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Abstract

Computer experiment refers to the study of complex systems by using com-

puter simulations to emulate the physical system. Design and analysis of com-

puter experiments have attracted great attention in past decades. However,

many computer experiments involve not only quantitative inputs, but also

qualitative inputs, which make the design and analysis more challenging. The

Latin hypercube design and its variants are widely used in computer experi-

ments, but mainly for the quantitative inputs. Constructing desirable emula-

tors for computer experiments with qualitative inputs also remains a

challenging problem due to the discrete nature of qualitative inputs. In this

review, we describe a set of statistical approaches for design and analysis of

computer experiments with both quantitative and qualitative factors.
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1 | INTRODUCTION

In many scientific and engineering applications, physical experiments are not feasible or can be very difficult to perform
in terms of material, time, and cost. For example of global warming experiments, it is almost impossible to conduct
experiments on an earth sized object. In epidemiology study, the number of input variables is too large to implement
physical experiments in practice. In high-speed train crash-prevention tests, the experiments required to gather suffi-
cient information are economically prohibit to run because of the expensive trains. For these situations, computer
experiments (Fang, Li, & Sudjianto, 2005; Santner, Williams, & Notz, 2018) often replace physical experiments to study
the relationship between a set of input variables and the resulting outputs. The design and analysis of computer experi-
ments have received wide attention in the past decades, see Sacks, Welch, Mitchell, and Wynn (1989); Kennedy and
O'Hagan (2000); Hobert, Jones, Presnell, and Rosenthal (2002); Higdon, Gattiker, Williams, and Rightley (2008);
Gramacy (2012); Kong, Ai, and Tsui (2018) among many others. Santner et al. (2018) is the most latest book summariz-
ing the technical development of computer experiments. It introduces designs and analysis commonly used for research
investigations with computer simulator platforms. One of its subsection describes methods for designing and analyzing
computer experiments for quantitative and qualitative (QQ) inputs, which were proposed in literature around year
2010. Compared with this book, the article mainly focuses on reviewing several newly developed computer
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experimental designs with QQ inputs, as well as analysis tools, including sliced Latin hypercube designs (SLHDs), mar-
ginally coupled designs, additive Gaussian process (GP) model and so on.

Regarding the designs of computer experiments, one would like to run a set of experiments that provide information
on all portions of the experimental region. This leads to the space-filling designs that spread the input points evenly
throughout the full region. The Latin hypercube designs (LHDs) introduced by Mckay, Beckman, and Conover (1979)
are extensively used as space-filling designs in computer experiments (Ba, Myers, & Brenneman, 2015; Hung, 2011a;
Joseph, 2016; Wang, Xiao, & Xu, 2018). A good property of the LHDs is that the design points are spread evenly across
the range of any individual input variable. In addition, if a few input variables are removed from the LHD, the resulting
design is still a LHD, which facilitates the case where the output turns out to depend on a subset of the input variables.
A number of papers studied the sampling properties of the LHDs, including Mckay et al. (1979), Stein (1987), Owen
(1992), Loh (1996), and so forth. To further enhance the projection property of designs, Joseph, Gul, and Ba (2015) pro-
posed a maximum projection (MaxPro) design that ensures good projections to all subspaces of the input variables.

However, the LHDs are designated for quantitative factors (or input variables), but not suitable for qualitative fac-
tors. Suppose that the input region is the p-dimensional unit sphere [0, 1]p. Let L = (lij) be an n × p Latin hypercube
with each of its column a permutation on {1, 2, …, n} and all the columns are obtained independently. A LHD D = (dij)
of n runs for p factors is built as

dij = lij−uij
� �

=n, for i=1,2,…,n, and j=1,2,…,p,

where uij are independently generated from the uniform distribution U[0, 1), dij indicate the level for the input variable
j on the ith run, and uij and lij are mutually independent. When D is projected onto any one dimension of input vari-
ables, precisely one design point falls within one of the n-equally spaced intervals of (0, 1] given by (0, 1/n], (1/n, 2/n],
…, (1–1/n, 1].

Table 1 is an example of a Latin hypercube (in transpose) with eight design points for three factors x1, x2, and x3. It
is seen that each row, corresponding to each factor, is a permutation of {1, 2, …, 8}. Figure 1 shows the projection of this
Latin hypercube onto any two input variables. The eight design points are space-equally distributed on any single
dimensionality of factors.

Clearly, such a construction method of LHD can not be easily extended to design a computer experiment for both
QQ factors, which are involved in many applications. For the example of data center thermal management (Jiang,

TABLE 1 A Latin hypercube with

three input variables
x1 4 2 5 6 7 1 8 3

x2 1 2 5 7 4 6 8 3

x3 2 3 1 5 8 4 7 6
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FIGURE 1 Projections of the Latin hypercube design in Table 1 onto two factors
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Deng, López, & Hamann, 2016), the computational fluid dynamics for studying the temperature distribution often con-
tains qualitative factors such as “hot air return vent location” and “power unit type” (Qian, Wu, & Wu, 2008). The
investigation of wear mechanisms of total knee replacements in bioengineering (Han, Santner, Notz, & Bartel, 2009)
uses the knee models with qualitative factors such as “prosthesis design” and “force pattern.”

Moreover, modeling and analyzing the data coming from computer experiments with QQ factors are not straightfor-
ward. When only quantitative factors involved, the GP model is the most commonly used tool to analyze the computer
experiments (Currin, Mitchell, Morris, & Ylvisaker, 1991; Hung, 2011b; Li & Sudjianto, 2005; Linkletter, Bingham,
Hengartner, Higdon, & Ye, 2006; Martin & Simpson, 2004; McMillian, Sacks, Welch, & Gao, 1999). In the standard GP
model, the inputs are all quantitative and the outputs can be viewed as realizations of a GP. When having qualitative
factors in the computer experiments, one can not directly treat the outputs as realizations of a GP due to the discrete
nature of qualitative factors.

2 | DESIGN OF COMPUTER EXPERIMENTS WITH QQ INPUTS

In the literature, there are several works investigating on how to construct designs for computer experiments with QQ
factors. One simple approach is the SLHDs proposed by Qian (2012). An SLHD with n = rm runs for p factors has the
property that it can be divided into r LHDs of size m × p, where r and m are integers. These r LHDs are called slices
and the original n-run LHD is an SLHD. It is easy to see that SLHD can be used for a computer experiment with quanti-
tative factors and a set of qualitative factors having r distinct levels of combinations. Each slice provides a space-filling
design for m runs corresponding at one fixed level combination of the qualitative variables. However, as the number of
qualitative factors increases, the number of level combinations would increase dramatically. As a result, the SLHD can
only be suitable for a small number of qualitative factors. In Huang, Lin, Liu, and Yang (2016), one kind of SLHDs was
considered with points clustered in the design region for computer experiments with QQ factors. But the run size of
such designs increases significantly with the number of qualitative variables.

Another approach to accommodate the computer experiments for QQ factors is the marginally coupled design intro-
duced by Deng, Hung, and Lin (2015), which is more economical than the SLHD with attractive space-filling properties.
A marginally coupled design has two subdesigns, denoted by D1 and D2, with D1 a design for qualitative factors and D2

a design for quantitative factors. The design D = (D1, D2) is a marginally coupled design if D2 is a SLHD with respect to
each column of D1 (an orthogonal array is typically used for D1). The marginally coupled design has two features: the
design points for quantitative factors form a LHD; and for each level of any qualitative factors, the corresponding design
points for quantitative factors form a small LHD.

Table 2 presents a marginally coupled design D = (D1, D2) of nine runs involving two quantitative variables (x1, x2)
and two qualitative factors (z1, z2) with each having three levels. Figure 2 displays the scatter plots of x1 versus x2. Rows
of D2 corresponding to levels 0,1,2 of z1 or z2 are represented by ×, ∘, and +. Projected onto x1 or x2, three points repre-
sented by × or ∘ or + are located exactly in each of three intervals [0,1/3), [1/3,2/3), [2/3,1).

Deng et al. (2015) also studied the existence of such marginally coupled designs. For a given n × q design D1, a mar-
ginally coupled design D = (D1, D2) exists if there exists an n × p design D2 with p > 0 such that D is a marginally
coupled design. Proposition 1 in Deng et al. (2015) shows that when D1 is an orthogonal array OA(n, sq, 2), a marginally

TABLE 2 A marginally coupled

design D = (D1, D2)
x1 x2 z1 z2

0 0 0.79 0.82

0 1 0.10 0.60

0 2 0.46 0.08

1 0 0.20 0.20

1 1 0.36 0.88

1 2 0.96 0.42

2 0 0.63 0.48

2 1 0.69 0.21

2 2 0.22 0.75
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coupled design exists if and only if D1 is completely resolvable. Here, an s-level orthogonal array A of strength t is an
n × m matrix with each column taking s distinct levels and for every n × t submatrix of A, each of all possible level
combinations appears equally often (Hedayat, Sloane, & Stufken, 1999). Such an orthogonal array is denoted by OA(n,
sm, t). An OA(n, sm, 2), say A, is said to be α-resolvable if it can be expressed as A = (A1

T, …, An/(sα)
T)T such that each of

A1, …, An/(sα) is an OA(sα, sm, 1). If α = 1, the orthogonal array is called completely resolvable.
Such a result establishes the necessary and sufficient conditions of the existence of marginally coupled designs when

D1 is an OA(n, sq, 2). Furthermore, it reaches a conclusion on the maximum number of columns in an s-level orthogo-
nal array of n runs for which a marginally coupled design exists. This is because an s-level completely resolvable orthog-
onal array of n runs has at most n/s columns (Suen, 1989). Specifically, if q* represents the maximum value of q such
that a marginally coupled design D = (D1, D2) with D1 = OA(n, sq, 2) exists, then we have q* ≤ n/s.

The details of construction methods for marginally coupled design can be found in Deng et al. (2015). The vari-
ants of marginally coupled design are also developed in other works. He, Lin, Sun, and Lv (2017) constructed mar-
ginally coupled designs when all qualitative factors have two levels. He, Lin, and Sun (2017) provided more
efficient construction approaches for marginally coupled designs and derived the theoretical results. To allow flexi-
ble run size, Joseph, Gul, and Ba (2019) extended the MaxPro criterion (Joseph et al., 2015) for designing computer
experiments with different types of factors, including continuous, nominal, discrete numeric, and ordinal input
variables. Their proposed design is able to accommodate large number of qualitative factors with good space-filling
properties.

3 | ANALYSIS OF COMPUTER EXPERIMENTS WITH QQ INPUTS

In this section, we review the current literature on how to model the computer experiments for the QQ factors. Con-
sider an n-run computer experiment with p quantitative factors and q qualitative factors. Denote the ith quantitative
factor as x(i) (i = 1, …, p) and the jth qualitative factor as z( j) ( j = 1, …, q). There are mj levels (1, …, mj) of the qualitative
factor z( j). Let the kth (k = 1, …, n) input data be wk = xTk ,z

T
k

� �T
, where xk = (xk1,…, xkp)T∈Rp is the quantitative part

and zk = (zk1,…, zkq)T∈Rq is the qualitative part of the input. Denote Y (wk) as the output from the input wk and the
response (or output) vector y = (Y(w1), …, Y(wn))

T.
The Gaussian process model is a common tool to analyze computer experiments. A standard GP (Kriging) model

quantifying the relationship between output Y (x) and quantitative inputs x assumes

Y xð Þ= μ+G xð Þ,

where μ is the constant trend. Here, G(x) is a GP with mean zero and the covariance function ϕ(�) = σ2R(�|θ), where σ2
is the variance, θ = (θ1, …, θp)T is the range (or correlation) parameters with all θk > 0 (k = 1, …, p), and R(�|θ) is the cor-
relation determined by a stationary correlation function, for example, Gaussian, power-exponential, Matérn
(Rasmussen & Williams, 2006), and lifted Brownian (Plumlee & Apley, 2017) correlation functions. A popular choice
for R(�|θ) is the Gaussian correlation function
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(b) FIGURE 2 Scatter plots of x1 versus x2,

where rows of D2 corresponding to levels 0,1,2

of zi are marked by ×, ∘, and +: (a) the levels

of z1; (b) the levels of z2
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R xi,xjjθ
� �

=exp −
Xp
k=1

θk xik−xjk
� �2( )

, ð1Þ

which represents the correlation between G(x1) and G(x2) for any two input data xi = (xi1, …, xip)T and xj = (xj1, …, xjp)T.
The parameters θ can be estimated via maximum likelihood estimation, along with μ and σ2 in the model. For more
details on standard GP models, see Sacks et al. (1989) and Kleijnen (2009).

However, the standard GP model does not work directly for computer experiments with QQ factors. This is because
the correlation function R(�|θ) does not take into account the fact that different level combinations of qualitative factors
may not have specific distance measurement. To deal with QQ inputs, several papers proposed to use a multiplicative
covariance function for any two inputs w1 and w2 as (Qian et al., 2008; Zhou, Qian, & Zhou, 2011)

ϕ Y w1ð Þ,Y w2ð Þð Þ=Cov Y w1ð Þ,Y w2ð Þð Þ= σ2
Yq
j=1

τ jð Þ
z1jz2jR x1,x2jθð Þ, ð2Þ

where the parameter τ jð Þ
z1jz2j represents the correlation between two levels (z1j and z2j) in the jth qualitative factor z( j), and

R(x1, x2|θ) is defined as in (1). Denote the correlation matrix for z( j) ( j = 1, …, q) by Tj = τ jð Þ
z1jz2j

� �
mj ×mj

. Three different
functions of τ jð Þ

z1jz2j were suggested in literature as follows:

a. The exchangeable correlation (EC) function: τ jð Þ
z1jz2j = c (0 < c<1) when z1j 6¼ z2j; otherwise, τ

jð Þ
z1jz2j =1 (Joseph & Del-

aney, 2007).
b. The multiplicative correlation (MC) function: τ jð Þ

z1jz2j =exp − θz1j + θz2j
� �� �

(θz1j ,θz2j >0 ) when z1j 6¼ z2j; otherwise,
τ jð Þ
z1jz2j =1 (McMillian et al., 1999).

c. The unrestrictive correlation (UC) function: define Tj = LjLTj where Lj is a lower triangular matrix; for the rth row
(l jð Þ
r1 ,…, l jð Þ

rr ) in Lj, l
jð Þ

11 = 1, and for r = 2, …, mj.

l jð Þ
r1 = cos φ j,r,1

� �
l jð Þ
rs = sin φ j,r,1

� �
…sin φ j,r,s−1

� �
cos φ j,r,s

� �
for s=2,…,r−1

l jð Þ
rr = sin φ j,r,1

� �
…sin φ j,r,r−1

� �
,

8>>>><
>>>>:

where φj, r, s ∈ (0, π) for s = 1, …, r − 1 (Qian et al., 2008; Zhou et al., 2011).
A thorough discussion on the choices of the correlation matrix R(�|θ) in the GP model for QQ factors can be found

in Roustant, Padonou, Deville, Clément, and Wynn (2018) and Zhang and Notz (2015).
Note that, in the use of the multiplicative correlation function, a zero value of any τ jð Þ

z1j,z2j would result in the overall
correlation Cov(Y (w1), Y (w2)) being equal to zero. To overcome this problem, Deng, Lin, Liu, and Rowe (2017) pro-
posed an additive GP model as

Y x,z1,…,zq
� �

= μ+G1 z1,xð Þ+ � � �+Gq zq,x
� �

, ð3Þ

where μ is the overall mean, Gj's are independent GPs with mean zeroes and the covariance function ϕj, for j = 1, …, q.
The additive form is employed in (3) to quantify the contribution of q qualitative input factors to the output. Such an
additive form emphasizes the effect of each qualitative factor coupled with quantitative factors. Besides, the additive for-
mulation enables to infer the significance of each individual qualitative factor in the model. The model (3) contains
interactions between qualitative factors and quantitative factors by each GP component Gi(zi, x), and interactions
among quantitative factors by the correlation function R(�|θ(i)) in each Gi(zi, x). One can also easily extend its current
form to accommodate the interactions among qualitative factors.

Given the model (3), the response Y follows a GP with mean zero and the covariance function ϕ specified by
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ϕ Y w1ð Þ,Y w2ð Þð Þ=Cov Y w1ð Þ,Y w2ð Þð Þ=
Xq
j=1

σ2j τ
jð Þ

z1jz2jR x1,x2jθ jð Þ
� �

, ð4Þ

where σ2j and θ( j) ( j = 1, …, q) are process variance parameters and range parameters corresponding to z( j), respectively.
Same as above, three different choices of τ jð Þ

z1jz2j , the exchangeable, multiplicative, and unrestricted correlation functions,
are adopted in (4). Note that if any τ jð Þ

z1jz2j has a zero (or near zero) value, the overall covariance in (2) will be zero
(or near zero). While such problems are avoided in the additive model structure in (4). To elaborate the advantage of
the additive covariance function compared with the multiplicative covariance structure, the following example will
reinvestigate the real data analysis in Deng et al. (2017).

Example 1 A fully three-dimensional (3D) coupled finite element model (FEM) is used to capture the deformations
and stresses of full-scale embankments involving unreinforced, piled, and two different reinforced and piled sec-
tions (Rowe & Liu, 2015). The computer experiments consider one quantitative factor and three qualitative factors
on improving the performance of reinforced embankments with floating columns over soft clay. The quantitative
factor x is the distance from the embankment centerline to the embankment shoulder, taking 29 values uniformly
in [0, 14]. Three qualitative factors are embankment construction rate (z1 = 1, 5, 10 m/month), Young's modulus
of columns (z2 = 50, 100, and 200 MPa), and reinforcement stiffness (z3 = 1,578, 4,800, and 8,000 kN/m). The
response variable is the final embankment crest settlement.

The settings of training data and testing data are the same as those in Section 5 of Deng et al. (2017). Specifically,
the testing set contains 29 data points in which the values of quantitative factor are taken uniformly from [0, 14], and
(z1, z2, z3) = (5, 100, 4,800). We compare four methods, denoted as AD, EC, MC, and UC, which are the additive GP
model with covariance structure (4), and the GP models with multiplicative covariance function (2) under the
exchangeable, multiplicative, and unrestrictive correlation functions for the qualitative factors, respectively. For
methods in comparison, we make prediction at randomly chosen 20 input settings out of those 29 ones and compute
the corresponding Nash-Sutcliffe efficiency (NSE). We repeat this process 100 times. Figure 3 displays the boxplots of
the logarithm of NSEs for the four methods, showing that the AD method outperforms the EC, MC, and UC methods.

There is also some work of Bayesian approaches for analyzing computer experiments with QQ factors. Han, San-
tner, Notz, and Bartel (2009) proposed a Bayesian hierarchical quantitative–qualitative variable model to fit QQ inputs.
But they assumed a strong assumption that the outputs corresponding to different levels of qualitative factors are draws
from Gaussian stochastic processes with similar correlation structures and magnitude of variation. They described the
“similarities” in the model parameters by a prior distribution. A few other directions of analyzing computer experi-
ments for QQ factors are also developed recently. Roustant et al. (2018) proposed “group kernels” for the GP model
with QQ factors to accommodate a potentially large number of combination levels of qualitative factors. Zhang, Tao,
Chen, and Apley (2018) introduced an approach that maps each qualitative factor to an underlying quantitative latent
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FIGURE 3 Boxplots of the log(1 − NSE) associated with

“EC,” “MC,” “UC,” and “AD” for the computer model in the real

application over 100 randomly chosen prediction sets of 20 input

settings. Abbreviation: EC, exchangeable correlation; MC,

multiplicative correlation; NSE, Nash-Sutcliffe efficiency; UC,

unrestrictive correlation
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variable, such that the GP model with QQ factors can be transformed to a standard GP model with only quantitative
factors.

4 | CONNECTION TO DATA MINING

Machine learning and data mining are methods of data analysis that automate model prediction. They have attracted
great attention resulting with wide applications in various industrial sectors. The GP model is one of the popular tools
in machine learning (Williams & Rasmussen, 2006), which gives easy interpretation of model prediction and provides a
well-founded framework for supervised learning and model selection. Moreover, the data with QQ inputs often occur
in the machine learning and data mining. In this regard, the methodologies reviewed in this article are potentially use-
ful for machine learning to handle the QQ inputs. The methods and techniques reviewed in this work can be much
more flexible than the one-hot encoding technique used in the machine learning to deal with qualitative variables. In
addition, the design strategies reviewed in this article can be used to facilitate the adaptive selection of design points in
the context of active learning (Deng, Joseph, Sudjianto, & Wu, 2009) and Bayesian optimization (Conti & O'Hagan,
2010; Han, Santner, Notz, & Bartel, 2009) when both QQ inputs are presented in the data. For example, in the Bayesian
optimization with QQ factors, the marginal coupled design can serve as a good initial design to make the optimization
procedure efficiently search for the optimal setting.

5 | CONCLUSION

In this work, we review a set of design and analysis methods for computer experiments, especially with both QQ factors.
There are several topics deserving further investigation. Space-filling designs are popular in practice, but better designs
may well exist. Sequential designs appear to be particularly appropriate for expensive computer experiments. On the
other hand, the existing techniques in modeling computer experiments are computationally intensive when the number
of observations is large. To overcome this challenge, development of efficient modeling techniques is called for. Some
ideas of local Gaussian process (Bilionis & Zabaras, 2012; Fang et al., 2019; Nguyen-Tuong, Peters, & Seeger, 2008; Yan,
Li, Bai, Deng, & Foley, 2017) can be used to facilitate the computation. Finally, the model calibration for computer
experiments is important (Chandra & Lin, 2012; Chang, Kerns, Lee, & Stanek, 2009; Han, Santner, & Rawlinson, 2009).
However, calibrating a computer model with QQ factors would call for careful investigation.
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