a set of thresholds, which is
based on domain knowledge, are applied to the distributions of
the feasibility-related feature to identify feasible/infeasible design
regions over the design space.

There are four major contributions of the proposed method. First,
the proposed method provides a quantitative design space for AM
incorporating both design variables and process parameters. There-
fore, it provides the foundation of quantifying the correlation
between design variables/process parameters and manufacturabil-
ity/conformance to personalized needs. Second, as the proposed
design space can uniquely represent each geometric design via
as-fabricated voxel model, the proposed method can systematically
implement efficient design rules regarding manufacturability and
personalized needs via simple Boolean and algebraic operations
(e.g., counting the number of consecutive voxels to estimate
feature size). As the evaluation of the design rules takes at most
several minutes, this ensures the efficiency of the proposed
method, such that it can effectively facilitate the follow-up design
exploitation. Third, as the proposed experimental design allows
an additional number of design points within the same computation
cost constraint, it contributes to providing more precise feasible
design regions especially when a tight cost constraint is applied.
Lastly, the proposed method can be easily extended to a wide
variety of applications involving layer-wise AM processes
without much modifications and applicable to various domains
when relevant design rules are available. For example, one can
obtain the manufacturability rules on stereolithography [22] and
dimensioning/selection rules on prosthesis design [23,24] and
apply the proposed method in prosthetic hand design for additive
manufacturing. Similarly, the design rules on printed electronics
[25] can be acquired to apply the proposed method to facilitate per-
sonalized foldable/rollable electronics design [26]. Combined with
automated rule extraction frameworks [27], such design rules can
be efficiently acquired from unstructured text with minimal
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intervention of domain experts. The proposed method facilitates the
design exploitation by significantly narrowing down the entire
design space into feasible design regions. Hence, it can address
various types of practical design problems when coupled with the
existing works on design space mapping for reconfigurable and
flexible systems [28-31]. In summary, the proposed method can
address the computation bottleneck and systematically incorporate
manufacturability and personalized needs via efficient design
rules and is capable of providing feasible design regions within a
tight computation cost constraint. The proposed method can be
applied to the personalized geometric design for systems where
adopting a lattice structure is beneficial. Since lattice structures
are being actively adopted to achieve a wide variety of mechani-
cal/thermal/electrical properties (e.g., high strength-to-weight
ratio, high energy absorption, and thermal insulation) [21], the pro-
posed method can contribute to realizing the effective personalized
product realization cycle in many different applications, such as the
personalized geometric design of a lightweight prosthesis conform-
ing to patients’ anatomy.

The remainder of this paper is organized as follows. In Sec. 2, we
review the existing work on design space exploration. In Sec. 3, we
detail the proposed design space exploration method by highlight-
ing surrogate modeling via voxel model-based design rules and
cost-based experimental design. In Sec. 4, the proposed method is
applied to personalized MFC anode design as a case study.
Finally, we will provide our conclusions and discuss the future
work in Sec. 5.

2 State-of-the-Art

Design space exploration refers to the procedure to identify all
feasible design alternatives satisfying a set of requirements (e.g.,
performance requirements and manufacturability). Specifically,
the main objective of design space exploration to identify the
boundary between feasible and infeasible designs [20]. In this
section, the existing design space exploration methods are
reviewed, and the challenges in the methods are presented. Based
on the literature, existing design space exploration methods can
be categorized into two types: exhaustive search and statistical
inference.

Exhaustive search approach first divides a design space into a set
of hypercubes and then evaluates design samples in the hypercubes
via computer simulations or physical experiments. In exhaustive
search approach, the boundary between feasible and infeasible
designs is usually expressed in an explicit way, such as intervals
of design variables or via visualization tools. The examples of the
exhaustive search approach include inductive design exploration
method proposed by Choi et al. [32] and surrogate-assisted illumi-
nation method proposed by Morris et al. [19]. However, exhaustive
search approach requires the evaluation of too many designs to
identify precise boundaries, which makes the approach not suitable
for the comprehensive design space provided by AM.

On the other hand, statistical inference approach first evaluates a
relatively smaller number of design samples and then a probabilistic
model is used to identify the boundary between feasible and infea-
sible designs. In statistical inference approach, the boundary
between feasible and infeasible designs can also be represented in
an implicit way, such as classification models. Statistical inference
approach can be further classified based on the type of probabilistic
model used for design space exploration. For example, Matthews
et al. and Shahan et al. demonstrated the method based on Bayesian
network classifier [33,34], and Chen and Fuge presented the method
based on Gaussian process classifier [35]. Also, a recent approach
utilized both of Bayesian network classifier and Gaussian process
regression [20] to improve the classification performance.
However, as the methods still rely on computer simulations or phys-
ical experiments, it is too time-consuming, thus not able to timely
address the needs for the personalized design. Moreover, for the
personalized design for AM, computer simulation cost becomes
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more demanding, as the simulation may involve multi-physics
simulation for complex shapes.

Existing design space exploration methods are not suitable to
timely deliver personalized design for AM in a comprehensive
design space incorporating design variables and process parameters.
Thus, there is a need for an efficient design space exploration
method, which can timely support personalized design. To
address the challenge, we demonstrate an efficient data-driving
design space exploration method that utilizes surrogate models of
efficient design rules. Also, we propose the cost-based experimental
design, which can provide more precise feasible design regions
within a tight computation cost constraint for the efficient personal-
ized product realization cycle.

3 Proposed Method

3.1 Overview. Figure 1 shows an overview of the proposed
design exploration method (top), with the main contributions of
the proposed method marked as bold, along with its overall
system informatics (bottom). The proposed method is suitable for
systems with the assumption that (1) adopting a lattice structure is
beneficial to identify optimal designs via AM (e.g., when a light-
weight geometric design is desired) and (2) reliable design rules
related to manufacturability and personalized functionality exist.
When the aforementioned assumptions hold, the proposed method
is applicable to many different systems (e.g., prosthetic hand
design). The system informatics provides the digital foundation of
the proposed method. In the system informatics, it is shown that a
set of design variables and process parameters (x; to x,) defines a
CAD model with a lattice structure, and then the CAD model is con-
verted into a voxel model to enable the derivation of
feasibility-related features (e; to e,) via voxel model-based design
rules. The features include manufacturability-related features (e.g.,
minimum feature size) and personalized needs-related features
(e.g., cavity size for bamboo charcoal MFC anode). Next, a set of
feasibility threshold values based on the design rules (e.g.,
“minimum feature >2 mm” or “MFC anode cavity size >2 mm”)
are applied to e;—e, to derive binary feasibility indicators (z;
to z,). Lastly, the overall feasibility (y) of the design is derived
from the interaction of z; to z,. Given the system informatics, the
proposed design exploration methods translate the process of iden-
tifying the feasibility of designs into a quantitative design space
through the following steps: defining quantitative design space, sur-
rogate modeling of design rules, and identifying feasible design
regions.

Step 1. Defining quantitative design space: In this step, a set of
design variables and AM process parameters are used to
define a quantitative design space providing the foundation
of design space exploration.

Step 2. Surrogate modeling of design rules: In this step, a set of
design rules are identified, and the voxel model-based imple-
mentations of the design rules are used to evaluate
feasibility-related features. Then, the cost-based experimen-
tal design is used to construct surrogate models of the
design rules which generate the distribution of the
feasibility-related features across the design space.

Step 3. Identifying feasible design regions: In this step, a set of
feasibility threshold values (based on domain knowledge)
are applied to the distribution of the feasibility-related fea-
tures to identify the distribution of binary feasibility indica-
tors across the design space. Then, the intersection of the
distribution yields feasible design regions, which provide
the significantly narrowed down design space for efficient
design exploitation.

3.2 Quantitative Design Space. The objective of this step is
to define a quantitative design space that incorporates design vari-
ables and process parameters directly affecting geometric design.
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Fig. 1

An overview of the proposed method (top), with the main contributions of the proposed

method marked as bold, along with its overall system informatics (bottom)

Figure 2 shows how the design space is defined. Specifically, we
first adopt a bottom-up design strategy to define a complex lattice
structure with a set of design variables, and then translate the struc-
ture into a voxel model to reflect a more realistic shape from layer-
wise AM process based on a set of process parameters. As we focus
on geometric design, the process parameters not directly affecting
geometric design (e.g., extrusion temperature, printing speed) are
not incorporated.

3.2.1 Bottom-Up Design Strategy. Lattice structure has been
widely adopted to maximize AM’s capability, as it provides supe-
rior properties (e.g., strength-to-mass ratio, surface-to-volume
ratio) not obtainable with conventional manufacturing processes
[36]. For example, lattice structure has been adopted to design addi-
tively manufactured MFC anodes in several pieces of literature, due
to its good surface-to-volume ratio [7,8,37]. In this context, we
adopt the bottom-up design strategy to define the geometric shape
of a design with a lattice structure, as shown in the top-left of
Fig. 2. First, the type of generic unit cell is chosen from the unit
cell library. The examples of unit cell type include triply periodic
minimal surface (TPMS)-based unit cells [38] or octet-truss unit
cells [39]. Second, the properties of the unit cell are chosen to
define its specific shape. For TPMS-based unit cell, unit cell size
and volume fraction can be controlled as shown in Fig. 2. Once
the design variables (i.e., unit cell type and properties) are
chosen, they represent a uniquely defined lattice structure. In case
that the design may have different sizes, the overall dimension
can be also added as design variables to represent the design
space. The advantage of the approach is that a lattice structure
with complex geometry can be uniquely represented with a rela-
tively smaller number of quantitative design variables, compared
to other freeform object representations.

3.2.2 Voxel Representation. Once the design variables are
chosen, the overall geometric shape of a design is defined.
However, in the case of layer-wise AM processes including fused
filament fabrication (FFF), the actual printed shape may be slightly
different from the theoretical shape, due to the “staircase effect”
[21,40]. In the context, we convert the lattice structure into
as-fabricated voxel model [21] to provide more realistic representa-
tions of designs. Specifically, we control the voxel shape with a set
of process parameters (i.e., voxel height is the same as layer thick-
ness) and control the voxel organization with other sets of process
parameters (i.e., the geometric shape is rotated based on a given
build orientation before translated into a voxel model) as shown
in bottom-left of Fig. 2. As a result, by combining the design vari-
ables and process parameters (center of Fig. 2), we define a quanti-
tative multi-dimensional design space, so that each design point
uniquely defines the as-fabricated voxel model of a specific lattice
structure (right side of Fig. 2). In addition, as-fabricated voxel
model enables an intuitive way to derive design features via
simple Boolean and algebraic operations (i.e., simply counting
the number of corresponding voxels). Even though other represen-
tations such as the signed distance field [41] provide an efficient
representation of smooth shape for efficient simulation, we
adopted as-fabricated voxel model due to the aforementioned
advantages. The proposed design space provides the foundation
of considering the interactions between design variables and
process parameters in respect of design feasibility.

3.3 Surrogate Modeling of Design Rules. Even though
design rules require less computation cost than physically based
simulations, it is time-consuming to evaluate the design rules for
the entire design space, which includes a huge number of design

Bottom-up design strategy @ Quantitative multi-dimensional
V- B\ [ . 1 3
Unit cell type (x;) || Unit cell property Design design space
! I Schwarz Primitive || variables
| Cell
Gyroid size
(x2)
-, ncc
< N Volume fraction (x3)
AM process parameters [ %
B (900 60° o | |
— 30 > " X1
%‘ Process @ L
&
Layer thickness (x,_,) ||Build orientation (x;) ) parameters | _

Fig. 2 The proposed quantitative design space that incorporates design variables and AM
process parameters to provide the foundation of incorporating their interrelations. The
design variables are provided via bottom-up design strategy.
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Fig. 3 The illustration of the cost function used in this case
study. The cost function value is proportional to the number of
voxels in the bounding box of a design.

points. For example, suppose the design space includes around
20 K of designs and the evaluation of design rules takes 3 mins in
average, an exhaustive evaluation of the entire design space takes
1000 h. 1000 h may not be a big delay for the traditional product
realization cycle. However, in a personalized product realization
cycle where every new order yields personalized geometric
design, such delays can accumulate over time on each order and
thus significantly impede the design space exploration. In addition,
since personalized geometric design involves complex geometric
shapes, the distribution of feasibility-related features over the
design space can be complex. Due to the aforementioned chal-
lenges, design space exploration in the context of personalized geo-
metric design calls for more vigorous utilization of surrogate
modeling to timely provide accurate feasible design regions.

Therefore, the objective of this step is to construct surrogate
models of efficient design rules for timely identifying feasible
design regions. Specifically, we first implement a set of efficient
voxel model-based design rules to evaluate a subset of design
points and then develop surrogate models of the design rules
using the proposed cost-based experimental design. The surrogate
models generate the distributions of feasibility-related features
over the design space as the foundation of feasible design region
identification.

3.3.1 Design Rules. Design rules can be regarded as efficient
heuristics to identify the feasibility of a design, developed based
on engineering knowledge, and/or learned from the experiences
of domain experts. For example, for FFF process, design rules for
manufacturability, which are about the feasibility-related features
(e.g., minimum feature size and overhang angle), are widely
adopted to quickly check the feasibility of a design. In the mean-
time, as-fabricated voxel model provides an efficient mechanism
to implement arbitrary design rules, since such feasibility-related
features can be easily derived with simple Boolean and algebraic
operations enabled by voxel-based representation (e.g., estimate
feature size by the number of consecutive voxels) [17]. In the
context, we adopt the voxel-based implementation of rules to incor-
porate not only the widely adopted design rules for manufacturabil-
ity (e.g., a design rule for minimum feature size) but also the
domain-specific rules reflecting personalized needs (e.g., a design
rule for MFC anode cavity size). The feasibility of the voxel-based
implementation of design rules is demonstrated in Sec. 4.

3.3.2 Cost-Based Experimental Design. While voxel model-
based design rules can be efficiently evaluated, it still takes a con-
siderable amount of time considering that it is necessary to evaluate
more than hundreds or thousands of different designs within a tight
computation cost constraint. Therefore, an experimental design
method is desired to minimize the design evaluation time, but at
the same time, to maximize the performance of the surrogate
models while satisfying a tight computation cost constraint. In
this paper, we propose a cost-based experimental design, which
prefers the designs with lower evaluation costs, with maintaining
space-filling-ness as much as possible. Equations (1) and (2)
show the proposed cost-based experimental design, which is
founded upon the sequential minimum energy design (SMED)
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[42]. For theoretical details about the SMED, the readers are
referred to the literature [42].

X| = arg min c(x) (1)

(c(x))c(x)) iad

Xp+1 = arg min s.t. c(x;)) <C 2)
’ x Zl D(x;, x)f Z}

In Egs. (1) and (2), x; denotes the ith design point, c(x) denotes cost
function, D(x;, X;) denotes Euclidean distance between the two
design points, C denotes computation cost constraint, and y
denotes the tuning parameter to control the preference to design
evaluation cost and space-filling-ness. In this paper, we choose to
k=4p (where p is the dimension of the design space), which is
the default value for the SMED to ensure numerical stability of
the method [42]. The proposed cost-based experimental design con-
sists of the following steps. First, the design point with the lowest
evaluation cost is chosen as the initial design point, as shown in
Eq. (1). If the design points with the lowest evaluation cost are
not unique, initial design point is randomly chosen among them.
Second, the following design points are sequentially chosen such
that the potential energy, which is defined as (c(x;)c(x))"/D(x;, x)©
as shown in Eq. (2), is minimized. The design points are added
sequentially until the total evaluation cost exceed C.

To develop the cost-based experimental design, the following
modification has been made to the SMED. First, while the SMED
adopts the concept of charge function to represent the desired repul-
sion between the design points, the proposed method adopts the cost
function c(x), which reflects the design evaluation cost, in place of
the charge function. Incorporating the cost function in the formula-
tion of the potential energy will make in favor of the design with the
lower design evaluation cost, since the potential energy is propor-
tional to the pairwise product of cost functions of design points.
Second, similar to the SMED, cost-based experimental design max-
imizes the distance between the design points, since the potential
energy is inversely proportional to the Euclidean distance
between the design points. The aforementioned properties allows
the cost-based experimental design to adaptively choose design
points jointly considering evaluation cost and space-filling-ness.
Lastly, it should be noted that the cost-based experimental design
has a tunability to be applied to a certain computation cost con-
straint. When y = 1/p, the distribution of design points follows the
inverse of the cost function, 1/c(x), which provides a reasonable tra-
deoff between space-filling-ness and design evaluation cost (For
theoretical proof, the readers are referred to the literature [42]).
We take y=1/p as the reference value in tuning the proposed
method. Given the reference value, one can tune y to adjust the
desired tradeoff between space-filling-ness and preference to the
designs with lower evaluation costs. For example, for a higher y
value (y>1/p), the designs will only prefer the designs with
extremely low design evaluation cost, which is preferable in case
the computation cost constraint is extremely tight. On the other
hand, for a lower y value (0<y<1/p), the designs with different
evaluation costs will be similarly preferred, which can be adopted
in case the computation cost constraint is relatively loose. In case,
y is extremely low, the cost-based experimental design equally
favors all the designs, thus becomes almost equivalent to
maximin Latin hypercube design (MmLHD), as it only maximizes
the pairwise distance between the design points.

3.3.3 Surrogate Modeling. Once design points are chosen via
the experimental design, the design points are used to construct sur-
rogate models of design rules to identify the distribution of
feasibility-related features. However, it should be noted that
feasibility-related features have different types, either continuous
or binary. For example, while minimum feature size is a continuous
feature, the connectivity of anode structure is a binary feature.
Therefore, based on the nature of the application, different regres-
sion methods (e.g., Gaussian process regression or regression
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tree) or classification method (e.g., logistic regression or random
forest) should be adopted for continuous or binary responses,
respectively.

3.4 Feasible Region Identification. Given the distributions of
feasibility-related features, threshold values for feasibility (based on
domain knowledge) are applied to derive the distribution of binary
feasibility indicators. For example, given the design rule “minimum
feature size >2 mm,” the threshold value of 2 is applied to the dis-
tribution of minimum feature size to derive the distribution of
binary feasibility indicator. Then, as shown in the top-right side
of Fig. 1, the distributions of different binary feasibility indicators
are intersected to derive the overall feasibility distribution across
the design space. In this paper, we do not consider the uncertainty
of the design rules, which can be a future direction of the research.

3.4.1 Visualization of Feasible Design Region. As the design
space is high-dimensional, t-distributed stochastic neighbor embed-
ding (t-SNE) [43], which is a nonlinear dimensionality reduction
technique known to recover well-separated clusters, is used to
reduce the design space into a 2D space of design embeddings
for visualization. Figure 4 shows an example of the visualization
showing the distribution of feasible/infeasible designs in a design
space for the case study in Sec. 4. Similar to exhaustive search
approach, the boundary between feasible/infeasible designs can
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Fig. 4 Comparison of ground-truth feasible design regions and
predicted results, showing the similar formation of clusters and
the feasible regions within each cluster. 2% of 27,720 designs
are used to generate the predicted feasible regions in Fig. 4(b).
(a) Feasible design regions (ground-truth) and (b) feasible
design regions predicted from the proposed method
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be explicitly represented, such as via the intervals of design embed-
dings or via visualization.

3.4.2  Analysis of the Interaction Between Design Variables/
Process Parameters in Design Feasibility. Once feasible design
regions are identified, it is possible to investigate the quantitative
relations between design variables/process parameters and design
feasibility, due to the quantitative definition of the design space.
Specifically, analysis of variance (ANOVA) can be performed to
identify which of the design variables/process parameters interact
with each other to contribute to the variation of design feasibility
(i.e., the manufacturability and conformance to personalized
needs). Based on the ANOVA results, it is possible to derive mean-
ingful insight into design exploitation. For example, it is possible to
identify which design variable or process parameter can be con-
trolled to improve manufacturability without affecting the confor-
mance to personalized needs, or vice versa.

4 Case Study: Personalized Microbial Fuel Cell Anode
Design

In this section, the feasibility of the proposed method is demon-
strated via the case study of personalized MFC anode design with
long-term operability. It is a good test case for the proposed
method due to the following reasons: (1) the design of an MFC
anode is desired to be optimized for a specific target operating con-
dition, which justifies the necessity of personalized geometric
design. (2) As biochemical reaction requires a complex geometry,
it justifies the use of AM, which provides great design freedom.
(3) Identifying long-term operability of an MFC anode requires
physically based simulations of long-term biofilm growth, which
will take at least several hours per run. This justifies the use of effi-
cient design rules for timely providing feasible design regions. In
this case study, a workstation with Intel 8th gen i7 Hexa-core pro-
cessor and 32 GB RAM is used to evaluate the proposed method
and benchmark method.

4.1 Problem Statement and Design Space. To demonstrate
the feasibility of the proposed method, we apply the method to
the case study of personalized MFC anode design. The following
assumptions are made for this case study.

(1) It is assumed that the size of the anode is 20 mm x 20 mm X
80 mm.

(2) The MFC operating condition is assumed to be as close as the
configuration in the existing work [5].

(3) It is assumed that FFF process is used to manufacture the
MEC anode.

Given the assumptions, there are 6 variables defining the design
space, shown in Table 1. First, we chose TPMS-based unit cells
for the anode design, since they are known to have a high
surface-to-volume ratio and porosity, which are desired for a

Table 1 The list of design variables and process parameters
regarding additively manufactured MFC anode design

Values chosen to define a grid over the

Design variable Type entire design space

Unit cell type (x;) Categorical “Schwarz Primitive”, “Gyroid”,
“Schwarz Diamond”, “I-WP”,
“OCTO”, “BCC” (TPMS type unit cells)

Continuous 4, 5, 6.66, 10, 20 mm

Continuous -1.5, —1.2, —=0.9, —0.6, —0.3, 0, 0.3,
0.6,0.9,1.2,1.5

Continuous 0.1, 0.2, 0.3 mm

Continuous 0, 15, 30, 45, 60, 75, 90 deg

Continuous 0, 15, 30, 45 deg

Unit cell size (x,)
Volume fraction
control factor (x3)
Layer thickness (x4)
X-axis rotation (xs)
Y-axis rotation (xg)
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microbial fuel cell anode [44]. The shapes of TPMS unit cells can be
defined by three design variables: unit cell type, unit cell size, and
volume fraction control factor. The design variables are used to
uniquely defines the overall geometric shape of the anode, specifi-
cally how the lattice structure within the geometric boundary looks
like. In this case study, we assume that the unit cells are uniformly
organized in the lattice structure. On the other hand, there are three
process parameters provided by FFF process: layer thickness,
X-axis rotation, and Y-axis rotation. The process parameters
define the size of voxels, and the organization of voxels to define
the geometric shape. The aforementioned six variables are used to
define a grid of designs on the quantitative design space. Specifi-
cally, as shown in Table 1, the finite number of levels are chosen
for each design variable and process parameter to define a multi-
dimensional grid with 27,720 designs. Here, the values for x, are
determined such that one, two, three, four, or five unit cells fit in
the width of the target anode (20 mm), while the values for x3, x4,
xs, and x¢ are equally spaced within the lower/upper boundaries
determined via observation. The 27,720 design points form the
design space for experimental design, and their feasibility will be
used to estimate the accuracy of feasible design regions evaluated
with the proposed method. However, it should be noted that the
proposed method can evaluate the feasibility of arbitrary designs
(i.e., continuous values can be chosen for continuous design vari-
ables, x,—x¢) on the design space with the surrogate models of
design rules.

4.2 Design Rules. In this case study, we identified the design
rules for manufacturability and MFC anode design. For the
design rules about manufacturability, we choose representative
rules from multiple guidelines from 3D printer manufacturers. For
the design rules about MFC anode design, we reviewed the relevant
literature [3—7,37] and discussed with the experts in MFC design
(see Acknowledgments) to validate the design rules to be used. In
total, we use four design rules, which evaluate the following
feasibility-related features: minimum feature size, connectivity of
the anode structure, the minimum size of anode cavities, and con-
nectivity of the anode cavities. The first two rules are related to
the manufacturability, and the latter two rules are related to the con-
formance to personalized needs (assuming the same operating con-
dition to Li et al. [S]). Specifically, based on the descriptive
definitions of the rules, we implemented voxel-model based imple-
mentation of the rules for this case study. The short descriptions of
the design rules are as follows:

(1) Minimum feature size: For FFF process, too small feature
(e.g. smaller than 2 mm) should be avoided to ensure manu-
facturability. This design rule counts the number of the con-
secutive voxels to identify minimum feature size along the
horizontal plane.

(2) Connectivity of the anode structure: Connectivity of the
anode structure should be guaranteed to ensure the integrity
of 3d structure. This design rule checks the voxel connectiv-
ity (i.e., checking the existence of neighboring voxels) to
evaluate the connectivity of the anode structure. If all the
voxels are connected via other voxels, this design rule
returns “True.”

(3) Minimum cavity size: For MFC anode, its cavity size should
not be too small to prevent clogginess during a long-term
operation [5]. This design rule evaluates the size of the
cavity from Euclidean distance transform of the voxel model.

(4) Connectivity of the anode cavities: Connectivity of anode
cavities is desired to ensure mass transport through the
anode for bio-electrochemical reactions. This design rule
checks the connectivity of empty voxels (i.e., checking
the existence of neighboring empty voxels) to evaluate the
connectivity of anode cavities. If all the empty voxels
are connected via other empty voxels, this design rule
returns “True.”

Journal of Computing and Information Science in Engineering

Table2 The list of feasibility-related features for MFC anode and
their feasible range based on domain knowledge

Feasible
Design rule Response type range
Minimum feature size (ey, z;) Continuous >2 mm
Connectivity of the anode structure (e, z5) Binary = True
Minimum cavity size (es, z3) Continuous >2 mm
Connectivity of the anode cavities (e4, z4) Binary = True

Table 2 shows the list of the feasibility-related features of MFC
anode based on the design rules and their feasible ranges based
on domain knowledge. For the manufacturability rules, we
adopted the threshold values from FFF printer manufacturers guide-
lines. For personalized needs for MFC anodes, we discussed with
domain experts to check the validity of the rules. Design is regarded
as feasible only when all the values are within the feasible range.

4.3 Surrogate  Modeling and  Feasible Region
Identification. In this case study, the computation time of evaluat-
ing one design ranges from below 1 min to 16 min, which is shorter
than a finite element analysis simulation for FFF process (more than
20 h for a single run of high-fidelity simulation [45]). However,
even though the design rules provide efficient mechanisms to iden-
tify the feasibility of a design, the exhaustive evaluation of 27,720
designs takes more than 15 days. As mentioned, such delay may be
accumulated to introduce a significant bottleneck in personalized
product realization cycle, thus necessitate surrogate modeling to
timely provide feasible design regions. In this case study, we
tested the proposed design space exploration method using two dif-
ferent experimental designs: (1) widely adopted maximin Latin
hypercube (MmLHD) as a benchmark and (2) the proposed cost-
based experimental design (y=1/p). It should be noted that we
could not compare the proposed design space exploration method
with other design space exploration methods, due to the lack of
physically-based simulation satisfying the tight computation cost
constraint we assumed (within 10 h of computation with the test
environment).

For the benchmark, we used the fixed number of design points
(0.1%—-2% of 27,720 designs on the grid of the design space) to gen-
erate surrogate models of feasibility-related features. For the pro-
posed cost-based experimental design, we continued the sampling
until the overall design evaluation cost reaches that of the corre-
sponding benchmark. The cost function used in this case study is
illustrated in Fig. 3. The cost function is designed based on the well-
known fact that the computation cost for voxel model is propor-
tional to the resolution of the voxel model (i.e., the number of
voxels in the space) [21]. Specifically, the bounding box of a
design is identified, and then the number of voxels in the bounding
box is calculated to approximate the evaluation cost of the design.
In this way, the cost function ¢ depends on the parameters determin-
ing the size of bounding box and voxel, i.e., x4 (layer thickness), xs
(x-axis rotation), and x¢ (y-axis rotation). It should be noted that this
cost function realistically reflects the actual design evaluation cost,
since voxel-based design rules involve counting the number of spe-
cific voxels in the bounding box. Also, the time to derive the pro-
posed cost function is negligible, so the evaluation of the cost
function does not affect the overall design evaluation cost.

After completing the design of experiments, surrogate models of
the design rules are generated to identify feasible design regions, as
shown in Fig. 4. Here, design embeddings indicate the coordinates
of each design point on the 2D space, which are ranged from —100
to 100, such that similar designs are stick together to form several
islands in the design space. It should be noted that separated
islands are formed as one of the design variables is categorical
(unit cell type, x;). As the design space is high dimensional, we
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Table3 Comparison of the number of samples evaluated within the same computation cost constraint and the performance using a
benchmark method (MmLHD) vs the proposed cost-based experimental design (50 repetitions per treatment)

# of samples evaluated
within the same

computation cost constraint Recall Precision F-measure
Benchmark Proposed Benchmark Proposed Benchmark Proposed Benchmark Proposed
28 54 0.307 (0.190) 0.651 (0.158) 0.332 (0.144) 0.319 (0.104) 0.318 (0.147) 0.429 (0.065)
56 103 0.434 (0.152) 0.692 (0.096) 0.493 (0.089) 0.459 (0.083) 0.458 (0.113) 0.557 (0.060)
112 191 0.561 (0.108) 0.739 (0.084) 0.619 (0.083) 0.543 (0.066) 0.578 (0.061) 0.619 (0.040)
280 433 0.648 (0.062) 0.779 (0.056) 0.699 (0.049) 0.634 (0.047) 0.669 (0.038) 0.696 (0.024)
560 813 0.688 (0.048) 0.797 (0.039) 0.746 (0.041) 0.722 (0.030) 0.714 (0.025) 0.756 (0.017)

Note: The method with larger sample size and higher Recall/F-measure are marked in bold.

used t-distributed stochastic neighbor embedding (t-SNE) [43] to
visualize in a 2D space. The result demonstrates that the feasible
design regions provided by the proposed method realistically repre-
sent the ground-truth with the F-measure > 0.7 (~ 0.74). Note that
only 2% of the 27,720 designs are used in producing Fig. 4(b). Such
a visualization can be used to efficiently support the navigation of
the entire design space to locate proper design candidates to be opti-
mized. For surrogate modeling, we compared three typical regres-
sion models, linear regression, Gaussian process regression, and
regression tree, as the surrogate models of design rules involving
continuous feasibility-related features (i.e., e; and e3 in Table 2).
For surrogate models of design rules involving binary
feasibility-related features (i.e., e, and e,4 in Table 2), we compared
different classification models, including logistic regression, linear/
quadratic discriminant, and random forest. Specifically, we com-
pared every possible pair of a regression model and a classification
model and then chose a pair of methods that yield the best results. In
the setting of the case study, the pair of regression tree (for regres-
sion) and random forest [46] (for classification) is chosen with
better performances than the other pairs. Automatically identifying
a proper regression method or classification method is subject to
future research direction to improve the usefulness of the proposed
method.

For quantitative evaluation of the feasible design regions, we
compared the feasibility/infeasibility of 27,720 designs derived
via the proposed method and via exhaustive evaluation. Specifi-
cally, surrogate models are built from about 0.1%—-2% of designs
(training set) to predict the feasibility of the entire 27,720 designs
(test set), and the predicted feasibility of the entire designs are com-
pared with the exhaustive evaluation results. Table 3 shows evalu-
ation results. Here, the Recall is defined as TP/(TP+ FN), the
Precision is defined as TP/(TP+ FP), and the F-measure is
defined as (2- Precision - Recall)/(Precision + Recall) where TP
stands for true positive (i.e., feasible design is correctly recognized),
FP stands for false positive (i.e., infeasible design is correctly
recognized), and FN stands for false negative (i.e., infeasible
design is wrongly recognized as feasible). In other words, Recall
is the measure of how many feasible designs are correctly identified,
Precision is the measure of how many designs are actually feasible
assuming that they are marked as feasible, and F-measure is the
measure of the overall accuracy of the result. In Table 3, the
method with larger sample size and higher Recall/F-measure are
marked in bold. Also, it should be noted that each row of Table 3
shares the same computation cost constraint. The results provide
the following implications. First, it is shown that the proposed cost-
based experimental design can utilize significantly more design
points for surrogate modeling within the same computation cost
constraints, as it adaptively chooses the designs with lower evalua-
tion costs. Second, under the same computation budget, it is shown
that the proposed cost-based experimental design method provides
considerably higher F-measure than the benchmark method, espe-
cially when the computation cost constraints are extremely tight
(i.e., low computation budget). We also observed that the proposed
method shows slightly better or comparable performances when
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large computation budget is allowed (i.e., C in Eq. (2) is large
enough), which indicates the proposed method is still acceptable
in case the computation constraint is not tight. Third, even though
the proposed cost-based experimental design slightly sacrifices Pre-
cision, it provides significantly higher Recall than the benchmark
method. It is an important advantage since it prevents a designer
from throwing away potentially better optimal designs due to the
mis-classification of feasibility.

4.4 Discussion. After feasible design region identification, the
entire design space is efficiently narrowed down into much smaller
feasible design regions. Consequently, the efficiency of the follow-
ing design exploitation can be improved, by focusing on the small
feasible design regions. For example, in this case study, we
observed that only 5-10% of 27,720 designs are feasible (as
shown in Fig. 4), which indicates that performing design optimiza-
tion without knowing the feasible design regions will lead to a con-
siderable amount of time for burn-in to prune infeasible design
candidates. It should be noted that evaluating the same number of
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Fig. 5 Exploration of feasible and infeasible design candidates
to support design exploitation in the case study. (a) Identification
of feasible and infeasible designs from the design space via
visualization and (b) examples of feasible and infeasible designs.
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Table 4 The ANOVA results for the feasibility in terms of manufacturability (i.e., response variable: z, A z;) and conformance to
personalized needs (i.e., response variable: z; A z,), when x4 is “Schwarz Primitive” or “Gyroid”

Unit cell type (x;) is “Schwarz Primitive”

Unit cell type (x;) is “Gyroid”

Sum of squares

Independent variables (response variable: z; A z2)

Sum of squares
(response variable: z3 A z4)

Sum of squares
(response variable: z; A z2)

Sum of squares
(response variable: z3 A z4)

Unit cell size (x,) 57.89
Volume fraction control factor (x3) 720.55
Layer thickness (x,) 0.01
X-axis rotation (xs) 1.94
Y-axis rotation (xg) 1.67

257.25 101.69 5.55

473.32 666.98 348.13
242 0.07 0.313
2.32 15.71 61.47
3.87 16.84 6.97

Note: The values indicating considerable contribution to the feasibility are marked in bold font.

design points with physically based computer simulations is prohib-
itive, especially in case multi-physics simulations are involved,
since they cannot evaluate enough number of design point within
a tight computation cost constraint (10 h of computation, in this
case study). Specifically, for this case study, it is necessary to simu-
late the biofilm build-up on the MFC anode surface, which is
expected to take at least several hours for each run [11].

In addition, for personalized product realization where a large
number of different requirements should be addressed (i.e., compu-
tation cost constraint becomes much tighter), the proposed experi-
mental design will provide more feasible design regions with
higher Recall than typical space-filling designs, as it allows the
evaluation of more samples for surrogate modeling. Also, the pro-
posed cost-based experimental design can satisfy an arbitrary com-
putation cost constraint by sequentially adding design points until
the total design evaluation cost exceeds the computation cost
constraint.

Furthermore, the proposed method can provide insightful infor-
mation and visualization to facilitate design exploitation. First, it
provides a small feasible design region over the entire design
space, such that a designer can better identify different characteristics
of feasible/infeasible designs and locate proper design candidates.
Figure 5 shows the examples of feasible and infeasible design candi-
dates on the design space explored in the case study. A designer can
explore feasible designs, such as d, d,, ds, and d, shown in Fig. 5,
and identify distinct feasible designs, which provide good starting
points to identify different local optimal designs during design opti-
mization. Similarly, a designer can explore infeasible designs, such
as ds, dg, and d; shown in Fig. 5, and understand the distribution of
different infeasible designs based on their issues (e.g., too small
cavity). Combined with design candidate identification support
system [47] in the literature, the proposed method can improve the
effectiveness of identifying proper design candidates and their opti-
mization. The proposed method can also help a designer to address
an extreme case in the design candidate identification. For
example, in the case that the feasible design region is too small,
or there is no feasible design region, one can extend the boundaries
of the design space and/or relax the design rules to guide the
design candidate identification. Second, the proposed quantitative
design space provides the capability to identify how design vari-
ables/process parameters interact and contribute to the variation
of the design feasibility (i.e., the manufacturability and confor-
mance to personalized needs). Specifically, based on the analysis
of variance (ANOVA) results, we found out that for different
cell types (x;), different variables may contribute to the variance
of the manufacturability (i.e., z; A z2) or conformance to personal-
ized needs (i.e., 71 A 22), as shown in Table 4.

For example, for the cell type of “Schwarz Primitive,” cell size
(x») and volume fraction (x3) most contribute to the variance of
both manufacturability and conformance to personalized needs.
On the other hand, for the cell type of “Gyroid,” while cell size
(x») and volume fraction (x3) most contribute to the variance of
the manufacturability, volume fraction (x3) and x-axis rotation
(xs) most contribute to the variance of the conformance to

Journal of Computing and Information Science in Engineering

personalized needs. The result implies that when the unit cell type
is “Gyroid,” it is possible to control the manufacturability or confor-
mance to personalized needs without much impact on the other type
of feasibility.

While this case study is performed upon the three assumptions
(i.e., MFC anode size, operating condition, and manufacturing
process are specified), the proposed method can be easily applied
to different scenario of personalized MFC anode design. First, it
can be applied to design different sizes of MFC anode by adjusting
the overall size of the design during the generation of lattice struc-
ture. Second, for different operating condition or different manufac-
turing process, design rules can be modified based on the relevant
literature. For example, the rules related to the conformance to per-
sonalized needs for MFC anode can be adjusted based on the relevant
literature assuming different operating conditions [3,4,6,7,37], and
the design rules related to the manufacturability can be replaced to
those of different manufacturing process, such as stereolithography
[22]. The proposed method can be widely adopted to design different
types of products where adopting a lattice structure is beneficial, and
relevant design rules are available. For example, the proposed
method can be applied to personalized prosthetic hand design, by
using manufacturability rules on stereolithograpy [22] and dimen-
sioning/selection rules on prosthesis design [23,24]. The acquisition
of such design rules can be efficiently done by the advancement of
automated frameworks for rule extraction from text [27].

5 Conclusion

In this paper, we propose a cost-efficient data-driven design
exploration method for personalized geometric design, founded
on the quantitative design space provide by the bottom-up design
strategy. Specifically, the method relies on the surrogate models
of efficient voxel model-based design rules to timely deliver feasi-
ble design regions, which is extremely challenging with the existing
methods relying on physically based computer simulations. Also,
we propose the cost-based experimental design method to construct
more precise surrogate models within a tight computation cost con-
straint to meet the constraint for streamlining personalized product
realization. We verified the feasibility of the proposed design space
exploration method via the case study of personalized MFC anode
design, and demonstrated the advantages of the proposed cost-based
experimental design.

The proposed method has four contributions in terms of efficient
design space exploration for the personalized product realization in
AM. First, the proposed method provides a quantitative design space
and feasible design regions for the personalized geometric design for
AM. Therefore, it provides the foundation of quantitatively identify-
ing the important interactions between design variables/process
parameters how they contribute to design feasibility (i.e., the manu-
facturability and conformance to personalized needs). We expect
that this will provide important insight to improve the design exploi-
tation followed by design space exploration. Second, the proposed
method provides a systematic mechanism to implement domain
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knowledge for efficient design space exploration. This method
resembles the way that domain experts rely on their insight to
quickly filter out infeasible designs. In a similar manner, the pro-
posed method efficiently provides tailored feasible design region
to facilitate the follow-up design exploitation (e.g., more detailed
simulation-based exploration or design optimization) in the person-
alized product realization. Third, when the computation cost con-
straint for design space exploration is tight, the proposed
cost-based experimental design provides significantly better results
than using a typical space-filling design, thus contribute to streamlin-
ing the personalized product realization. Lastly, the proposed
method can be easily extended to a wide variety of applications
and AM processes by adopting domain knowledge for the target
domain. For example, as layer-wise AM processes share similar
design rules, the case study provided in this paper can be applied
to selective laser sintering and stereolithography without much mod-
ifications. Also, with the advancement of rule extraction technolo-
gies, the proposed method can be applied to completely different
domains if relevant design rules are accessible. For example,
design rules can be extracted from a standard specification of
printed electronics [25] to guide personalized foldable/rollable elec-
tronics design [26]. Further extension of the proposed method is pos-
sible when design rules are available. For example, the proposed
method can be extended to the personalized geometric design of a
lightweight prosthesis, based on the design rules on stereolithogra-
phy [22] and the design rules (e.g., sizing, dimensioning, and selec-
tion rules) on prosthesis [23,24]. In conclusion, the proposed method
can contribute to addressing the design bottleneck and streamlining
the personalized product realization cycle adapting to faster-
changing markets.

Although we have made contributions to the research area of
design space exploration for personalized geometric design for
AM, we believe the following further investigations can contribute
to the broader acceptance of the proposed method. First, improving
the proposed bottom-up design strategy to be applicable to conformal
lattice structure [48] is desired. This will allow the method to be
applicable to a wide variety of practical product designs. Second,
the proposed method is founded upon the assumption that reliable
design rules are available and a design is feasible when it satisfies
all the design rules. However, quantifying the uncertainty of
design rules and the association between them (i.e., relative
weights of design rules in deciding design feasibility, and its sensitiv-
ity analysis) need to be investigated. This will allow the proposed
method to consider heterogeneous capabilities of different AM
machines, likely to occur under a collaborative manufacturing sce-
nario [49], where the generic design rules need to be tuned to pre-
cisely identify design feasibility. Third, the current work used the
voxel as small as 0.1 mmx 0.1 mm x0.1 mm (depending on layer
thickness). It needs further investigation on how to extend the pro-
posed method for allowing sub-voxel geometric variation, such as
due to the variation of feed rate and extruder temperature, different
material properties, and/or diffusion of material [50]. Such an exten-
sion will enable the incorporation of non-geometric process setting
parameters (e.g., material type and extruder temperature), as well
as significantly improve the flexibility and accuracy of the proposed
method especially when a design rule involves extremely small
threshold value.
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