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Abstract: The generalized linear models (GLMs) are widely used in statistical analysis and the related
design issues are undoubtedly challenging. The state-of-the-art works mostly apply to design criteria on the
estimates of regression coefficients. The prediction accuracy is usually critical in modern decision-making
and artificial intelligence applications. It is of importance to study optimal designs from the prediction
aspects for GLMs. In this work, we consider Elastic I-optimality as a prediction-oriented design criterion
for GLMs, and develop an efficient algorithm for such EI-optimal designs. By investigating theoretical
properties for the optimal weights of any set of design points and extending the general equivalence theorem
to the EI-optimality for GLMs, the proposed efficient algorithm adequately combines the Fedorov–Wynn
algorithm and the multiplicative algorithm. It achieves great computational efficiency with guaranteed
convergence. Numerical examples are conducted to evaluate the feasibility and computational efficiency of
the proposed algorithm. The Canadian Journal of Statistics 00: 000–000; 2020 © 2020 Statistical Society
of Canada
Résumé: Largement utilisés pour l’analyse statistique, les modèles linéaires généralisés (GLM) présentent
de grands défis pour la planification d’expériences. Les travaux de recherche de pointe en planification
d’expériences portent habituellement sur des critères pour l’estimation des coefficients de régression. Pour
les applications modernes de prise de décision et d’intelligence artificielle, la précision des prévisions est
particulièrement critique, d’où l’importance d’étudier les plans d’expériences optimaux pour les GLM selon
des critères de prévision. Les auteurs considèrent la I-optimalité élastique en tant que critère d’optimalité
orienté sur les prévisions pour les GLM. Ils développent un algorithme efficace pour de tels plans
EI-optimaux en combinant adéquatement l’algorithme de Fedorov-Wynn et l’algorithme multiplicatif. Cette
harmonisation est rendue possible grâce à une investigation des propriétés théoriques des poids optimaux
pour tout ensemble de points du plan d’expérience, et à une extension du théorème d’EI-optimalité pour
les GLM. Les auteurs montrent que l’algorithme offre une grande efficacité computationnelle ainsi que des
garanties de convergence. Ils présentent finalement des exemples numériques pour évaluer la faisabilité
et l’efficacité de l’algorithme. La revue canadienne de statistique 00: 000–000; 2020 © 2020 Société
statistique du Canada

1. INTRODUCTION

The generalized linear model (GLM) is a flexible generalization of linear models by relating the
response to the predictors through a link function (Nelder & Wedderburn, 1972). The GLMs are
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widely used in many statistical analyses with different applications including business analytics,
image analysis, bioinformatics and others. From a data collection perspective, it is of great impor-
tance to understand the optimal designs for the GLM, especially from a prediction perspective.

Suppose that an experiment has d explanatory variables x = [x1,… , xd], and let Ω𝑗 be a
measurable set of all possible levels of the 𝑗th explanatory variable. Common examples of Ω𝑗

are [−1, 1] and ℝ. The experimental region, Ω, is some measurable subset of Ω1 × · · · × Ωd. In a
GLM, the response variable Y(x) is assumed to follow a particular distribution in the exponential
family, such as the normal, binomial, Poisson and gamma distributions. A link function provides
the relationship between the linear predictor, 𝜂 = 𝜷Tg(x), and the mean of the response Y(x),

𝜇(x) = 𝔼[Y(x)] = h−1 (𝜷Tg(x)
)
, (1)

where g = [g1,… , gl]T are the bases and 𝜷 = [𝛽1, 𝛽2,… , 𝛽l]T are the corresponding regression
coefficients. Here h ∶ ℝ → ℝ is the link function, and h−1 is the inverse function of h.

In this work, we consider an approximate design 𝜉 as 𝜉 =
{

x1, … , xn
𝜆1, … , 𝜆n

}
with xi ≠ x𝑗 if

i ≠ 𝑗. The 𝜆i(𝜆i ≥ 0) represents the fraction of experiments that is to be carried out at design
point xi and

∑n
i=1 𝜆i = 1. The Fisher information matrix of the GLM in Equation (1) is:

I(𝜉, 𝜷) =
n∑

i=1

𝜆ig(xi)w(xi)gT (xi), (2)

where w(xi) = 1∕{var(Y(xi))[h
′ (𝜇(xi))]2}. The notation I(𝜉,𝜷) emphasizes the dependence on

the design 𝜉 and regression coefficient 𝜷.
For GLMs, the design issues tend to be much more challenging than those in linear models

due to the complicated Fisher information matrix. The Fisher information matrix I(𝜉,𝜷) often
depends on the regression coefficient 𝜷 through the function w(xi) in Equation (2). Since most
optimal design criteria can be expressed as a function of the Fisher information matrix, a
scientific understanding of locally optimal designs is often conducted under the assumption that
some initial estimates of the model coefficients are available. Most works and algorithms on
design of GLMs focus on the D-optimality or A-optimality for accurate estimation of regression
coefficients. Atkinson & Woods (2015) provided a review of recent work on the designs of GLMs
mainly based on D-optimality. Practically, design criteria related to model prediction accuracy
are of large interest, especially in decision-making and artificial intelligence (e.g., Schein &
Ungar, 2007; Settles, 2009; Bilgic, Mihalkova & Getoor, 2010). Under such a consideration, the
I-optimality that aims at minimizing the average variance of prediction over the experimental
region Ω (Atkinson, 2014) is often used in the literature. For the linear model, Haines (1987)
proposed a simulated annealing algorithm to obtain exact I-optimal design. Meyer & Nachtsheim
(1988, 1995) used simulated annealing and coordinate-exchange algorithms to construct exact
I-optimal design. However, there are few works on I-optimality for GLMs in the literature.

In practical applications such as additive manufacturing (Sun et al., 2018), different regions of
exploratory variables x present different features of interest. For example, one may be interested
in the prediction of response over a subregion ΩC of Ω instead of the whole experimental region
Ω (Atkinson, 2014). For instance, the experimental region Ω could be the hypercube [−1, 1]d.
But it is likely that the responses corresponding to positive explanatory variables are of great
importance, or even only those responses are of interest. Khuri et al. (2006) proposed the criterion
that minimizes the mean-squared error of the prediction at a single explanatory variable value,
where ΩC contains a single point. Based on this motivation, we propose a so-called Elastic
I-optimality that is more general and flexible than the classical I-optimality. The EI-optimality
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criterion aims at minimizing the integrated mean squared prediction error with respect to a
certain probability measure on the experimental region. This criterion shares a similar spirit but
is more general than the criterion in the work of Box & Draper (1963).

The contribution of this work is to study a general and flexible prediction-oriented optimality
criterion, EI-optimality, to fill the gap in the theory of EI-optimal designs for GLMs, and to
advance an efficient algorithm of constructing EI-optimal designs for GLMs. Specifically, we
first establish the EI-optimality for GLMs and study theoretical properties of optimal fractions
(i.e., weights) 𝜆1,… , 𝜆n given design points x1,… , xn. The resultant theoretical properties are
not limited to EI-optimality, but also can be applied to other optimality criteria. Based on
these theoretical investigations, we develop an efficient sequential algorithm for constructing
EI-optimal designs for GLMs. The proposed algorithm sequentially adds points into design
and optimizes their weights simultaneously using the multiplicative algorithm (Titterington,
1978). The convergence properties of the proposed algorithm are established. A key contribution
of the proposed algorithm is to ensure the computational efficiency with sound theoretical
convergence. Our theoretical results provide theoretical insights on the optimal weights, which
is very crucial to achieve a fast convergence rate for the proposed algorithm. The advantages of
the proposed algorithm are: (1) very easy to implement; (2) theoretically proven convergence;
(3) computationally efficient; (4) suitable for other optimality criteria by simple modification.

The multiplicative algorithm, first proposed by Titterington (1978) and Silvey, Titterington
& Torsney (1978), has been widely used in finding optimal designs of linear regression models.
The main drawback of the multiplicative algorithm is that it requires a large candidate pool of
points and updating the weights of all candidate points simultaneously can be computationally
expensive. However, in our proposed sequential algorithm, guided by the theoretical results on
optimal weights, we can apply the multiplicative algorithm to a much smaller set of points,
which breaks the barrier of the original multiplicative algorithm and thus greatly improves the
efficiency of the algorithm. The proposed algorithm is not only computationally efficient, but
also very simple to implement. Furthermore, by employing the multiplicative algorithm, only
nonnegative weights will be obtained and one does not need to deal with potential negative
weights as in the algorithm proposed by Yang, Biedermann & Tang (2013). It is worth pointing
out that the proposed algorithm can be easily extended to construct optimal design under other
optimality criteria, like Φp-optimality.

The remainder of this work is organized as follows. The proposed prediction-oriented
EI-optimality for GLMs is established in Section 2. Section 3 details the findings on computing
optimal weights given any set of design points. The proposed sequential algorithm and its
convergence properties are developed in Section 4. Numerical examples are conducted in
Section 5 to evaluate the performance of the proposed algorithm. We conclude this work with
some discussion in Section 6. All the proofs are reported in the Appendix.

2. THE EI-OPTIMALITY CRITERION FOR GLM

The GLM is a generalization of various statistical models, including linear, logistic and Poisson
regression. For GLMs, making a prediction of response Y(x) at given input x is always an
important objective in many practical applications (e.g., Schein & Ungar, 2007; Settles, 2009;
Bilgic, Mihalkova & Getoor, 2010). Thus, it is of great interest to adopt a prediction-oriented
criterion for computing the optimal design. Following this idea, it is natural to consider the design
based on mean response 𝜇(x) that is square integrable with respect to some probability measure 𝜈

defined on ℝd. The associated probability distribution is given by FIMSE(x) = 𝜈

(∏d
i=1(−∞, xi]

)
.

Then, a general and flexible Elastic I-optimality criterion is defined as follows.

Definition 1. The elastic integrated mean squared prediction error (EIMSE) is defined
in terms of the difference between the true mean response, 𝜇(x), and the fitted mean
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response �̂�(x) as:

EIMSE(𝜉, 𝜷,FIMSE) = 𝔼
[
∫Ω (�̂�(x) − 𝜇(x))2 dFIMSE(x)

]
, (3)

where FIMSE is the probability distribution induced by probability measure 𝜈.

The classical I-optimality for linear models is defined as the average variance of response
over the experimental region Ω (Atkinson, 2014):

I(𝜉) = ∫Ω var(Y|x)dx
/

∫Ω dx = 𝔼
[
∫Ω (�̂�(x) − 𝜇(x))2 dFunif(x)

]
,

where Funif is the uniform distribution on Ω, �̂� and 𝜇 are the fitted mean response and true mean
response of the linear model, respectively. Obviously, the I-optimality I(𝜉) is a special case of
EI-optimality in Equation (3) with 𝜈 chosen to be the uniform probability measure. In Atkinson,
Donev & Tobias (2006) (Chapter 10.6), the authors briefly mentioned a similar criterion on
average prediction variance involving a probability distribution, without theoretical investigation
and efficient algorithms. Here, we formally propose the EI-optimality and discuss its advantages
in detail. By introducing the probability measure 𝜈, the EI-optimality is more flexible to assist
practical applications in several scenarios: (1) the responses corresponding to x on a subregionΩC
are of particular interest; (2) the responses corresponding to different values of x are of different
importance; (3) the responses corresponding to a finite number of x values are of interest. It is
worthwhile to point out that when 𝜈 is chosen to be the Dirac measure that puts a unit mass
at x0 that maximizes 𝔼

[
(�̂�(x) − 𝜇(x))2

]
, i.e., 𝔼

[
(�̂�(x0) − 𝜇(x0))2

]
= supx∈Ω 𝔼

[
(�̂�(x) − 𝜇(x))2

]
,

the EI(𝜉,𝜷,FIMSE) becomes the G-optimality (Atkinson, Donev & Tobias, 2006) that focuses on
the maximum variance of the mean response.

Under the context of GLMs, the fitted mean response �̂�(x) = h−1
(
�̂�

T
g(x)

)
can be expanded

around the true mean response 𝜇(x) = h−1
(
𝜷Tg(x)

)
using Taylor expansion, which is

�̂�(x) − 𝜇(x) = h−1
(
�̂�

T
g(x)

)
− h−1 (𝜷Tg(x)

)
≈ c(x)T

(
�̂� − 𝜷

)
,

with c(x) =
(
𝜕h−1

𝜕𝛽1
(x),… ,

𝜕h−1

𝜕𝛽l
(x)

)T
= g(x)

(
dh−1

d𝜂

)
. Here 𝜂 = 𝜷Tg(x) is the linear predictor.

Then, using the above first-order Taylor expansion, the elastic integrated mean squared error
defined in Equation (3) could be approximated as,

EI(𝜉,𝜷,FIMSE) = 𝔼
[
∫Ω c(x)T

(
�̂� − 𝜷

) (
�̂� − 𝜷

)T
c(x)dFIMSE

]
.

In numerical analysis, the first-order Taylor expansion is often used to approximate the difference
of a nonlinear function between adjacent points. Considering the design issue for GLMs, similar
approaches were commonly used in the literature, such as the work in Schein & Ungar (2007)
for logistic regression models.

Lemma 1. For the GLMs in Equation (1), the Elastic IMSE EI(𝜉,𝜷,FIMSE) can be
expressed as

EI(𝜉, 𝜷,FIMSE) = tr
(
AI(𝜉,𝜷)−1) ,

where the matrix A = ∫Ω c(x)c(x)TdFIMSE(x) = ∫Ω g(x)gT (x)
[

dh−1

d𝜂

]2
dFIMSE(x) depends only on

the regression coefficients, basis functions and the probability distribution FIMSE, but not the
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design. The Fisher information matrix I(𝜉, 𝜷), defined in Equation (2), depends on regression
coefficients, basis functions and design, but not on the probability distribution FIMSE.

Hereafter, we refer to the EI-optimality as the corresponding optimality criterion aiming at
minimizing

EI(𝜉, 𝜷,FIMSE) = tr
(
AI(𝜉,𝜷)−1) .

A design 𝜉∗ is called an EI-optimal design if it minimizes EI(𝜉,𝜷,FIMSE). In this work, we
will focus on local EI-optimal designs given some initial estimate of regression coefficient 𝜷.
To simplify the notation, 𝜷 will be omitted from the notation I(𝜉,𝜷) of the Fisher information
matrix, and I(𝜉) will be used instead.

3. ALGORITHMS FOR FINDING OPTIMAL WEIGHTS GIVEN DESIGN POINTS

In this section, we will investigate how to assign optimal weights to support points that minimize
EI(𝜉,𝜷,FIMSE) when the design points are given. One popular method in the literature (Yang,
Biedermann & Tang, 2013) is the Newton–Raphson technique, which calculates the roots of
the first-order partial derivatives of the criterion with respect to the weights. There are certain
possible drawbacks of such a Newton–Raphson based method: first, it may result in weights
outside [0, 1] and thus further efforts are needed. Second, it requires the inversion of a Hessian
matrix, which could be (numerically) singular. Moreover, as noted in Yang, Biedermann & Tang
(2013), there is no guarantee of convergence. The problems of the Newton–Raphson method
will be illustrated in the numerical examples in Section 5.

Specifically, we will derive a theorem on optimal weights given design points for
Φp-optimality (Kiefer, 1974) in Section 3.1, and then will take the mathematical structure
of EI-optimality as a slight variation of Φ1-optimality. Guided by this theorem, we develop an
efficient algorithm (Algorithm 1) to find the optimal weights given design points in Section 3.2.
Note that Algorithm 1 can be used for both Φp-optimality and EI-optimality. Interestingly, this
algorithm coincides with the well-known multiplicative algorithm, providing a good justification
of applying multiplicative algorithm in our sequential algorithm in Section 4. There are several
advantages of the multiplicative algorithm: simple to implement, guarantee of feasible weights,
guarantee of convergence, and no Hessian matrix inversion.

3.1. Properties of Optimal Weights Given Design Points
Following the definition given in Kiefer (1985), the Φp-optimality is defined as

Φp(𝜉) =
[
tr
(
I(𝜉)−p)]1∕p

, 0 < p < ∞,

with Φ0(𝜉) as D-optimality, Φ∞(𝜉) as E-optimality and Φ1(𝜉) as A-optimality. Even more
generally, one may be interested in several functions 𝒇 (𝜷) = [𝑓1(𝜷),… , 𝑓q(𝜷)]T of regression
coefficient 𝜷. Then, the more general Φp-optimality is defined as (Kiefer, 1974)

Φp(𝜉) =

(
q−1tr

[
𝜕𝒇 (𝜷)
𝜕𝜷T

I(𝜉)−1
(
𝜕𝒇 (𝜷)
𝜕𝜷T

)T
]p)1∕p

, 0 < p < ∞. (4)

Given the fixed design points x1, x2,… , xn, define 𝝀 = [𝜆1, 𝜆2,… , 𝜆n]T to be the weight
vector with 𝜆i as the weight of the corresponding design point xi. We write the corresponding
design as

𝜉𝝀 =
{

x1, … , xn
𝜆1, … , 𝜆n

}
.
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A superscript 𝝀 is added to emphasize that only the weight vector is changeable in the design
under this situation. The optimal weight vector 𝝀∗ should be the one that minimizes Φp(𝜉𝝀) in
Equation (4) with design points x1,… , xn fixed.

Lemma 2. The Φp is a convex function of weight vector 𝝀, and

Φp(𝜉𝝀) =
[
q−1tr

[
I−1(𝜉𝝀)B

]p
]1∕p

,

where B =
(
𝜕𝒇 (𝜷)
𝜕𝜷T

)T (
𝜕𝒇 (𝜷)
𝜕𝜷T

)
is positive semidefinite with size l × l and rank q ≤ l, with q as the

length of 𝒇 .

Consider another weight vector Δ𝝀 = [Δ𝜆1,… ,Δ𝜆n]T with 0 ≤ Δ𝜆i ≤ 1, i = 1,… , n and∑n
i=1 Δ𝜆i = 1 . Then the convex combination �̃� = (1 − 𝛼)𝝀 + 𝛼Δ𝝀 with 0 ≤ 𝛼 ≤ 1 is also a

feasible weight vector. Define the directional derivative of Φp(𝜉𝝀) in the direction of a new
weight vector Δ𝝀 = [Δ𝜆1,… ,Δ𝜆n] as:

𝜓(Δ𝝀,𝝀) = lim
𝛼→0+

Φp(𝜉�̃�) − Φp(𝜉𝝀)
𝛼

.

Lemma 3. The directional derivative of Φp(𝜉𝝀) in the direction of a new weight vector
Δ𝝀 = [Δ𝜆1,… ,Δ𝜆n]T can be calculated as,

𝜓(Δ𝝀,𝝀) = Φp(𝜉𝝀) − q−1∕p
[
tr
(
I(𝜉𝝀)−1B

)p
]1∕p−1

tr
[(

I(𝜉𝝀)−1B
)p−1

I(𝜉𝝀)−1I(𝜉Δ𝝀)I(𝜉𝝀)−1B
]
,

where B =
(
𝜕𝒇 (𝜷)
𝜕𝜷T

)T (
𝜕𝒇 (𝜷)
𝜕𝜷T

)
.

Remark 1. Note that A = ∫Ω g(x)gT (x)
[

dh−1

d𝜂

]2
dFIMSE(x) is an l × l positive semidefinite

matrix. Although EI-optimality is not a member of Φp-optimality, since it has the same
mathematical structure as Φ1(𝜉) with B = qA defined in Lemma 1, the mathematical properties
of Φp-optimality can be applied to EI-optimality.

Corollary 1. For EI-optimality, the directional derivative in the direction of a new weight
vector Δ𝝀 is

𝜓(Δ𝝀,𝝀) = tr
(
I(𝜉𝝀)−1A

)
−

n∑
i=1

Δ𝜆iw(xi)g(xi)T I(𝜉𝝀)−1AI(𝜉𝝀)−1g(xi).

The following theorem provides a necessary and sufficient condition of optimal weight
vector that minimizes Φp(𝜉) when the design points are fixed.

Theorem 1. Given a fixed set of design points x1,… , xn, the weight vector 𝝀∗ = [𝜆∗1,… , 𝜆∗n]
T

minimizes Φp(𝜉𝝀) if and only if,

Φp(𝜉𝝀
∗ ) = q−1∕p

[
tr
(

I(𝜉𝝀∗ )−1B
)p]1∕p−1

w(xi)g(xi)T I(𝜉𝝀∗ )−1B
(

I(𝜉𝝀∗ )−1B
)p−1

I(𝜉𝝀∗ )−1g(xi),
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for all design points xi with 𝜆∗i > 0; and

Φp(𝜉𝝀
∗ ) ≥ q−1∕p

[
tr
(

I(𝜉𝝀∗ )−1B
)p]1∕p−1

w(x𝑗)g(x𝑗)T I(𝜉𝝀∗ )−1B
(

I(𝜉𝝀∗ )−1B
)p−1

I(𝜉𝝀∗ )−1g(x𝑗),

for all design points x𝑗 with 𝜆∗
𝑗
= 0.

Note that in Theorem 1, for an optimal weight vector, it is required to hold the equality for
the nonzero weights. The following results provide a sufficient condition that a weight vector
minimizes Φp(𝜉𝝀) and EI(𝜉𝝀, 𝜷,FIMSE), respectively.

Corollary 2. (i) If a weight vector 𝝀∗ = [𝜆∗1,… , 𝜆∗n]
T satisfies

Φp(𝜉𝝀
∗ ) = q−1∕p

[
tr
(

I(𝜉𝝀∗ )−1B
)p]1∕p−1

w(xi)g(xi)T I(𝜉𝝀∗ )−1B
(

I(𝜉𝝀∗ )−1B
)p−1

I(𝜉𝝀∗ )−1g(xi),

for all design points x1,… , xn, then 𝝀∗ minimizes Φp(𝜉𝝀).
(ii) For EI-optimality, a sufficient condition that 𝝀∗ minimizes EI(𝜉𝝀,𝜷,FIMSE) is

tr(I(𝜉𝝀∗ )−1A) = w(xi)g(xi)T I(𝜉𝝀∗ )−1AI(𝜉𝝀∗ )−1g(xi), for, i = 1,… , n.

The results in Theorem 1 and Corollary 2 provide a useful gateway to design an effective
algorithm for finding the optimal weights given the design points.

3.2. Multiplicative Algorithm for Optimal Weights
As shown in Corollary 2, the solution of a system of equations

Φp(𝜉𝝀
∗ ) = q−1∕p

[
tr
(

I(𝜉𝝀∗ )−1B
)p]1∕p−1

w(xi)g(xi)T I(𝜉𝝀∗ )−1B
(

I(𝜉𝝀∗ )−1B
)p−1

I(𝜉𝝀∗ )−1g(xi),
(5)

i = 1,… , n, is a set of optimal weights that minimizes Φp(𝜉𝝀).
The weight of a design point xi should be adjusted according to the values of the two sides

of Equation (5). Note that for any weight vector 𝝀 = [𝜆1,… , 𝜆n], we have

Φp(𝜉𝝀) =
n∑

i=1

𝜆iq
−1∕p

[
tr
(
I(𝜉𝝀)−1B

)p
]1∕p−1

w(xi)g(xi)T I(𝜉𝝀)−1B
(
I(𝜉𝝀)−1B

)p−1
I(𝜉𝝀)−1g(xi).

Based on this observation, the weight 𝜆i of a design point xi should be adjusted according to the

value of q−1∕p
[
tr
(
I(𝜉𝝀)−1B

)p]1∕p−1
w(xi)g(xi)T I(𝜉𝝀)−1B

(
I(𝜉𝝀)−1B

)p−1 I(𝜉𝝀)−1g(xi). Our strategy
of finding optimal weights would be: if

Φp(𝜉𝝀) < q−1∕p
[
tr
(
I(𝜉𝝀)−1B

)p
]1∕p−1

w(xi)g(xi)T I(𝜉𝝀)−1B
(
I(𝜉𝝀)−1B

)p−1
I(𝜉𝝀)−1g(xi),

then the weight 𝜆i of xi should be increased. On the other hand, if

Φp(𝜉𝝀) > q−1∕p[tr (I(𝜉𝝀)−1B
)p ]1∕p−1w(xi)g(xi)T I(𝜉𝝀)−1B

(
I(𝜉𝝀)−1B

)p−1
I(𝜉𝝀)−1g(xi),
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then the weight 𝜆i of xi should be decreased. Thus, the ratio

q−1∕p
[
tr
(
I(𝜉𝝀)−1B

)p]1∕p−1
w(xi)g(xi)T I(𝜉𝝀)−1B

(
I(𝜉𝝀)−1B

)p−1 I(𝜉𝝀)−1g(xi)
Φp(𝜉𝝀)

would indicate a good adjustment for the current weight of a design point xi.
The details of the algorithm are described in Algorithm 1 as follows.

Algorithm 1

1: Assign a random weight vector 𝝀0 = [𝜆0
1,… , 𝜆0

n]
T , and k = 0.

2: while change > 1e − 15 and k < maxrun do
3: for i = 1,… , n do
4: Update the weight of design point xi:

𝜆k+1
i = 𝜆k

i

(
q−1∕p

[
tr
(

I(𝜉𝝀k )−1B
)p]1∕p−1

w(xi)g(xi)T I(𝜉𝝀k )−1B
(

I(𝜉𝝀k )−1B
)p−1

I(𝜉𝝀k )−1g(xi)

Φp(𝜉𝝀
k )

)𝛿

∑n
i=1 𝜆

k
i

(
q−1∕p

[
tr
(

I(𝜉𝝀k )−1B
)p]1∕p−1

w(xi)g(xi)T I(𝜉𝝀k )−1B
(

I(𝜉𝝀k )−1B
)p−1

I(𝜉𝝀k )−1g(xi)

Φp(𝜉𝝀
k )

)𝛿

= 𝜆k
i

[
w(xi)g(xi)T I(𝜉𝝀k )−1B

(
I(𝜉𝝀k )−1B

)p−1
I(𝜉𝝀k )−1g(xi)

]𝛿
∑n

i=1 𝜆
k
i

[
w(xi)g(xi)T I(𝜉𝝀k )−1B

(
I(𝜉𝝀k )−1B

)p−1
I(𝜉𝝀k )−1g(xi)

]𝛿 , (6)

5: change = max
i=1,···,n

(|𝜆k+1
i − 𝜆k

i |).
6: k = k + 1.
7: end for
8: end while

We would like to remark that Algorithm 1 can be viewed as a well-known multiplicative
algorithm proposed by Titterington (1978) and Silvey, Titterington & Torsney (1978). Origi-

nally, a heuristic explanation for the multiplicative algorithm is that 𝜆k+1
i ∝ 𝜆k

i

(
𝜕Φp(𝜉𝝀)

𝜕𝜆i

||||𝝀=𝝀k

)𝛿

.

Here, we obtain the same algorithm based on a sufficient condition of optimal weights
given in Corollary 2. This may also explain why the multiplicative algorithm tends to con-
verge slowly and result in many support points when there is a large candidate set. When
the multiplicative algorithm is applied to a large candidate set, a very strong sufficient but
not necessary condition is imposed on all the candidate points. This condition should be
only imposed on the points with nonzero optimal weights. However, if the design points
are appropriately chosen so that most of them have nonzero optimal weights, then the
sufficient condition in Corollary 2 becomes almost a necessary condition for the optimal
weights.

In Algorithm 1, there are two pre-specified parameters. One is a convergence parameter
𝛿 ∈ (0, 1) and the other one, maxrun, is the maximum number of iterations allowed. Following
the suggestion by Fellman (1974) and Fiacco & Kortanek (1983), a convergence parameter of
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𝛿 = 1
2

is usually used for A-optimality. Since EI-optimality has similar mathematical structure

to A-optimality, we choose 𝛿 = 1
2

in our algorithm. It is also observed that the computational
performance of the proposed algorithm is quite robust regarding 𝛿 in Example 2 of Section 5. We
will show later in proposition 1 that Algorithm 1 converges to optimal weights monotonically.
Thus, the algorithm is not very sensitive to the choice of maximum iterations allowed, maxrun.
In all our numerical examples, we choose maxrun = 100, while the same parameter in Yang,
Biedermann & Tang (2013) for Newton’s method is 40. The following theorem provides a
sufficient condition when the iterative formula in Algorithm 1 is feasible, and Corollary 3 shows
that, for EI-optimality, one can ensure that every iteration in Algorithm 1 is always feasible by
choosing appropriate basis functions.

Theorem 2. Suppose I(𝜉𝝀k )−1B ≠ 0 in iteration k, then the iteration in Equation (6) is feasible,
that is, the denominator

n∑
i=1

𝜆k
i

[
w(xi)g(xi)T I(𝜉𝝀k )−1B

(
I(𝜉𝝀k )−1B

)p−1
I(𝜉𝝀k )−1g(xi)

]𝛿
is positive.

For the EI-optimality, the iterative formula in Algorithm 1 becomes

𝜆k+1
i = 𝜆k

i

[
w(xi)g(xi)T I(𝜉𝝀k )−1AI(𝜉𝝀k )−1g(xi)

]𝛿
∑n

i=1 𝜆
k
i

[
w(xi)g(xi)T I(𝜉𝝀k )−1AI(𝜉𝝀k )−1g(xi)

]𝛿 ,

with A = ∫Ω g(x)gT (x)
[

dh−1

d𝜂

]2
dFIMSE(x).

Corollary 3. For the EI-optimality, with a nonsingular information matrix I(𝜉𝝀k ), a positive

definite A = ∫Ω g(x)gT (x)
[

dh−1

d𝜂

]2
dFIMSE(x) would ensure all the iterations in Equation (6) to be

always feasible, that is, the denominator

n∑
i=1

𝜆k
i

[
w(xi)gT (xi)I(𝜉𝝀

k )−1AI(𝜉𝝀k )−1g(xi)
]𝛿

is always positive.

For the Φp-optimality, the matrix B =
(
𝜕𝒇 (𝜷)
𝜕𝜷T

)T (
𝜕𝒇 (𝜷)
𝜕𝜷T

)
is determined by 𝒇 (𝜷), the functions

of 𝜷 that are of interest, which are determined by the purpose of the experiment. But, for

EI-optimality, the matrix A = ∫Ω g(x)gT (x)
[

dh−1

d𝜂

]2
dFIMSE(x) is always positive semi-definite

and can be controlled by the experimenter before the optimal design is constructed. When a
singular A is observed in the first step, one can choose the basis functions g1,… , gl carefully so
that they are (nearly) orthogonal functions such that

∫Ω gi(x)g𝑗(x)
[

dh−1

d𝜂

]2

dFIMSE(x) ≈ 0 for i ≠ 𝑗.

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique



10 LI AND DENG Vol. 00, No. 00

By doing this, one can ensure the matrix A to be positive definite. In general, the Gram–Schmidt
orthogonalization (Pursell & Trimble, 1991) can be used to construct uni/multi-variate orthogonal
basis functions.

We can provide the convergence property of Algorithm 1, which generalizes Yu’s work (Yu,
2010) to a broader class of optimality criteria, Φp-optimality.

Proposition 1 (Convergence of Algorithm 1). Given the design points x1,… , xn fixed, the
weight vector 𝝀k obtained from Algorithm 1 monotonically converges to the optimal weight
vector 𝝀∗ that minimizes Φp-optimality, as k → ∞.

4. PROPOSED SEQUENTIAL ALGORITHM OF CONSTRUCTING EI-OPTIMAL
DESIGN

In this section, we will describe the proposed efficient algorithm for constructing EI-optimal
design for GLMs. General equivalence theorems are one of the main theoretical tools to
develop algorithms to construct optimal designs. Many Wynn–Federov type algorithms are
developed based on general equivalence theorems (see Wynn, 1970, 1972; Whittle, 1973; Yang,
Biedermann & Tang, 2013; Martı́n & Gutiérrez, 2015). Yang, Mandal & Majumdar (2016)
developed an efficient algorithm to construct 2k D-optimal factorial design with binary response
based on a specialized version of general equivalence theorem on a pre-determined finite set of
design points. We will first establish the general equivalence theorem for EI-optimality of GLMs
in Section 4.1, which provides an intuitive way for choosing the support points to construct
an EI-optimal design in a sequential fashion. Section 4.2 details the proposed algorithm and
develops the convergence property of the proposed algorithm.

4.1. General Equivalence Theorem of EI-Optimality
As shown in Remark 1, the EI-optimality has a similar mathematical structure as the
Φ1-optimality, but the two criteria have different practical interpretations. The general equiva-
lence theorem of Φp-optimality for GLMs has been established (Stufken & Yang, 2011), and it
could be extended to EI-optimality for GLMs easily. We state the General Equivalence Theorem
of EI-optimality for GLMs in the following Theorem 3, and the standard proof is omitted.
The extended theoretical results facilitate the sequential choice of support points as that of the
Fedorov–Wynn algorithm (Wynn, 1970; Fedorov, 1972).

Given two designs 𝜉 and 𝜉′, let the design 𝜉 be constructed as

𝜉 = (1 − 𝛼)𝜉 + 𝛼𝜉′.

Then, the derivative of EI(𝜉, 𝜷,FIMSE) in the direction of design 𝜉′ is

𝜙(𝜉′, 𝜉) = lim
𝛼→0+

EI(𝜉,𝜷,FIMSE) − EI(𝜉,𝜷,FIMSE)
𝛼

. (7)

Lemma 4. The EI(⋅, 𝜷,FIMSE) is a convex function of the design 𝜉.

With some algebra, we can obtain the directional derivative of EI(𝜉,𝜷,Ωc) in the direction
of any design 𝜉′ as,

𝜙(𝜉′, 𝜉) = lim
𝛼→0+

EI(𝜉,𝜷,FIMSE) − EI(𝜉, 𝜷,FIMSE)
𝛼

= tr(I(𝜉)−1A) − tr(I(𝜉′)I(𝜉)−1AI(𝜉)−1),
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where A = ∫Ω g(x)gT (x)
[

dh−1

d𝜂

]2
dFIMSE(x). Moreover, we can also get the directional derivative

of EI(𝜉,𝜷,FIMSE) in the direction of a single point x as

𝜙(x, 𝜉) = tr(I(𝜉)−1A) − w(x)g(x)T I(𝜉)−1AI(𝜉)−1g(x).

Theorem 3 (General equivalence theorem). The following three conditions of 𝜉∗ are equiv-
alent:

1. The design 𝜉∗ minimizes
EI(𝜉, 𝜷,Ωc) = tr(AI(𝜉)−1).

2. The design 𝜉∗ minimizes

sup
x∈Ω

w(x)gT (x)I(𝜉)−1AI(𝜉)−1g(x).

3. w(x)gT (x)I(𝜉∗)−1AI(𝜉∗)−1g(x) ≤ tr(I(𝜉∗)−1A) holds over the experimental region Ω, and the
equality holds only at the points of support of the design 𝜉∗.

According to Theorem 3, for an optimal design 𝜉∗, the directional derivative 𝜙(x, 𝜉∗) is
nonnegative for any x ∈ Ω. It implies that for any nonoptimal design, there will be some
directions in which the directional derivative 𝜙(x, 𝜉) < 0. Given a current design 𝜉, to gain the
maximal decrease in the EI-optimality criterion, we would choose a new support point x∗ to be
added into the design, if 𝜙(x∗, 𝜉) = minx∈Ω 𝜙(x, 𝜉) < 0. Then one can optimize the weights of all
support points in the updated design, which is described in Algorithm 1 in Section 3. With this
greedy search of the design points, we hope that most or all optimal weights in each iteration are
nonzero, and that the multiplicative algorithm converges quickly. By iterating the selection of
support point and the weight update of all support points, this two-step iterative procedure can be
continued until minx∈Ω 𝜙(x, 𝜉) ≥ 0 for all x ∈ Ω, which means the updated design is EI-optimal.
Such a sequential algorithm of constructing optimal designs, as described in Algorithm 2 in
Section 4.2, follows similar spirits in the widely used Fedorov–Wynn algorithm (Wynn, 1970;
Wynn, 1972), the multi-stage algorithm proposed by Yang, Biedermann & Tang (2013), and the
combined algorithm proposed by Martı́n & Gutiérrez (2015). It is worth pointing out that when
the region of explanatory variable x we are interested in, ΩC is a subset of original experimental
region Ω, the optimal design 𝜉∗ is still defined and searched on the original experimental region
Ω. As a result, the support points in the optimal design may locate outside ΩC.

4.2. The Proposed Sequential Algorithm
As discussed in Section 3.2, the multiplicative algorithm tends to converge slowly under a
large candidate set. The theoretical results in Theorem 3 provide insightful guidelines on
sequential selection of design points. In combination with Algorithm 1 to find optimal weights
for fixed design points in Section 3, we propose an efficient sequential algorithm to construct the
EI-optimal design for GLMs. The details of the proposed sequential algorithm are summarized
in Algorithm 2.

In practice, the stopping rule minx∈Ω 𝜙(x, 𝜉r) ≥ 0 is impractical since it requires many
iterations to make all the directional derivative values strictly positive (numerically it is unlikely
to have exactly zero cases). To address this issue, we consider terminating the algorithm when
the design efficiency is large enough, say close to 1.
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Algorithm 2

1: Calculate matrix A = ∫Ω g(x)gT (x)
[

dh−1

d𝜂

]2
dFIMSE(x).

2: if cond(A > 1e16) then
3: Construct orthogonal basis g using Gram–Schmidt orthogonalization.
4: Calculate matrix A using the new orthogonal basis g.
5: end if
6: Generate an N points candidate pool  using grid or Sobol sequence from experimental

region Ω.
7: Choose an initial design points set 0 =

{
x1, · · · , xl+1

}
containing l + 1 points.

8: Obtain optimal weights 𝝀0 of initial design points set 0 using Algorithm 1 and form the

initial design 𝜉0 =
{0

𝝀0

}
.

9: Calculate the lower bound of EI-efficiency of 𝜉0,

LEffEI(𝜉0|𝜉∗) = tr(I−1(𝜉0)A)
maxx∈ w(x)g(x)T I(𝜉0)−1AI(𝜉0)−1g(x)

.

10: Set r = 1.
11: while LEffEI(𝜉r−1|𝜉∗) < reqe𝑓𝑓 and r < maxiter do
12: Add the point x∗r = argminx∈𝜙(x, 𝜉r−1) to the current design points set, i.e.,  r =

 r−1 ∪ x∗r , where 𝜙(x, 𝜉r−1) is the directional derivative expressed as

𝜙(x, 𝜉r−1) = tr(I(𝜉r−1)−1A) − w(x)g(x)T I(𝜉r−1)−1AI(𝜉r−1)−1g(x).

13: Obtain optimal weights 𝝀r of the current design points set  r using Algorithm 1 and

form the current design 𝜉r =
{ r

𝝀r

}
.

14: Calculate the lower bound of EI-efficiency of 𝜉r,

LEffEI(𝜉r|𝜉∗) = tr(I−1(𝜉r)A)
maxx∈ w(x)g(x)T I(𝜉r)−1AI(𝜉r)−1g(x)

.

15: r = r + 1.
16: end while

The efficiency of a design 𝜉 relative to another design 𝜉′ under a Φp-optimality is defined as
(Pukelsheim, 2006)

EffΦp
(𝜉|𝜉′) = Φp(𝜉′)

Φp(𝜉)
.

Asymptotically, the efficiency is essentially the ratio between the number of trials required to
obtain the same amount of information measured by a specific Φp-optimality using design 𝜉′ and
𝜉. The following proposition provides a lower bound LEffΦp

(𝜉|𝜉∗) of Φp-efficiency of a design 𝜉

relative to the corresponding Φp-optimal design 𝜉∗, and this lower bound is used in the stopping
rule in Algorithm 2.
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Theorem 4. With candidate pool , the Φp-efficiency of any design 𝜉 relative to Φp-optimal
design 𝜉∗, EffΦp

(𝜉|𝜉∗), is lower bounded by

LEffΦp
(𝜉|𝜉∗) = Φp(𝜉)

maxx∈ q−1∕p
[
tr
(
I(𝜉)−1B

)p]1∕p−1
w(xi)g(xi)T I(𝜉)−1B

(
I(𝜉)−1B

)p−1 I(𝜉)−1g(xi)
.

Specifically, for EI-optimality, the lower bound of a design 𝜉 relative to the corresponding
EI-optimal design 𝜉∗ is

LEffEI(𝜉|𝜉∗) = tr(I−1(𝜉)A)
maxx∈ w(x)g(x)T I(𝜉)−1AI(𝜉)−1g(x)

.

Following the stopping criterion used in Harman, Filová & Richtárik (2019), when the lower
bound LEffEI(𝜉r|𝜉∗) of the efficiency EffEI(𝜉r|𝜉∗) reaches a user-specified threshold reqe𝑓𝑓 ,
there is no practical reason to continue the search. We choose reqe𝑓𝑓 = 0.99 in all the numerical
examples. Another user-specified parameter is the maximum iterations allowed, maxiter. We
choose maxiter = 100, and the proposed algorithm converges within 100 iterations in all the
numerical examples conducted, while Newton’s method fails to converge within 100 iterations
for one case in Example 2. More details could be found in Section 5.

Note that the proposed sequential algorithm of constructing EI-optimal design for GLMs
does not require the computation of a Hessian matrix inverse like Newton–Raphson methods
do. Thus the algorithm can avoid the issue of singular Hessian matrices and can be more
computationally efficient than the conventional methods. The sequential nature of the proposed
algorithm also enables efficient search of optimal weights without updating weights for all
candidate points. Martı́n & Gutiérrez (2015) considered a similar sequential algorithm that
combines Whittle’s method (Whittle, 1973) with one iteration of the multiplicative algorithm to
update the weights after a new design point is added. As a result, the weights are not necessarily
optimized in each iteration of the combined algorithm, and the proof of Theorem 5 cannot be
applied to the combined algorithm. The convergence property of the combined algorithm for
general Φp-optimality is not studied in Martı́n & Gutiérrez (2015).

Note that the sequential algorithm (Algorithm 2) can also be easily modified to achieve
Φp-optimal designs, where the analytic formula of directional derivative𝜙(x, 𝜉) forΦp-optimality
has been studied before (Atkinson, Donev & Tobias, 2006; Stufken & Yang, 2011; Yang,
Biedermann & Tang, 2013). Moreover, we also establish the convergence property of the
proposed sequential algorithm as follows.

Theorem 5 (Convergence of Algorithm 2). With a discrete design region , the design
constructed by Algorithm 2 converges to EI-optimal design 𝜉∗ that minimizes EI(𝜉,𝜷,FIMSE), as
r → ∞, i.e.,

lim
r→∞

EI(𝜉r, 𝜷,FIMSE) = EI(𝜉∗,𝜷,FIMSE).

When the experimental region Ω is continuous, a discretization would be needed to form the
candidate pool . We would like to point out that the choice of candidate pool  would affect the
efficiency of Algorithm 2, and the computational time increases dramatically as the candidate
pool gets large. We suggest using a grid as the candidate pool when the dimension of explanatory
variables is low, and choosing the Sobol sequence (Sobol, 1967) as the candidate pool when the
explanatory variable dimension is high. The Sobol sequence is a space-filling design that covers
the experimental domain Ω well and is efficient when the dimension of the explanatory variable
is high. To further improve the efficiency of the algorithm, a search strategy inspired by Yang
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& Stufken (2012) could be employed. One can start with a more sparse Sobol sequence, and
achieve the current best design using Algorithm 2. Then, we can further create denser and denser
candidate pools in the neighbourhood of the support points in the current best design until there
is no further improvement under the EI-optimality criterion.

5. NUMERICAL EXAMPLES

In this section, we will conduct numerical studies to evaluate the performance of the proposed
sequential algorithm (Algorithm 2). As noted in Section 4.2, Algorithm 2 can be applied
to construct Φp-optimal designs such as A-optimal design. To the best of our knowledge,
there is no existing algorithm that can directly construct the EI-optimal design for GLMs.
However, the Newton-type method (Yang, Biedermann & Tang, 2013) could be revised to
construct EI-optimal designs. The proposed algorithm (Algorithm 2) will be compared with the
Newton-type method in Yang, Biedermann & Tang (2013), which adopts Newton’s method to
update the weights of design points and is an efficient algorithm in the literature. The comparison
will be conducted under different GLMs with various settings of variable dimensions. Both
algorithms are implemented in MATLAB, and the code for Newton’s method is converted from
the SAS code kindly provided by the authors of Yang, Biedermann & Tang (2013). All codes
were run on a MacBook Pro with a 2.4 GHz Intel Core i5 processor. The Newton-type method
requires a well-conditioned Hessian matrix to update the weights, but the Hessian matrix could
be numerically singular in a certain iteration which results in inaccurate weight updates. In
this numerical example, the generalized inverse of Hessian matrix is used for the Newton-type
method. The proposed algorithm always returns nonnegative weights, only eliminates the design
points with almost zero weight, and does not require Hessian matrix inversion. A grid candidate
pool of size N = (s + 1)d with s + 1 equally spaced points for each explanatory variable xi,
i = 1,… , d is used in all numerical examples. Note that our Algorithm 2 does not require the
candidate pool to be a grid. We would suggest using a space-filling design such as a Sobol
sequence as the candidate pool for high-dimensional explanatory variable. The target efficiency
lower bound reqe𝑓𝑓 in the stopping criterion is chosen to be 0.99, and we consider two designs
are both good enough if their efficiency lower bounds exceed 0.99. Thus, it is fair to compare
the efficiency of the algorithms based on the computational time.

Example 1. The setting of this example follows the Example 2 in Yang, Biedermann & Tang
(2013), which considers the linear model

Y ∼ 𝜃1 + 𝜃2x1 + 𝜃3x2
1 + 𝜃4x2 + 𝜃5x1x2 + N(0, 𝜎2),

𝜽 = (𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5),

where Ω = {(2i∕s − 1, 𝑗∕s), i = 0, 1,… , s, 𝑗 = 0, 1,… , s}, where s is the number of grid points
in each variable and the total number of points in Ω is N = (s + 1)2. Note that since the
experimental region is discrete, it is not necessary to discretize the experimental region. The
proposed algorithm and the Newton-type method are compared under A- and EI-optimality. For
EI-optimality, we choose FIMSE = Funif on Ω.

Here we consider the same initial design, consisting of five randomly chosen points in Ω,
for both Newton-type method and the proposed algorithm. For different values of s, Figure 1
reports the average computational time (in seconds) of the two algorithms and average efficiency
Eff(𝜉∗Proposed|𝜉∗Newton) based on 10 randomly chosen initial designs, where 𝜉∗Proposed and 𝜉∗Newton are
the optimal designs achieved using the proposed algorithm and Newton’s method, respectively.

Figure 1 shows that the proposed algorithm is more efficient than the Newton-type method
since it does not requires an additional remedy for negative weights, and the multiplicative
algorithm is only performed on a small set of design points. It is apparent that the computational
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FIGURE 1: Computational time and relative efficiency Eff(𝜉∗Proposed|𝜉∗Newton) for A- and EI-optimal

designs with linear regression model. (a) EI-optimality, candidate pool size N = (s + 1)2. (b)
A-optimality, candidate pool size N = (s + 1)2.

time of Newton’s method largely varies and significantly depends on the initial design points. In
contrast, the proposed algorithm is very robust to initial design points and has relatively stable
computational performance. Although the efficiencies of both designs exceed 0.99, the design
achieved by Newton’s method has a slightly smaller optimality criterion value, and this could be
due to the quadratic convergence rate of Newton’s method. As shown in Figure 1, the efficiency
of the design achieved by the proposed algorithm relative to that achieved by Newton’s method
is always above 99.7%, and the proposed algorithm is about four times faster than Newton’s
method.

We further compare the above EI-optimal design with FIMSE(x) = Funif(x) to the EI-optimal
design with a different FIMSE(x) = F(1)

arcsine(x1)F
(2)
arcsine(x2), where F(1)

arcsine(x1) and F(2)
arcsine(x2) are

arcsine distributions on [−1, 1] and [0, 1], respectively. Different from the uniform distribution, an
arcsine distribution on bounded support [a, b] has probability density function 𝜌(x) = 1

𝜋
√
(x−a)(x−b)

,

x ∈ [a, b], which puts more weight towards the interval ends. Figure 2 shows the support points
of EI-optimal designs when FIMSE is chosen to be the uniform distribution and the arcsine
distribution. Under FIMSE = Funif on Ω, the efficiency of EI-optimal design achieved using
arcsine distribution relative to that achieved using uniform distribution is 0.9564. On the other
hand, under FIMSE = Farcsine on Ω, the efficiency of EI-optimal design achieved using uniform
distribution relative to that achieved using arcsine distribution is 0.9595.

Example 2. This example considers the logistic regression model with a binary response
variable. Assume that the domain of d-dimensional explanatory variable x = [x1,… , xd] is
standardized to be a unit hypercube [−1, 1]d. With l basis functions g(x) = [g1(x),… , gl(x)]T
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FIGURE 2: Support points of EI-optimal designs with FIMSE = Funif and FIMSE = Farcsine.

and regression coefficients 𝜷 = [𝛽1,… , 𝛽l]T , the logistic regression model with binary response
Y ∈ {0, 1} is defined as:

Prob(Y = 1|x) = e𝜷
T g(x)

1 + e𝜷T g(x)
.

Usually the basis functions g(x) are low-degree polynomials of explanatory variable x, and in this
example we consider linear predictors, that is, g(x) = (1, xT )T = (1, x1,… , xd)T . Given a design

𝜉 =
{

x1, … , xn
𝜆1, … , 𝜆n

}
, the EI-optimality criterion with some probability distribution FIMSE is

EI(𝜉, 𝜷,FIMSE) = tr
(
AI(𝜉)−1) ,

where A = ∫Ω(1, xT )T (1, xT )v(x)dFIMSE(x) with v(x) = e2(𝛽0+𝜷T x)∕(1 + e𝛽0+𝜷T x)4, and I(𝜉) =
n∑

i=1
𝜆iw(xi)(1, xT

i )
T (1, xT

i ) with w(xi) = e𝛽0+𝜷T xi∕(1 + e𝛽0+𝜷T xi)2. In this example, we consider

(case i) the classical I-optimality with FIMSE being a uniform distribution on Ωc = Ω = [−1, 1]d,
that is, F′

IMSE(x) =
1

2d , x ∈ Ω and A = ∫[−1,1]d
1

2d (1, xT )T (1, xT )v(x)dx; and (case ii) FIMSE

being a uniform distribution on positive half hypercube Ωc = [0, 1]d ⊂ Ω = [−1, 1]d, that is,

F′
IMSE(x) =

{
1, x ∈ Ωc,

0, x ∉ Ωc
and A = ∫[0,1]d (1, xT )T (1, xT )v(x)dx. To investigate the performance

of the proposed algorithm when the explanatory variable dimension d gets large, we compute
the EI-optimal design under the following scenarios:

(a) d = 1, 𝜷 = [0.2, 1.6]T
(b) d = 2, 𝜷 = [2, 1,−2.5]T .
(c) d = 3, 𝜷 = [0.5, 1.6,−2.5, 2]T .

We explore three properties of the proposed algorithm: (1) efficiency compared to Newton’s
method; (2) choice of convergence rate 𝛿 in Algorithm 1 and (3) choice of candidate pool size.

• Efficiency compared to Newton’s method
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FIGURE 3: Computational time (in seconds) and relative efficiency Eff(𝜉∗Proposed|𝜉∗Newton) for
EI-optimal designs with d-dimensional logistic regression model. (a) d = 1, case i, candidate
pool size N = s + 1. (b) d = 1, case ii, candidate pool size N = s + 1. (c) d = 2, case i, candidate

pool size N = (s + 1)2.

The computational time comparison between the proposed algorithm and Newton’s method is
summarized in Figures 3 and 4. For d = 3 of case ii, there are situations in which Newton’s
method does not converge in 100 iterations, that is, the efficiency lower bound does not
reach 0.99 in 100 iterations. In contrast, the proposed method is much more stable and meets
the efficiency criterion in all scenarios. Thus, for d = 3, we only report the computational
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FIGURE 4: Computational time (in seconds) and relative efficiency Eff(𝜉∗Proposed|𝜉∗Newton) for
EI-optimal designs with d-dimensional logistic regression model (continued). (a) d = 2, case ii,

candidate pool size N = (s + 1)2. (b) d = 3, case i, candidate pool size N = (s + 1)3.

time comparison for case i where both algorithms converge within 100 iterations. Clearly,
the proposed method is quite computationally efficient. When the candidate pool size gets
larger, Figure 4b shows that the computational times of two algorithms become close with the
proposed algorithm to be slightly faster. Note that both algorithms are Wynn–Fedorov type
algorithms, and the computational time is dominated by evaluating the directional derivative
over the large candidate pool. As the candidate pool gets large, the computational advantage
of the proposed algorithm becomes less pronounced. However, it is worth remarking that even
with similar computational times, the proposed algorithm still has other advantages such as
guaranteed convergence and simple implementation.

• Choice of convergence rate 𝛿

As discussed in Section 3.2, the convergence parameter 𝛿 ∈ (0, 1) in Algorithm 1 is user
defined and we choose 𝛿 = 0.5 for EI-optimality. We further explore the computational time
of the proposed algorithm with different choices of 𝛿 ranging from 0.05 to 0.95 in d = 2 in
case i. The results are shown in Figure 5. It can be seen that the computational time of the
proposed algorithm is quite robust to the choice of 𝛿 as long as 𝛿 is not too small.

• Choice of candidate pool size
Since a discrete candidate pool  is required in Algorithm 2, discretization is needed when
the experimental region is continuous. When using a grid as the candidate pool, its size can
increase exponentially as the dimension d and the number of grid points in each dimension
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FIGURE 5: computational time (in seconds) of the proposed algorithm with different convergence
parameter 𝛿

FIGURE 6: Relative efficiency of EI-optimal designs with different candidate pool sizes
N = (s + 1)2.

increases, and correspondingly the computational time of the proposed algorithm also increases
dramatically. We explore how the size of candidate pool would influence the efficiency of the
achieved design via d = 2 case i. The EI-optimal designs are constructed when the candidate
pool size varies from N = 102 to N = 11802. The efficiencies of the optimal designs relative
to the optimal design constructed using N = 11802 are reported in Figure 6. It is not surprising
that the relative efficiency does not increase monotonically as the candidate pool size increases.
One explanation is that the quality of the obtained design depends on whether the candidate
pool contains the support points of the optimal design with a continuous experimental region,
but not the size of the candidate pool. Although the candidate pool size ranges widely from
N = 102 to N = 11802, the relative efficiencies are all very close to 1 (higher than 0.999),
which indicates that a very fine grid candidate pool may not be necessary to construct an
EI-optimal design. Based on this observation, we would suggest using a Sobol sequence as a
set of candidate design points for our proposed method when the dimension of design region
d is high.
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Example 3. This example considers the Poisson regression models, which is a popular
statistical tool to model count data in many applications (e.g., Gart, 1964; El-Shaarawi, Maul
& Block, 1987). Like in Example 2, we assume that the domain of d−dimensional explanatory
variable x = [x1,… , xd] is standardized to be a unit hypercube Ω = [−1, 1]d. With l basis
functions g(x) = [g1(x),… gl(x)]T and regression coefficients 𝜷 = [𝛽1,… , 𝛽l]T , the Poisson
regression model with count response Y ∈ {0, 1,… , } has the mean function:

𝜇(x) = 𝔼[Y(x)] = e𝜷
T g(x).

Similar to Example 2, we consider linear predictors, i.e., g(x) = (1, xT )T = (1, x1,… , xd)T . Given

a design 𝜉 =
{

x1, … , xn
𝜆1, … , 𝜆n

}
, the classical I-optimality criterion with FIMSE = Funif on [−1, 1]d

is
EI(𝜉, 𝜷,Funif) = tr

(
AI(𝜉)−1) ,

with A = ∫ 1
2d (1, xT )T (1, xT )e2

(
𝛽0+𝜷T x

)
dx and I(𝜉) =

∑n
i=1 𝜆ie

𝛽0+𝜷T xi(1, xT
i )

T (1, xT
i ). We consider

the same scenarios as in Example 2 for Poisson regression model and compute the corresponding
classical I-optimal designs:

(a) d = 1, 𝜷 = [0.2, 1.6]T
(b) d = 2, 𝜷 = [2, 1,−2.5]T .
(c) d = 3, 𝜷 = [0.5, 1.6,−2.5, 2]T .

Here we also use the grids to form the set of candidate design points. The computation
comparison is shown in Figure 7. Similar to the results in Example 2, when the candidate pool
size is moderate, the proposed algorithm outperforms the Newton’s method by a large margin
regarding the computational efficiency, and preserves a high design efficiency at the same
time.

Example 4. In this example, we would like to provide some comparison between EI-optimal
designs and other parameter estimation oriented D- and A-optimal designs through a real-world
potato packing example in Woods et al. (2006). The experiment contains d = 3 quantitative
variables—vitamin concentration in the prepackaging dip and levels of two gases in the packing
atmosphere. The response is binary representing the presence or absence of liquid in the pack after
7 days. All explanatory variables are standardized, and the experimental region Ω = [−1, 1]3.
We consider one of the candidate models used in the real study: a logit model with quadratic
basis. The estimates of regression coefficients from the preliminary study are given in Table 1.
FIMSE = Funif on Ω is used to define EI-optimality.

Figure 8 shows the support points of D-, A- and EI-optimal Designs. The relative EI-efficiency
of D- and A-optimal designs relative to the EI-optimal design are 80.64% and 85.44%,
respectively. To some extent, this demonstrates the importance and necessity of accurate
estimation of regression coefficients to make precise prediction, but D- or A-optimality may not
be the most appropriate criterion to use when the prediction is of interest. The relative A- and
D-efficiency of the EI-optimal design relative to the corresponding A- and D-optimal designs
are 81.12% and 88.76%, respectively. Thus, it is important to choose the appropriate optimality
criterion based on the purpose of the experiment.

6. DISCUSSION

In this work, we study a general and flexible prediction-oriented criterion EI-optimality for
GLMs and advance an efficient sequential algorithm with sound convergence properties for
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FIGURE 7: Computational time (in seconds) and relative efficiency Eff(𝜉∗Proposed|𝜉∗Newton) for
EI-optimal designs with d-dimensional Poisson regression model. (a) d = 1, candidate pool
size N = s + 1. (b) d = 2, candidate pool size N = (s + 1)2. (c) d = 3, candidate pool size

N = (s + 1)3.

constructing EI-optimal designs. Through a deep investigation on the theoretical properties of
the EI-optimality, we have obtained an insightful understanding of the proposed algorithm on
how to sequentially choose the support point and update the weights of support points of the
design. The computational advantages of the proposed algorithm over Newton’s method are
demonstrated through numerical examples with moderately sized candidate pools for various
types of GLMs. Moreover, all the computations in the proposed algorithm are explicit and simple
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TABLE 1: Logit model of potato packing example.

Term Intercept x2 x3 x2x3 x2
1 x2

2 x2
3

Coefficient −2.93 −0.52 −0.79 −0.66 0.94 0.79 1.82

FIGURE 8: Support points of D-, A- and EI-optimal designs.

to implement. The proposed method exemplifies a good case on the integration of theory and
computation to advance the development of new statistical methodology.

It is worth remarking that the proposed sequential algorithm (Algorithm 2) is not restricted
to EI-optimality for constructing optimal designs. The proposed sequential algorithm can be
extended to other optimality criteria when the directional derivative𝜙(𝜉′, 𝜉) of optimality criterion
in Equation (7) exists. Although the convergence property of the proposed algorithm (Theorem
5) in Section 4.2 is stated in the context of EI-optimality, a proof on the convergence of the
proposed algorithm for general Φp-optimality is provided in the Appendix. As the EI-optimality
has the same mathematical structure as Φ1-optimality, the convergence of the algorithm still
holds. Note that this work focuses on the local EI-optimal designs for the GLMs, which depends
on the given regression coefficients. The parameter dependence problem in the design of GLMs
is an important yet challenging issue (Khuri et al., 2006; Woods et al., 2006). For instance, the
EI-efficiency of the compromise design proposed by Woods et al. 2006 relative to the local
EI-optimal design under three model specifications (see Woods et al.,, 2006) are 49%, 80%
and 92% respectively. Bayesian or pseudo-Bayesian approaches are generally recognized as an
appealing solution to address the parameter-dependence issue. For the proposed EI-optimality,
we will further investigate the robust EI-optimal design for the GLMs. One possibility is to
establish a tight upper bound for the integrated mean squared error to relax the dependency on the
regression coefficients. Then we can modify the proposed algorithm in search of optimal designs
based on the robust optimality criterion constructed according to the upper bound. Hickernell &

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2020 ELASTIC I-OPTIMAL DESIGN OF GENERALIZED LINEAR MODELS 23

Liu (2002) developed some theoretical results in a similar direction for linear regression models
under model uncertainty, and Li & Hickernell (2014) extended the results to linear regression
models with gradient information.

We would like to remark that the proposed method may not have great computational
efficiency when the candidate pool gets very large. One direction for tackling this issue is
to better take advantage of the information on probability measure in the design region for
constructing the design. For example, one can modify the selection of candidate pool based
on the probability measure in the design region. Another interesting point is that the support
points in the optimal design can be outside of the prediction region of interest, which could be a
potential limitation of the proposed method.

For future research, it will be interesting to construct EI-optimal designs for the models with
both quantitative and qualitative responses (Deng & Jin, 2015). Since the GLMs include both
the linear regression for continuous response variables and the logistic regression for binary
response, it would be interesting to study the EI-optimal designs under the consideration of
jointly modelling both quantitative and qualitative responses. Finally, the proposed sequential
algorithm is not restricted to find desirable designs for physical experiments. It can be applied
towards finding space-filling designs in computer experiments (Deng, Hung & Lin, 2015).
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APPENDIX

Proof of Lemma 1.

EI(𝜉,𝜷,FIMSE) = 𝔼
[
∫Ω c(x)T

(
�̂� − 𝜷

) (
�̂� − 𝜷

)T
c(x)dFIMSE(x)

]
= ∫Ω c(x)T𝔼

[(
�̂� − 𝜷

) (
�̂� − 𝜷

)T
]

c(x)dFIMSE(x)

≈ ∫Ω tr
(
c(x)c(x)T I (𝜉, 𝜷)−1) dFIMSE(x)

= tr
[(

∫Ω c(x)c(x)TdFIMSE(x)
)

I(𝜉,𝜷)−1
]
= tr

(
AI(𝜉,𝜷)−1) .

The approximation is provided by the fact that the estimated regression coefficient �̂� follows
N(𝜷, I(𝜉,𝜷)−1) asymptotically. ◼

Proof of Lemma 2. For matrix 𝜕𝒇 (𝜷)
𝜕𝜷T with size q × l and matrix I(𝜉𝝀)−1

(
𝜕𝒇 (𝜷)
𝜕𝜷T

)T
with size l × q,

and q ≤ l, the eigenvalues of 𝜕𝒇 (𝜷)
𝜕𝜷T I(𝜉𝝀)−1

(
𝜕𝒇 (𝜷)
𝜕𝜷T

)T
are the eigenvalues of I(𝜉𝝀)−1

(
𝜕𝒇 (𝜷)
𝜕𝜷T

)T
𝜕𝒇 (𝜷)
𝜕𝜷T ,

with extra eigenvalues being 0 if there are any. Thus, the eigenvalues of
[
I(𝜉𝝀)−1

(
𝜕𝒇 (𝜷)
𝜕𝜷T

)T
𝜕𝒇 (𝜷)
𝜕𝜷T

]p

are the eigenvalues of
[
𝜕𝒇 (𝜷)
𝜕𝜷T I(𝜉𝝀)−1

(
𝜕𝒇 (𝜷)
𝜕𝜷T

)T
]p

with extra eigenvalues being 0. Thus, we could

rewrite

tr

[
𝜕𝒇 (𝜷)
𝜕𝜷T

I(𝜉𝝀)−1
(
𝜕𝒇 (𝜷)
𝜕𝜷T

)T
]p

= tr

[
I(𝜉𝝀)−1

(
𝜕𝒇 (𝜷)
𝜕𝜷T

)T (
𝜕𝒇 (𝜷)
𝜕𝜷T

)]p

= tr
[
I−1(𝜉𝝀)B

]p
,

(A1)

where B =
(
𝜕𝒇 (𝜷)
𝜕𝜷T

)T (
𝜕𝒇 (𝜷)
𝜕𝜷T

)
which is positive semidefinite with size l × l and rank q ≤ l. Then,

by Smith decomposition, there exists a nonsingular matrix S of size l × l such that

B = ST
(

Iq 0q×(l−q)
0(l−q)×q 0(l−q)×(l−q)

)
S = ST

(
Iq

0(l−q)×q

)(
Iq 0q×(l−q)

)
S,

where Iq is the identity matrix of size q × q. Thus, Equation (A1) could be written as

tr

[
𝜕𝒇 (𝜷)
𝜕𝜷T

I(𝜉𝝀)−1
(
𝜕𝒇 (𝜷)
𝜕𝜷T

)T
]p

= tr
[
I(𝜉𝝀)−1ST

(
Iq

0(l−q)×q

)(
Iq 0q×(l−q)

)
S
]p

= tr

{[(
Iq 0q×(l−q)

) (
(ST )−1I(𝜉𝝀)S−1)−1

(
Iq

0(l−q)×q

)]−1
}−p

. (A2)
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Consider two weights 𝝀1 and 𝝀2, and define 𝝀3 = (1 − a)𝝀1 + a𝝀2. With 0 ≤ a ≤ 1, 𝝀3 is still a
feasible weight vector, and

(ST )−1I(𝜉𝝀3 )S−1 = (1 − a)(ST )−1I(𝜉𝝀1 )S−1 + a(ST )−1I(𝜉𝝀2 )S−1. (A3)

By the theorem in section 3.13 of Pukelsheim (1993),

[(
Iq 0q×(l−q)

) (
(ST )−1I(𝜉𝝀)S−1)−1 (Iq 0(l−q)×q

)T
]−1

(A4)

is matrix concave in (ST )−1I(𝜉𝝀)S−1. Thus, by linearity of matrix (ST )−1I(𝜉𝝀)S−1 in weight in

Equation (A3),
[(

Iq 0q×(l−q)
) (

(ST )−1I(𝜉𝝀)S−1
)−1 (Iq 0(l−q)×q

)T
]−1

is also concave in weight
vector 𝝀.

Since tr(C−p)1∕p is nonincreasing and convex for any positive semidefinite matrix C
(Fedorov & Hackl, 1997, see page 22), together with concavity of (A4), the composite
function [

tr
{[(

Iq 0q×(l−q)
) (

(ST )−1I(𝜉𝝀)S−1)−1 (Iq 0(l−q)×q
)T
]−1

}−p]1∕p

is a convex function of weight vector 𝝀 (Bernstein, 2009, see page 480). As a result, by
Equation (A2), Φp(𝜉𝝀) is convex in weight vector 𝝀. ◼

Proof of Lemma 3. Given �̃� = (1 − 𝛼)𝝀 + 𝛼Δ𝝀, we have I(𝜉�̃�) = (1 − 𝛼)I(𝜉𝝀) + 𝛼I(𝜉Δ𝝀). We
still use Equation (A1) to rewrite Φp(𝜉𝝀) as

Φp(𝜉𝝀) =
(

q−1tr
[
I(𝜉𝝀)−1B

]p
)1∕p

,

where B =
(
𝜕𝒇 (𝜷)
𝜕𝜷T

)T (
𝜕𝒇 (𝜷)
𝜕𝜷T

)
.

For any positive semidefinite matrix C as a function of 𝛼, the derivative of its inverse C−1

can be calculated as 𝜕C−1

𝜕𝛼
= −C−1 𝜕C

𝜕𝛼
C−1 (Bernstein, 2009). So, the derivative of I(𝜉�̃�)−1B with

respect to 𝛼 can be expressed as,

𝜕

[
I(𝜉�̃�)−1B

]
𝜕𝛼

= 𝜕I(𝜉�̃�)−1)
𝜕𝛼

B = −I(𝜉�̃�)−1[I(𝜉Δ𝝀) − I(𝜉𝝀)]I(𝜉�̃�)−1B.

Then, the directional derivative of Φp(𝜉𝝀) is

𝜓(Δ𝝀,𝝀) =
𝜕Φp(𝜉�̃�)

𝜕𝛼

||||||𝛼=0

= q−1∕p
[
tr
(

I(𝜉�̃�)−1B
)p]1∕p−1

tr
[(

I(𝜉�̃�)−1B
)p−1 (

−I(𝜉�̃�)−1[I(𝜉Δ𝝀) − I(𝜉𝝀)]I(𝜉�̃�)−1B
)]|||||𝛼=0

= q−1∕p
[
tr
(
I(𝜉𝝀)−1B

)p
]1∕p−1

tr
[(

I(𝜉𝝀)−1B
)p −

(
I(𝜉𝝀)−1B

)p−1
I(𝜉𝝀)−1I(𝜉Δ𝝀)I(𝜉𝝀)−1B

]
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= Φp(𝜉𝝀) − q−1∕p
[
tr
(
I(𝜉𝝀)−1B

)p
]1∕p−1

tr
[(

I(𝜉𝝀)−1B
)p−1

I(𝜉𝝀)−1I(𝜉Δ𝝀)I(𝜉𝝀)−1B
]
.

◼

Proof of Theorem 1. Since 𝝀∗ minimizes Φp, and Φp is a convex function of weight vector as
proved in Lemma 2,

𝜓(Δ𝝀,𝝀∗)

= Φp(𝜉𝝀
∗ ) − q−1∕p

[
tr
(
I(𝜉𝝀)−1B

)p
]1∕p−1

tr
[(

I(𝜉𝝀∗ )−1B
)p−1

I(𝜉𝝀)−1I(𝜉Δ𝝀)I(𝜉𝝀)−1B
]

=Φp(𝜉𝝀
∗ )

−
n∑
i

Δ𝜆iq
−1∕p

[
tr
(

I(𝜉𝝀∗ )−1B
)p]1∕p−1

w(xi)g(xi)T I(𝜉𝝀∗ )−1B
(

I(𝜉𝝀∗ )−1B
)p−1

I(𝜉𝝀∗ )−1g(xi)

=
n∑

i=1

Δ𝜆i

[
Φp(𝜉𝝀

∗ )

−q−1∕p
[
tr
(

I(𝜉𝝀∗ )−1B
)p]1∕p−1

w(xi)g(xi)T I(𝜉𝝀∗ )−1B
(

I(𝜉𝝀∗ )−1B
)p−1

I(𝜉𝝀∗ )−1g(xi)
]
≥ 0,

for all feasible weight vectors Δ𝝀.
Thus,

Φp(𝜉𝝀
∗ ) ≥ q−1∕p

[
tr
(

I(𝜉𝝀∗ )−1B
)p]1∕p−1

w(xi)g(xi)T I(𝜉𝝀∗ )−1B
(

I(𝜉𝝀∗ )−1B
)p−1

I(𝜉𝝀∗ )−1g(xi),

for i = 1,… , n.
Now we will show,

Φp(𝜉𝝀
∗ ) = q−1∕p

[
tr
(

I(𝜉𝝀∗ )−1B
)p]1∕p−1

w(xi)g(xi)T I(𝜉𝝀∗ )−1B
(

I(𝜉𝝀∗ )−1B
)p−1

I(𝜉𝝀∗ )−1g(xi),

for all 𝜆∗i > 0.
Suppose there exists at least one x𝑗 with 𝜆∗

𝑗
> 0 such that

Φp(𝜉𝝀
∗ ) > q−1∕p

[
tr
(

I(𝜉𝝀∗ )−1B
)p]1∕p−1

w(x𝑗)g(x𝑗)T I(𝜉𝝀∗ )−1B
(

I(𝜉𝝀∗ )−1B
)p−1

I(𝜉𝝀∗ )−1g(x𝑗).

Then, we have

Φp(𝜉𝝀
∗ ) =

n∑
i=1

𝜆∗i Φp(𝜉𝝀
∗ )

>

n∑
i=1

𝜆∗i q−1∕p
[
tr
(

I(𝜉𝝀∗ )−1B
)p]1∕p−1

w(xi)g(xi)T I(𝜉𝝀∗ )−1B
(

I(𝜉𝝀∗ )−1B
)p−1

I(𝜉𝝀∗ )−1g(xi)

= q−1∕p
[
tr
(

I(𝜉𝝀∗ )−1B
)p]1∕p−1 n∑

i=1

𝜆∗i w(xi)g(xi)T I(𝜉𝝀∗ )−1B
(

I(𝜉𝝀∗ )−1B
)p−1

I(𝜉𝝀∗ )−1g(xi)
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= q−1∕p
[
tr
(

I(𝜉𝝀∗ )−1B
)p]1∕p−1

tr
(

I(𝜉𝝀∗ )−1B
)p

=Φp(𝜉𝝀
∗ ),

which is a contradiction. So,

Φp(𝜉𝝀
∗ ) = q−1∕p

[
tr
(

I(𝜉𝝀∗ )−1B
)p]1∕p−1

w(xi)g(xi)T I(𝜉𝝀∗ )−1B
(

I(𝜉𝝀∗ )−1B
)p−1

I(𝜉𝝀∗ )−1g(xi),

for design points xi with 𝜆∗i > 0. ◼

Proof of Corollary 1. This is a special case that B = qA = q ∫Ω g(x)gT (x)
[

dh−1

d𝜂

]2
dFIMSE(x)

and p = 1. Thus,

𝜓(Δ𝝀,𝝀) = tr
(
I(𝜉𝝀)−1A

)
− tr

[
I(𝜉𝝀)−1I(𝜉Δ𝝀)I(𝜉𝝀)−1A

]
= tr

(
I(𝜉𝝀)−1A

)
− tr

[
I(𝜉𝝀)−1

(∑
i

Δ𝜆iw(xi)g(xi)g(xi)T
)

I(𝜉𝝀)−1A

]

= tr
(
I(𝜉𝝀)−1A

)
−

n∑
i=1

Δ𝜆iw(xi)g(xi)T I(𝜉𝝀)−1AI(𝜉𝝀)−1g(xi)

◼

Proof of Corollary 2. For (i), it directly follows the result in Theorem 1. For (ii), the proof
follows exactly as the proof of Corollary 1. ◼

Proof of Corollary 3. A positive definite A in EI-optimality would insure I(𝜉𝝀k )−1B ≠ 0 in
Theorem 2 with B = qA and p = 1. ◼

Proof of Theorem 2. Since information matrix I(𝜉𝝀k ) is positive definite, B is positive semidef-
inite, and I(𝜉𝝀k )−1B ≠ 0, we have

0 < tr
[
I(𝜉𝝀k )−1B

]p
= tr

[
I(𝜉𝝀k )−1B

[
I(𝜉𝝀k )−1B

]p−1
I(𝜉𝝀k )−1I(𝜉𝝀k )

]

= tr

[
n∑

i=1

𝜆k
i w(xi)g(xi)g(xi)T I(𝜉𝝀k )−1B

[
I(𝜉𝝀k )−1B

]p−1
I(𝜉𝝀k )−1

]

=
n∑

i=1

𝜆k
i tr

[
w(xi)g(xi)g(xi)T I(𝜉𝝀k )−1B

[
I(𝜉𝝀k )−1B

]p−1
I(𝜉𝝀k )−1

]

=
n∑

i=1

𝜆k
i w(xi)g(xi)T I(𝜉𝝀k )−1B

[
I(𝜉𝝀k )−1B

]p−1
I(𝜉𝝀k )−1g(xi).

Thus, there exists some xi, such that

𝜆k
i w(xi)g(xi)T I(𝜉𝝀k )−1B

[
I(𝜉𝝀k )−1B

]p−1
I(𝜉𝝀k )−1g(xi) > 0,

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2020 ELASTIC I-OPTIMAL DESIGN OF GENERALIZED LINEAR MODELS 29

and naturally, 𝜆k
i

(
w(xi)g(xi)T I(𝜉𝝀k )−1AI(𝜉𝝀k )−1g(xi)

)𝛿

> 0, which leads to

n∑
i=1

𝜆k
i

[
w(xi)g(xi)T I(𝜉𝝀k )−1B

(
I(𝜉𝝀k )−1B

)p−1
I(𝜉𝝀k )−1g(xi)

]𝛿
> 0.

◼

Proof of Proposition 1. To prove Proposition 1, we first prove the following lemma.

Lemma 5. Define 𝜑(I) = 𝜙p(𝜉) =
(

q−1tr
[
𝜕𝒇 (𝜷)
𝜕𝜷T I−1

(
𝜕𝒇 (𝜷)
𝜕𝜷T

)T
]p)1∕p

, 0 < p < ∞ as a func-

tion of Fisher information matrix I, then

(a) 𝜑(I) is a strictly convex function of I.
(b) 𝜑(I) is a decreasing function of I.

Proof. The proof of (a) is very similar to that of Lemma 2, and is omitted here. For (b), for any
I1 ⪯ I2,

I−1
1 ⪰ I−1

2 ⇒
𝜕𝒇 (𝜷)
𝜕𝜷T

I−1
1

(
𝜕𝒇 (𝜷)
𝜕𝜷T

)T

⪰
𝜕𝒇 (𝜷)
𝜕𝜷T

I−1
2

(
𝜕𝒇 (𝜷)
𝜕𝜷T

)T

.

As tr(Cr) with r > 0 is an increasing function of any positive definite matrix C (Bernstein, 2009),

tr

[
𝜕𝒇 (𝜷)
𝜕𝜷T

I−1
1

(
𝜕𝒇 (𝜷)
𝜕𝜷T

)T
]p

≥ tr

[
𝜕𝒇 (𝜷)
𝜕𝜷T

I−1
2

(
𝜕𝒇 (𝜷)
𝜕𝜷T

)T
]p

.

As a result,

(
q−1tr

[
𝜕𝒇 (𝜷)
𝜕𝜷T

I−1
1

(
𝜕𝒇 (𝜷)
𝜕𝜷T

)T
]p)1∕p

≥
(

q−1tr

[
𝜕𝒇 (𝜷)
𝜕𝜷T

I−1
2

(
𝜕𝒇 (𝜷)
𝜕𝜷T

)T
]p)1∕p

,

i.e., 𝜑(I1) ≥ 𝜑(I2). ◼

The proof of Proposition 1 is mainly based on the results in Theorems 1 and 2 in the paper
by Yu (2010). Based on Lemma 5, it is known that

𝜑(I) =

(
q−1tr

[
𝜕𝒇 (𝜷)
𝜕𝜷T

I−1
(
𝜕𝒇 (𝜷)
𝜕𝜷T

)T
]p)1∕p

, 0 < p < ∞

is a convex and decreasing function of I. Under Algorithm 1 with 0 < 𝛿 < 1, denote 𝝀k and 𝝀k+1

to be the solutions on kth and (k + 1)th iteration of the multiplicative algorithm, respectively.
Since I(𝜉𝝀k ), I(𝜉𝝀k+1), and B are positive definite, it is easy to see that

I(𝜉𝝀k ) > 0, I(𝜉𝝀k+1 ) > 0, and I(𝜉𝝀k )−1B
(

I(𝜉𝝀k )−1B
)p−1

I(𝜉𝝀k )−1 ≠ 0,
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where I(𝜉𝝀k )−1B
(

I(𝜉𝝀k )−1B
)p−1

I(𝜉𝝀k )−1 is a continuous function for I. Based on Theorem 1 in
Yu (2010), we can have

𝜙p(𝜉𝝀
k+1 ) ≤ 𝜙p(𝜉𝝀

k ),

when 𝝀k+1 ≠ 𝝀k. Thus it shows the monotonicity of Algorithm 1.

Moreover, we also have that for 𝜑(I) = 𝜙p(𝜉) =
(

q−1tr
[
𝜕𝒇 (𝜷)
𝜕𝜷T I−1

(
𝜕𝒇 (𝜷)
𝜕𝜷T

)T
]p)1∕p

,

w(xi)g(xi)gT (xi)
𝜕𝜑(I)
𝜕I

||||I=I(𝜉𝝀k )
= w(xi)g(xi)gT (xi)I(𝜉𝝀

k )−1B
(

I(𝜉𝝀k )−1B
)p−1

I(𝜉𝝀k )−1 ≠ 0.

For the sequence I(𝜉𝝀k ), k = 1, 2,… from Algorithm 1, its limit point is obviously nonsingular
because of the positive definiteness. Combining the above statements with results in Lemma 5,
all the required conditions in Theorem 2 of Yu (2010) are satisfied. Thus, using the results in
Theorem 2 of Yu (2010), we have that all limit points of 𝝀k are global minimums of 𝜙p(𝜉𝝀), and
the 𝜙p(𝜉𝝀) decreases monotonically to inf𝝀 𝜙p(𝜉𝝀) as k → ∞.

Proof of Theorem 4. To prove Theorems 4 and 5, we first prove the following lemma.

Lemma 6. For any design 𝜉 and Φp-optimal design 𝜉∗ that minimizes Φp(𝜉), the following
inequality holds:

min
x∈Ω

𝜙(x, 𝜉) ≤ 𝜙(𝜉∗, 𝜉) ≤ Φp(𝜉∗) − Φp(𝜉) ≤ 0,

where 𝜙(x, 𝜉) and 𝜙(𝜉∗, 𝜉) are the directional derivatives of Φp(𝜉) in the direction of x and 𝜉∗,
respectively.

Proof. The directional derivative of Φp(𝜉) in the direction of the point x∗ = argminx∈Ω𝜙(x, 𝜉)
is:

min
x∈Ω

𝜙(x, 𝜉) = 𝜙(x∗, 𝜉)

= Φp(𝜉) − q−1∕p
[
tr
(
I(𝜉)−1B

)p
]1∕p−1

w(x∗)g(x∗)⊤I(𝜉)−1B
(
I(𝜉)−1B

)p−1
I(𝜉)−1g(x∗)

≤Φp(𝜉) − q−1∕p
[
tr
(
I(𝜉)−1B

)p
]1∕p−1

w(x)g(x)⊤I(𝜉)−1B
(
I(𝜉)−1B

)p−1
I(𝜉)−1g(x)

(A5)

for any x ∈ Ω.

Denote the optimal design 𝜉∗ =
{

x1, … , xn
𝜆∗1, … , 𝜆∗n

}
. With Inequality (A5), we have

𝜙(x∗, 𝜉)

≤
n∑

i=1

𝜆∗i

(
Φp(𝜉) − q−1∕p

[
tr
(
I(𝜉)−1B

)p
]1∕p−1

w(xi)g(xi)⊤I(𝜉)−1B
(
I(𝜉)−1B

)p−1
I(𝜉)−1g(xi)

)

=Φp(𝜉) − tr
[
I(𝜉∗)q−1∕p

[
tr
(
I(𝜉)−1B

)p
]1∕p−1

I(𝜉)−1B
(
I(𝜉)−1B

)p−1
I(𝜉)−1

]
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= 𝜙(𝜉∗, 𝜉). (A6)

Furthermore, with the definition of directional derivative in the direction of the optimal
design 𝜉∗ and convexity of Φp, we have

𝜙(𝜉∗, 𝜉) = lim
𝛼→0

Φp((1 − 𝛼)𝜉 + 𝛼𝜉∗) − Φp(𝜉)
𝛼

≤ lim
𝛼→0

(1 − 𝛼)Φp(𝜉) + 𝛼Φp(𝜉∗) − Φp(𝜉)
𝛼

=Φp(𝜉∗) − Φp(𝜉) (A7)

Combining inequality (A6) and (A7), we complete the proof that

min
x∈Ω

𝜙(x, 𝜉) ≤ 𝜙(𝜉∗, 𝜉) ≤ Φp(𝜉∗) − Φp(𝜉) ≤ 0.

◼

In Equation (4), the reciprocal of Φp-optimality could be written as:

1
Φp(𝜉)

=

(
q−1tr

[
𝜕𝒇 (𝜷)
𝜕𝜷T

I(𝜉)−1
(
𝜕𝒇 (𝜷)
𝜕𝜷T

)T
]p)−1∕p

, 0 < p < ∞.

According to Pukelsheim (1993), Section 6.13, 1
Φp

is concave on the set of designs with positive

definite information matrices. Using a similar approach to derive the lower bound of efficiency
in (Atwood, 1969), with 𝜉 and 𝜉∗ fixed, define t(𝛼) = 1

Φp(𝛼𝜉∗+(1−𝛼)𝜉)
. With simple algebra and

directional derivative of Φp,

dt(𝛼)
d𝛼

||||𝛼=0
= − 1

Φ2
p(𝛼𝜉∗ + (1 − 𝛼)𝜉)

(
𝜕Φp(𝛼𝜉∗ + (1 − 𝛼)𝜉)

𝜕𝛼

)|||||𝛼=0

= − 1
Φ2

p(𝜉)
𝜙(𝜉∗, 𝜉),

where 𝜙(𝜉∗, 𝜉) is the directional derivative of Φp in the direction of 𝜉∗ defined in Section 4.1.
According to Lemma 6 that 𝜙(x∗, 𝜉) ≤ 𝜙(𝜉∗, 𝜉) ≤ Φp(𝜉∗) − Φp(𝜉) ≤ 0, we have

1
Φp(𝜉∗)

− 1
Φp(𝜉)

= t(1) − t(0)

≤ dt(𝛼)
d𝛼

||||𝛼=𝛼∗ , where 𝛼∗ ∈ (0, 1) by the mean value theorem

≤ dt(𝛼)
d𝛼

||||𝛼=0
, by concavity of t

= − 1
Φ2

p(𝜉)
𝜙(𝜉∗, 𝜉)
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≤ − 1
Φ2

p(𝜉)
𝜙(x∗, 𝜉)

=
maxx∈ q−1∕p

[
tr
(
I(𝜉)−1B

)p]1∕p−1
w(xi)g(xi)T I(𝜉)−1B

(
I(𝜉)−1B

)p−1 I(𝜉)−1g(xi) − Φp(𝜉)
Φ2

p(𝜉)

That is,
Φp(𝜉)
Φp(𝜉∗)

≤ maxx∈ q−1∕p
[
tr(I(𝜉)−1B)p

]1∕p−1
w(xi)g(xi)T I(𝜉)−1B(I(𝜉)−1B)p−1I(𝜉)−1g(xi)

Φp(𝜉)
, i.e.,

EffΦp
(𝜉|𝜉∗) ≥ Φp(𝜉)

maxx∈ q−1∕p
[
tr
(
I(𝜉)−1B

)p]1∕p−1
w(xi)g(xi)T I(𝜉)−1B

(
I(𝜉)−1B

)p−1 I(𝜉)−1g(xi)
.

Proof of Theorem 5. Here we prove the convergence that

lim
r→∞

Φp(𝜉r) = Φp(𝜉∗)

of the proposed algorithm for a general Φp optimality, and that EI-optimality shares the same
mathematical structure as Φ1-optimality.

We will establish the argument by proof of contradiction with a similar proof as in the paper
of Yang, Biedermann & Tang (2013). Assume that 𝜉r does not converge to 𝜉∗, i.e.,

lim
r→∞

Φp(𝜉r) − Φp(𝜉∗) > 0.

Since the support set of the rth iteration is a subset of the support set of the (r + 1)th
iteration, it is obvious that Φp(𝜉r+1) ≤ Φp(𝜉r) for all r ≥ 0. Thus, there exists some a > 0,
such that

Φp(𝜉r) > Φp(𝜉∗) + a, for all r.

According to Lemma 6, we can conclude 𝜙(x∗, 𝜉r) ≤ 𝜙(𝜉∗, 𝜉r) ≤ Φp(𝜉∗) − Φp(𝜉r) < −a.
It is quite obvious from the derivation of the directional derivative that Φp((1 − 𝛾)𝜉 + 𝛾𝜉′)
is infinitely differentiable with respect to 𝛾 ∈ [0, 1]. Thus, the second order derivative
is bounded on 𝛾 , and denote the upper bound by U, with U > 0 as EI is a convex
function.

Then, consider the design 𝜉r+1 = (1 − 𝛾)𝜉r + 𝛾x∗r , with 𝛾 ∈ [0, 1]. Since the proposed algo-
rithm achieves optimal weights in each iteration, we have,

Φp(𝜉r+1) ≤ Φp(𝜉r+1).

Using the Taylor expansion of Φp(𝜉r+1), we have

Φp(𝜉r+1) ≤Φp(𝜉r+1)

= Φp(𝜉r) + 𝛾𝜙(x∗r , 𝜉
r) + 1

2
𝛾2

𝜕2Φp((1 − 𝛾)𝜉r + 𝛾x∗r )
𝜕𝛾2

|||||𝛾=𝛾′
<Φp(𝜉r) − 𝛾a + 1

2
𝛾2U,
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where 𝛾 ′ is some value between 0 and 1. Consequently, we have

Φp(𝜉r+1) − Φp(𝜉r) < 1
2

U
(
𝛾 − a

U

)2
− a2

2U
.

If a
U
≤ 1 ⇔ U ≥ a, choose 𝛾 = a

U
, then we have

Φp(𝜉r+1) − Φp(𝜉r) < − a2

2U
.

If a
U
> 1 ⇔ U < a, choose 𝛾 = 1, then we have

Φp(𝜉r+1) − Φp(𝜉r) < 1
2

U − a < 0.

Both situations will lead to limr→∞ Φp(𝜉r) = −∞, which contradicts with Φp(𝜉r) > 0.
In summary, the assumption that 𝜉r does not converge to 𝜉∗ is not valid, and thus we prove

that 𝜉r converges to 𝜉∗. ◼
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