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ABSTRACT 
Testing and evaluating the quality of Artificial Intelligence (AI) algorithms is important for 
confidently deploying them in real applications. AI algorithms depend both on the hyper- 
parameters and the nature of the training data. A measure of the quality of an AI algorithm 
can be obtained by exhaustively evaluating the performance of the algorithm across hyper- 
parameters and data quality factors. However, such a procedure is challenging as it is not 
practical to enumerate all possible level combinations of the hyper-parameters and data 
quality factors. In this work, we present a principled framework using a statistical approach 
to systematically conduct quality evaluation of AI algorithms, named as QE-AI. The proposed 
framework consists of an efficient space filling design in a high-dimensional constraint space 
and an effective surrogate model using an additive Gaussian process to enable efficient 
quality evaluation of AI algorithms. We demonstrate the performance of the proposed 
approach for an AI mislabel detection algorithm.
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1. Introduction

1.1. Motivation

Great advancements in various scientific and indus
trial applications have been made possible by artificial 
intelligence (AI) algorithms (Ben Fredj et al. 2020; Ma 
et al. 2019). However, the quality assurance of these 
algorithms is still a significant concern. For example, 
a small malicious perturbation on data (Chen et al. 
2020) or a certain amount of noise in the data 
(Patrini et al. 2017) can deceive AI algorithms and 
result in catastrophic failure of the model when apply
ing them in real-life scenarios. Therefore, systematic
ally evaluating the quality of AI algorithms is of great 
importance to safely leverage these algorithms for 
practical applications.

As an example, consider the ability of the AI mis
label detection (MLD) algorithm to detect data poi
soning. In classification tasks, mislabeled responses 
can affect model training and undermine the perform
ance of algorithms. These mislabels can be introduced 
in the data by simply assigning wrong labels to train
ing data (Guan et al. 2011) by adversaries, or other 
non-malicious sources. Unintended mislabeling is 
common in applications due to crowd-sourcing or 

differences in domain-expertise of annotators. MLD 
algorithms are used to detect mislabeled samples in 
the dataset. The performance of MLD algorithms is 
affected by many factors such as hyper-parameters in 
the algorithm and other data quality factors. Even 
though various MLD algorithms (Guan et al. 2011; 
Malossini, Blanzieri, and Ng 2006; Pulastya et al. 
2021; Vu et al. 2019) have been developed in the lit
erature, no comprehensive evaluation exists to assess 
their quality. Therefore, a systematic approach to 
investigate the quality of the MLD method is neces
sary to use it reliably, and to ensure the safety and 
assurance of it and the overall AI application.

The two major groups of factors affecting perform
ance of AI algorithms (including MLD algorithms) 
are data quality and hyper-parameters. Data quality 
factors include class imbalance, dataset types used for 
training, noise, and the number of mislabeled observa
tions in training data. Hyper-parameter factors of the 
algorithms are deeply related to the corresponding 
architectures. For MLD algorithms, the hyper- 
parameters include weights in the loss function and 
threshold values used for assigning samples to classes 
or those used to assign a particular sample to an out 
of distribution sample (or outlier).
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To comprehensively evaluate the quality of the AI 
algorithms and obtain a trustworthy assessment on 
the quality of the algorithms, it is not practical to enu
merate all possible level combinations of the hyper- 
parameters and data quality factors. It calls for a sys
tematic approach to efficiently and effectively evaluate 
the quality of the AI algorithms. In this work, we pro
pose a principled statistical framework, denoted as 
QE-AI, to conduct quality evaluation of the AI algo
rithm. Specifically, we propose a design-of-experimen
tal framework to construct an efficient space-filling 
design in a high-dimensional constraint space and 
develop an effective surrogate model based on an 
additive Gaussian process to enable the emulation of 
the quality of AI algorithms. That is, we consider the 
design space consisting of both continuous and cat
egorical factors with constraints. For such a high- 
dimensional constraint space, we adopt a constraint 
space-filling design (Joseph 2016) to systematically 
investigate how the data quality affects the quality of 
AI algorithm when internal structure of AI algorithms 
varies.

The proposed framework can set an evaluation 
protocol for AI algorithm practitioners to evaluate 
and rank the quality of AI algorithms, thus enhance 
the AI assurance of robustness, reproducibility, and 
transparency while deploying them in the real world. 
The proposed QE-AI framework is demonstrated by 
using the mislabel detection algorithm, but the devel
oped framework can be widely used for other AI algo
rithms. It paves a foundation for understanding the 
uncertainty of AI algorithms, finding optimal config
uration of hyper-parameters of the AI algorithms, and 
shedding a light on the assessment of AI algorithm’s 
limitations.

1.2. Contribution

The main contribution of this work is as follows. 
First, we propose a principled framework of using a 
design-of-experimental approach to systematically 
evaluate the quality of AI algorithms. The developed 
framework is not restricted to the MLD algorithm 
against data poisoning, but can be used for evaluating 
other AI algorithms, especially when the data quality 
and algorithm structure (i.e., hyper-parameters) are 
intertwined. Second, to systematically investigate how 
the data quality affects the quality of AI algorithms 
when the internal structure of AI algorithms varies, 
we propose an effective design criterion with an effi
cient construction algorithm to obtain a space-filling 
design in a high-dimensional constraint space to 

investigate the quality of AI algorithms in terms of 
appropriate metrics. We use detection accuracy and 
prediction accuracy as metrics for MLD algorithms. 
Specifically, we consider the design space consisting of 
three continuous factors without constraint, continu
ous factors of class proportions with linear constraint, 
and one binary factor for “data type.” The construc
tion algorithm is efficient by leveraging the simplicity 
of coordinate descent in discrete optimization and 
constraint continuous optimization. Third, due to the 
complexity of design criterion and design space, an 
initial design is crucial to enable the design construc
tion algorithm. Our method of initial design based on 
algebraic construction is very fast in computation with 
flexible run sizes. Fourth, we adopt an additive 
Gaussian process model as a surrogate model to emu
late the quality of AI algorithms as a function of data 
quality factors and AI algorithm’s hyper-parameters. 
The use of an additive Gaussian process can accom
modate both continuous and categorical factors of 
interest, providing accurate prediction and uncertainty 
quantification of the quality of the algorithm.

2. Brief literature review

In the literature, Rushby (1988) discussed the idea of 
AI quality measurement and assurance several decades 
ago. AI reliability and robustness (current concepts in 
AI quality) became increasingly popular in both aca
demic research and industrial applications (Dietterich 
2017; Russell, Dewey, and Tegmark 2015; Virani, Iyer, 
and Yang 2020). For example, Lian et al. (2021) pro
pose a design-of-experimental framework for investi
gating AI robustness as it relates to the class 
imbalance issue and distribution shift of classes 
between training and test data. Several works use 
experimental designs to tune hyper-parameters of AI 
algorithms (Balestrassi et al. 2009; Mutny, Kirschner, 
and Krause 2020; Packianather, Drake, and Rowlands 
2000; Staelin 2003).

The evaluation of AI quality needs a meticulous 
design of experiment since the size of search space can 
be very large (Bell et al. 2022). The commonly used 
design for the search space is to have the space-filling 
property (Joseph 2016). Among various space-filling 
designs, the Latin hypercube design and its variants 
have received a lot of attention (Jung and Yum 2011). 
For example, Joseph, Gul, and Ba (2015) propose a so- 
called MaxPro design to maximize the design’s space- 
filling capacity on all subspaces. Note that the design 
for the continuous factors of class proportions has a 
linear constraint, which is a mixture design in the 
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literature (Cornell 2011). Typical construction of mix
ture designs (Gomes, Claeys-Bruno, and Sergent 2018) 
is not applied for high dimensions due to the computa
tional complexity. Quadratic and cubic linear models 
(Piepel and Cornell 1994) are used to analyze mixture 
designs in low dimensions.

Gaussian process (GP) models are effective as an 
efficient surrogate model for a complex system 
(Bernardo et al. 1998) in high dimensional space. Note 
that GP is usually valid for continuous variables 
(Cardelli et al. 2019; Ling, Low, and Jaillet 2016). 
When the data contains categorical input variables, one 
may use one-hot encoding to transfer a categorical 
variable to a continuous variable (Garrido-Merch�an 
and Hern�andez-Lobato 2020). Additive Gaussian pro
cess (Deng et al. 2017) has been proposed to handle 
both qualitative and quantitative factors.

3. The proposed QE-AI framework

Figure 1 illustrates the motivation and general idea of 
the proposed QE-AI framework. It aims to investigate 
how various factors affect the performance of AI algo
rithms by a careful design of experiment (DoE) and a 
proper emulator. The use of DoE approach can miti
gate the evaluation bias brought by the ad-hoc search 
(e.g., a grid search at a fixed data quality), which is 
commonly used among machine learning practi
tioners, and provide more accurate prediction and 
uncertainty quantification.

In this section, we discuss problem setup in Section 
3.1 and describe a recent MLD algorithm from the lit
erature that we use to demonstrate the framework in 
Section 3.2. Then we detail the proposed QE-AI 
framework with design factors and responses in 
Section 3.3, design construction in Section 3.4, and 
surrogate modeling in Section 3.5.

3.1. Problem setup

Typically, AI algorithms are affected by two types of fac
tors, factors affecting data quality and hyper-parameters 

of the algorithms. All of these factors can be further 
grouped into three categories by the corresponding 
data types: continuous factor with constraint, con
tinuous factor without constraint, and categorical 
factors. Assume the factor space X ¼ x1 � x2 � x3;

where x1 is the space for the continuous factor with
out constraint, x2 is the space for the continuous 
factor with constraints, and x3 is the space for the 
categorical factor. Consider the factor space X as the 
input of the AI algorithm f ð�Þ; the output y ¼
pðf ðXÞÞ is the consequent performance evaluation, 
where y 2 Y; Y is the response space, pð�Þ is the per
formance measurement function. Because of the 
complexity of f ð�Þ; the relationship between input X 

and output y is non-trivial. To infer the relationship, 
an emulator model g : X! Y is adopted. To verify 
the AI quality, the model should be capable of both 
generating a prediction and an uncertainty quantifi
cation. Once the emulator model is determined, we 
can collect experimental data to start the quality 
investigation. Due to the considerable computational 
expense involved in the training of the AI model 
f ð�Þ; obtaining performance evaluation on a wide 
range multi-dimensional grid is time consuming. 
Only considering a few hyper-parameters induces 
biased inference. Suppose only NB ¼ r � Ntotal runs 
are approved as the budget for the experiment, where 
Ntotal is the number of the input factor combinations 
(i.e., The total number of experimental design set
tings.) and r is the number of replications for the 
individual input factor combinations, the budget 
should be wisely used to obtain a more comprehen
sive investigation of the AI system efficiently (key 
notations are summarized in Table 1).

In the following sections, we demonstrate the 
framework using an MLD algorithm as an example. 
After we briefly review the MLD algorithm, we 
describe the choice of design factors and response, 
space filling design construction in a constraint space, 
and surrogate modeling with additive Gaussian 
process.

Figure 1. An illustration of the motivation and the proposed QE-AI framework. It uses design of experiments, the green dots, to 
comprehensively explore the AI performance response surface, and builds an emulator model to make proper inference.
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3.2. Brief review of the MLD algorithm

In this section, we briefly review the MLD algorithm 
Pulastya et al. (2021) we use for presenting the pro
posed framework for evaluating the quality of the AI 
algorithm. The algorithm includes a variational 
autoencoder (VAE) (Kingma and Welling 2013) and a 
simple sigmoid classifier.

Without loss of generality, we consider the m-class 
classification problem with data ðU i, ciÞ; where U i rep
resents an r-dimensional input data point i and ci 2

f1, :::, mg represents its class label. Here U i ¼

ðu1ðiÞ, :::, urðiÞÞ with ujðiÞ to be jth element of U i; j ¼
1, :::, r: The encoder architecture consists of convolu
tional layers and two dense layers to encode the mean 
and variance of the latent layer, v of 100 dimensions. 
Then the output of the latent layer, v; is provided as 
the input to the decoder for reconstructing the input. 
The output of the latent layer v is also provided as 
the input to the sigmoid classification layer. The 
model is trained using a composite loss function as

L ¼ w � LELBO þ ð1 − wÞ � LCL, 

where 0 � w � 1 is the weight, the LELBO ¼

EqðvjUÞ½log ðpðUjvÞÞ� − KL½qðvjUÞjjpðvÞ� is the evidence 
lower bound loss (ELBO) function for the VAE, and 
LCL ¼ −

P
tðciÞlogðpðU ijciÞÞ is the cross entropy loss 

function for the classifier. Here KL½�� is the Kullback- 
Leibler divergence, tð�Þ is the true distribution, and 
pð�Þ is the predicted distribution. The layers in the 
VAE and the classifier are trained simultaneously. 
Using the trained structure, “mislabeling score” is 
constructed as follows. For a group of given classes 
fU i : 8i with ci ¼ lg; one calculates the median of 
absolute deviation from the reconstructed median as 
Ml ¼ medianfjU reconi − mlj : 8i with ci ¼ lg; where ml 
is the median of all reconstructed input for the group. 
Count element-wise if the deviation from the recon
structed input to the median is greater than a�Ml 

(i.e., 
Pr

j¼1 1ðjujðreconiÞ − mjðlÞj > aMjðlÞÞ; where 1ð�Þ is 
an indicator function; ujðreconiÞ; mjðlÞ; and MjðlÞ

correspond to the jth element of Ureconi ; ml; and Ml). 
If the count is greater than a threshold, the algorithm 
marks the item i as mislabeled. It is seen that a is a 
hyper-parameter.

3.3. Design factors and response variables

In this work, we focus on investigating the effects of 
data quality factors and algorithm hyper-parameters 
for the MLD algorithm.

For the MLD algorithm, one influential factor is 
the weight in the loss function. Thus, the weight ratio 

w
1−w is considered as one factor. To symmetrize the 
weight ratio space and spread small values apart, we 
define the transformed weight ratio z1 as:

z1 ¼ sgnðw − 0:5Þ �
maxfw, 1 − wg
minfw, 1 − wg

, 

where sgnð�Þ denotes the sign function. This definition 
ensures that z1 is positive when w > 0:5; negative 
when w < 0:5; and symmetrically reflects the imbal
ance between the two losses. The value of a as the 
threshold of deviation is also critical for detecting 
the mislabeled data points. Consequently, we consider 
the hyper-parameter a as another factor of interest, 
denoted as z2: For the data quality factors, we mainly 
consider the proportion of mislabeling in the training 
data, the class imbalance in the training data, and the 
type of datasets. For the first important data quality 
factor, the percentage of mislabeled data is considered, 
denoted as z3: Intuitively, when the proportion of mis
labeled data is high in training data, it will be difficult 
to extract informative features, with inaccurate infor
mation on responses. The second data quality factor, 
the class imbalance, can undermine both detection 
accuracy and classification accuracy since sufficient 
information about the minority classes could be absent. 
It is important to investigate the robustness of the 
MLD algorithm with respect to the class imbalance in 
training data as well as the proportions of mislabeled 
data. We assume that the class imbalance corresponds 
to proportions of classes in the training set as 
x1, x2, ::, xm with constraint 

Pm
l¼1 xl ¼ 1 and 

0 � xl � 1; l ¼ 1, 2:::, m: For the third data quality fac
tor, it is known that the MLD algorithm can have dif
ferent performances on different types of benchmark 
datasets. Thus, we consider k benchmark datasets with 
k different types DS1, :::, DSk as a categorical factor

z4 ¼

1 dataset for use is DS1,
..
.

k dataset for use is DSk:

8
><

>:

Table 1. A table of notation used in the design.
Definition

z1 Transformed weight ratio of the losses for classifier and VAE.
z2 The deviation threshold a:
z3 The percentage of mislabeling data.
z4 The choices of benchmark datasets.
xl The percentage of class l in the training data,

l ¼ 1, 2, :::, m:
N The number of level combinations for x1, :::, xm:

Ntotal The total number of settings of all input factors.
r The number of replications for each  

configuration of the input factors
NB The total number of runs.
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We consider the performance metrics of the MLD 
algorithm, prediction accuracy y1 and detection accur
acy y2 as the response variables. The prediction accur
acy is the classification accuracy, which is the 
percentage of observations correctly classified based 
on the underlying class labels. For the MLD algo
rithm, detection accuracy is the percentage of cor
rectly identified mislabeled cases, which is an 
important metric for assessing mislabeled data detec
tion methods.

3.4. Design construction

Note that the factors we consider contain continuous 
factors z1, z2, z3 without constraint, a categorical factor 
z4; and m continuous factors x1, x2, :::, xm with con
straint. For such a complicated, high-dimensional con
straint space, it is not practical to choose a large set of 
random design points (i.e., combination of factors) 
from the search space to investigate the quality of the 
MLD algorithm due to the limited computational 
resources. However, finding a set of representative 
design points in such a complicated space is also not 
trivial. To address this issue, we consider a space- 
filling design in the constraint space by leveraging the 
maximum projection from Joseph, Gul, and Ba (2015) 
under the setting of the constraint space.

First, we construct a space-filling design for 
x1, x2, :::, xm with constraint 

Pm
l¼1 xl ¼ 1 and 

0 � xl � 1; l ¼ 1, 2:::, m: Denote the design with N 
points as XD ¼ ðxilÞN�m; i ¼ 1, :::, N; l ¼ 1, 2, :::, m:
We consider finding the space-filling design by

XD ¼ arg min
X

XN−1

i¼1

XN

j¼iþ1

1
Qm

l¼1 ðxil − xjlÞ
2

s:t:
Xm

l¼1
xil ¼ 1,

Xm

l¼1
xjl ¼ 1;

0 � xil � 1, 0 � xjl � 1, 8i, j, m:

(1) 

Note that the above constraint 
Pm

l¼1 xl ¼ 1, 0 �
xl � 1, l ¼ 1, 2:::, m defines a subspace where all 
dimensions have equal importance. It follows that one 
could consider the modified maximin criterion 
(Joseph, Gul, and Ba 2015) 

f ðXjhÞ ¼
XN−1

i¼1

XN

j¼iþ1

1
Pm

l¼1hlðxil − xjlÞ
2

 !p=2

(2) 

for finding the optimal design with h ¼ ðh1, :::, hmÞ
0

following a uniform distribution. The following the
orem justifies that our adopted criterion is the modi
fied maximin criterion in expectation.

Proposition 1. Suppose X ¼ ðxilÞN�m is a design on 
the subspace Sb ¼ fx 2 Rm :

Pm
l¼1 xl ¼ 1, 0 � xl � 1, 

l ¼ 1, 2:::, mg. For f ðXjhÞ in (2) with p ¼ 2m and h 

following a uniform distribution in the region 
H ¼ fh : 0 � hl � 1,

Pm
l¼1 hl ¼ 1g. Then 

Ehðf ðXjhÞÞ ¼
ð

H
f ðXjhÞdpðhÞ

¼ C
XN−1

i¼1

XN

j¼iþ1

1
Qm

l¼1 ðxil − xjlÞ
2 , 

where C is a constant.

To implement the optimization in (1), one would 
use a nonlinear optimization with the number of 
parameters represented as Nm. Thus, the objective 
function can be very complex and the optimization 
process can be hard to execute. Although efficient 
candidate-generation methods exist (e.g., Huang, 
Joseph, and Ray (2021)), they often focus on 
inequality-constrained and full-dimensional domains, 
but not for our equality-constrained simplex. 
Therefore, we adopt the coordinate exchange from 
discrete optimization and coordinate descent from 
continuous optimization to solve the equality- 
constrained optimization efficiently. Algorithm 1 sum
marizes the procedure. Specifically, we randomly 
choose N runs from the candidate set A as the initial 
design. Then we can find one run in the initial design 
that has the maximum 

P
i6¼j
Qm

l¼1
1

ðxil−xjlÞ
2 : Replace this 

run with one run in the candidate set A: If the criter
ion is reduced, we can further optimize the criterion 
by traditional constraint optimization; If not, replace 
this run with another run in the candidate set until 
one run can reduce the criterion.

Algorithm 1 Optimization Procedure
Input: Candidate set A; the number of design runs N, 
the number of redundant iterations t, the objective 
function f ð�Þ given by Eq. [1]
Output: Final design X

1: Let t ¼ 0: Randomly choose N runs from the 
candidate set A as the initial design X. 
Initialize Xnew, s:t: jf ðXÞ − f ðXnewÞj > �;

2: while t � 10000 do
3:  Replace one row of X with one run xa from 

A; denote the new design as Xnew:

4:  if f ðXÞ > f ðXnewÞ then
5:   Constraint continuous optimization to 

replace xa with xopt; update Xnew:

6:    if ðjf ðXÞ − f ðXnewÞj < �Þ then
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7:     X ¼ Xnew; algorithm converges and break 
the loop.

8:    else
9:     X ¼ Xnew:

10:    end if
11:   else
12:    t ¼ t þ 1
13:   end if
14: end while
15: return X

Note that Algorithm 1 requires a good candidate 
set in the constraint space. A proper candidate set 
should have points distributed uniformly on the sub
space. A naive approach is to generate a space-filling 
design in the hypercube S ¼ fx 2 Rm : 0 � xl � 1, l ¼
1, 2:::, mg and project the points into the hyperplane 
Sb ¼ fx 2 Rm : 0 � xl � 1,

Pm
l¼1 xl ¼ 1g: However, 

such an approach can have a high rejection rate, espe
cially in the high-dimensional setting, since not all 
projected points will be in the constraint space Sb: To 
address this challenge, we propose an algebraic con
struction of the candidate set A based on the simplex 
centroid design (Scheff�e 1963).

Let the candidate set A consist of all points in the 
simplex centroid design and points on the segment 
between the two points of the simplex centroid 
design. Figure 2 illustrates an example of how we 
deploy the original candidate set to construct more 
samples for a candidate set of three dimensions. Note 
that such a construction of the candidate set is natur
ally space-filling based on the simplex centroid design, 
and is also very flexible on the run size and computa
tionally fast. Its space-filling property also enhances 
robustness against the randomness induced by the ini
tial design. Note that the proposed Algorithm 1 is a 
combination of the coordinate-exchange algorithm 
and the gradient descent method. It does rely on the 
initial design. In our numerical study, it appears that 
the best result chosen is not that sensitive to the ini
tial design but to the candidate set. One can use 

multiple runs of the initial design to make the algo
rithm more robust to the choice of initial design.

With the space-filling design for the continuous 
factors x1, :::, xm with linear constraint, we can then 
construct a cross array design between x1, :::, xm; other 
continuous factors, and categorical factors as the com
plete design. Here the Latin hypercube design 
(McKay, Beckman, and Conover 1979) is used as the 
design construction for other continuous factors. In 
the next section, we will detail how we use the pro
posed design and collected responses to build a surro
gate model for studying how the hyper-parameters 
and data quality factors impact the quality of the 
MLD algorithm.

3.5. Surrogate modeling

With a large number of factors in our investigation, a 
quadratic linear regression model can contain too 
many model parameters while a first-order linear 
regression model can be too simple to emulate the 
intricate relationship between the factors and metrics. 
Therefore, a proper surrogate model is needed. Here, 
we consider the Gaussian process to be used for sur
rogate modeling. Note that our DoE contains both 
continuous factors and discrete factors. To address 
this challenge, we adopt the additive Gaussian process 
(AGP) used in Deng et al. (2017) as our surrogate.

Without loss of generality, suppose that the 
response is ~y; and the corresponding covariates are 
~w ¼ ð~x, ~zÞ; where ~x is a continuous covariate vector, 
and ~z ¼ ð~z1, :::, ~z~qÞ is a binary covariate vector with ~q 
dimensions. Then we consider AGP for modeling the 
response ~y as

~yð~wÞ ¼ lþ
X~q

h¼1
Ghð~zh, ~xÞ, (3) 

where Gh’s are independent Gaussian processes with 
mean zero and the covariance function Rh’s. Here l is 
the overall mean, and we set l ¼ 0 for simplicity. The 

Figure 2. An illustration of the usage of 3D simplex centroid design to construct a candidate set. Left: Original 3D simplex cen
troid design. Right: Add more points between design points in the 3D simplex centroid design.
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covariance function of Gh between a pair of observa
tions ~yið~w iÞ and ~yjð~w jÞ is defined as Rhð~w i, ~w jÞ ¼

s2whð~x i, ~xjÞ/hð~zhi, ~zhjÞ where

whð~x i, ~x iÞ ¼ exp −
jj~x i − ~x jjj

2

ϑh

 !

þ g1ði ¼ jÞ,

/hð~zhi, ~zhjÞ ¼ expðð1 − 1ð~zhi 6¼ ~zhjÞÞ log qhÞ, 

where 1ð�Þ is an indicator function. Here ϑh � 0 and 
0 � qh � 1: The parameter g � 0 is a nugget effect. 
Thus, the overall covariance function becomes 
Rð�, �Þ ¼

P~q
h¼1 Rhð�, �Þ:

When using AGP for our design factors in Section 
3.3, the continuous covariate vector ~x contains 
x1, :::, xm and z1, :::, z3: Recall that the categorical fac
tor z4 has k levels as k various types of datasets. 
While we consider the binary covariate vector ~z ¼
ð~z1, :::, ~z~qÞ for AGP with ~zh to be

~zh ¼
0, DS1 is used;
1, DShþ1 is used:

�

where h ¼ 1, 2, :::, k − 1: Now assume that the col
lected data are ð~y, ~WÞ; where ~y is the N dimensional 
vector of responses and ~W the corresponding covari
ate matrix. Given a new design point ~w�; its corre
sponding response ~y� can have

~y
~y�

� �

� N Nþ1
0!N
0

 !

, R~y , ~y R~y , ~y�
R~y�, ~y R~y�, ~y�

� � !

, 

where R~y , ~y is the covariance matrix for ~y; R~y , ~y� is the 
covariance vector between ~y and ~y� (R~y�, ~y is 
the covariance vector between ~y� and ~y), and R~y�, ~y� is 
the variance of ~y�: Therefore, it is obvious that the 
conditional distribution of ~y� given ~y can be obtained 
for prediction and uncertainty quantification as 
~y� ~y � Nðl�, r2

�Þ
�
� where

l� ¼ R~y�, ~yR
−1
~y , ~y ~y,

r2
� ¼ R~y�, ~y� − R~y�, ~yR

−1
~y , ~yR~y , ~y� :

(4) 

For simplicity, define q ¼ ðq1, :::, q~qÞ and ϑ ¼
ðϑ1, :::, ϑ~qÞ: To estimate unknown parameters b ¼

ðq, ϑ, gÞ and s2; calculate ŝ2 ¼ ~yTR−1
~y , ~y ~y=N firstly and 

then minimize the negative log-likelihood function 
given ŝ2 as 

b̂ ¼ arg min
b

log ðdetðR~y , ~yÞÞ þ Nlogð~yTR−1
~y , ~y ~yÞ

n o
:

The optimization can be solved by the derivative- 
based method. The estimation process is conducted in 
an iterative manner. See more details in the 
Appendix.

4. Numerical experiments

4.1. Design validation

The validity of the proposed space-filling design for 
the class proportions (i.e., x1, :::xm) is examined by 
comparing it with a benchmark method, the Kennard 
and Stone algorithm (Kennard and Stone 1969). Here 
we consider two performance measures “Coverage” 
and “Maxmin” to evaluate the space-filling property 
(Gomes, Claeys-Bruno, and Sergent 2018), denote as 
PM1 and PM2 as

PM1 ¼
1
�d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XN

i¼1
ðdi − �dÞ2

v
u
u
t ,

PM2 ¼ maxðdiÞ, 

where di ¼ minj6¼i jxi − xjjj
�
� and �d ¼ 1

N
PN

i¼1 di: The 
bigger these two metrics are, the better for our pur
poses. The comparison results are reported in Table 2
with m ¼ 10 classes. It is seen that the proposed 
design has a consistent advantage over the benchmark 
method (K-S) in terms of Coverage. In terms of 
Maxmin, the proposed design is better than the K-S 
method when the design runs are relatively large.

4.2. Data collection

We conduct data analysis based on additive Gaussian 
process modeling with respect to prediction accuracy 
y1 and detection accuracy y2: The range of the trans
formed weight ratio z1 is from −500 to 500. The 
range of z2 (i.e., the value of a) is from 1 to 3. The 
range of the percentage of mislabeled data z3 is from 
10% to 50%. Here we use MNIST (Deng 2012) and 
FashionMNIST (Xiao, Rasul, and Vollgraf 2017) as 
two types of benchmark datasets. The input images of 
these two datasets are both 28� 28; and both have 10 
classes. Thus, the proportions of classes are denoted 
x1, :::, x10; such that 0 � xl � 1; l ¼ 1, :::, 10: For each 
setting, we construct class-imbalanced splits by strati
fied sampling with replacement within each class from 
the original training (and, separately, test) sets so that 
the resulting class proportions match the target vector 

Table 2. Compare our approach based on “maxpro” criterion 
of a subspace with Kennard and Stone (K-S) algorithm.
Runs (N) Method PM1 PM2

50 Proposed design 0.1509 0.2962
K-S 0.0287 0.3782

100 Proposed design 0.2149 0.4490
K-S 0.0440 0.3403

150 Proposed design 0.1852 0.3926
K-S 0.1579 0.3768

200 Proposed design 0.2099 0.3795
K-S 0.2022 0.3672
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(x1, :::, x10), while keeping the total sample sizes fixed. 
For both datasets, there are 60, 000 observations of 
the training set and 10, 000 observations of the 
test set.

Training labels are later corrupted according to the 
specified noise mechanism. After class-imbalance sam
pling, we corrupt labels at a rate z3 using symmetric 
class-conditional noise. For each class i with ni train
ing samples, we select bz3nic samples uniformly at 
random (without replacement) and reassign their 
labels to a class j ðj 6¼ iÞ drawn uniformly from the 
other 9 classes. Validation and test labels remain 
clean. According to the design we obtained, we run 5 
replicates for each setting out of 2, 000 in total (i.e., 
10, 000 design runs in total). The detection accuracy 
and prediction accuracy are collected for further 
analysis.

4.3. Visualization of findings

Here, we visualize the data from the experimental 
results with respect to detection accuracy y2 and pre
diction accuracy y1: Figure 3 displays the contour 
plots of detection accuracy y2 with respect to the ser
ies of specific weights ratios z1; the threshold of devi
ation z2; and the proportion of mislabeled training 
data z3; given the datasets MNIST (Figure 3(A)) and 
FashionMNIST (Figure 3(B)). Each figure is organized 
into a 2� 2 facet grid, and each axis represents one 
factor for comparison purposes. Across both datasets, 

the top-right plot (z1 vs. z3) shows that the contour 
lines are generally vertical, indicating that the detec
tion accuracy y2 is primarily controlled by z3 rather 
than z1: However, a noticeable shift occurs at z1 < 0;
and the contour lines become denser and slightly 
curved, suggesting that the weight ratio begins to have 
a greater influence on the response. Despite this local
ized sensitivity to z1; the overall trend remains domi
nated by the proportion of mislabeled data z3: In the 
top-left plot (z1 vs. z2), y2 is positively associated with 
z1; but the relationship with z2 is less straightforward. 
In the region of larger z1; the presence of circular 
contour lines indicates a local peak or plateau, sug
gesting that there exists an optimal combination of z1 
and z2 that maximizes the detection accuracy y2:

Conversely, at smaller z1 values, the contour lines are 
almost horizontal, indicating a negligible effect of z2 
on detection accuracy. The bottom-right plot (z2 vs. 
z3) shows a more complex pattern. Detection accuracy 
y2 generally decreases with increasing z3; but the con
tours kink sharply as they cross the mid-range of z3;

and they bunch tightly on the right-hand side, signal
ing abrupt drops as z3 exceeds 0.35. Bands of local 
high y2 appear at several moderate z2 values (around 
2), suggesting that tuning the deviation threshold can 
partially mitigate the negative effects of mislabeled 
data. In terms of the datatype factor, z4; the detection 
performance patterns are similar between the two 
datasets overall. However, FashionMNIST consistently 

Figure 3. Detection accuracy y2 versus weights ratio z1; the deviation of threshold z2; and proportion of mislabeled training data 
z3 for (A) MNIST and (B) FashionMNIST datasets.
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exhibits slightly lower peak y2 values compared to 
MNIST across the same parameter settings.

Now, consider prediction accuracy y1 as the per
formance measure. The patterns displayed in Figure 4
are similar to the patterns displayed by detection 
accuracy y2: But there are several distinctions between 
them. First, the contour lines in the top-right plot (z1 
vs. z3) are consistently shaped and gradually spaced 
across the entire domain, without any abrupt jump or 
sudden shift around z1 ¼ 0: Here, the prediction 
accuracy declines steadily as z3 increases, and 
although z1 still has a modest influence, its effect tran
sitions smoothly without discontinuity. Second, for 
the top-left plot (z1 vs. z2), the drop in prediction 
accuracy y1 with decreasing z1 is more gradual than 
y2: The ridge of high response that appears at large z1 
is broader and flatter than y2; suggesting a wider 
range of ðz1, z2Þ combinations that yield near-optimal 
y1: Third, for the bottom plot (z2 vs. z3), the predic
tion accuracy y1 declines more gradually with increas
ing z3; and the interaction between prediction 
accuracy z2 and z3 is less volatile. Overall, the predic
tion accuracy y1 is less sensitive to small changes in 
either parameter, whereas the detection accuracy y2 
penalizes departures from its optimum much more 
sharply.

Note that the scale of prediction accuracy of 
MNIST data is much greater than that of 
FashionMNIST data. This indicates that the data type 
z4 has a profound effect on the prediction accuracy 
y1: When two convolutional neural network (CNN) 
models with consistent structures are well trained 
both on the clean training datasets of MNIST and 

FashionMNIST, the CNN model trained on the 
MNIST dataset has a distinctly higher prediction 
accuracy than the model trained on FashionMNIST. 
In contrast, the detection accuracy y2 seems less sensi
tive to the data type z4 in Figure 3. This is because 
the detection algorithm may rely on the differences 
between mislabeled and correctly labeled data for 
given classes rather than primary information in the 
training set, whereas a CNN is more dependent on 
the primary information.

4.4. Modeling results

To justify the proposed surrogate model, we partition 
all the experimental data into the training set (80%) 
and the test set (20%). The AGP is used as the surro
gate model for the responses y1 (i.e., prediction accur
acy) and y2 (i.e., detection accuracy), respectively. The 
parameters of AGP are estimated through the max
imum likelihood estimation. Such a modeling frame
work allows for inference on the parameters and 
uncertainty quantification, such as confidence inter
vals. We have h ¼ 1 and ~q ¼ 1; because two datasets 
are used in the experiments. Consequently, s and q~q 
can be regarded as one parameter f ¼ s � q~q in the 
estimation process. The maximum likelihood estima
tions of ðϑ1, g, fÞ for y1 and y2 are ð72:644, 
0:001, 0:396Þ and ð14:395, 0:002, 0:934Þ respectively. 
For comparison, we employ a linear regression model 
and a random forest model as two benchmarks. To 
evaluate the accuracy of the AGP model, we utilize 
the mean square error (MSE) and the Nash-Sutcliffe 
efficiency (NSE) (Kaufman et al. 2011) on the test set 

Figure 4. Prediction accuracy y1 versus weights ratio z1; the deviation of threshold z2; and proportion of mislabeled training data 
z3 for (A) MNIST and (B) FashionMNIST datasets.

QUALITY ENGINEERING 9



as metrics for assessing goodness-of-fit. The NSE is 
defined as

NSE ¼ 1 −

P
~w2Wpred

ðŷð~wÞ − ~yð~wÞÞ2
P

~w2Wpred
ð~yð~wÞ − �yÞ2

, (5) 

where ŷð~wÞ and ~yð~wÞ are the predicted response and 
underlying response, and �y is the average of the 
underlying response. As illustrated in Table 3, it is 
evident that the AGP models significantly outperform 
the linear regression and random forest models in 
predicting detection accuracy y2: Moreover, the AGP 
model demonstrates comparable predictive ability to 

the random forest model and outperforms linear 
regression model.

Furthermore, this evidence is also supported by 
Figure 5, which compares the distributions of resid
uals of AGP, linear regression, and random forest 
models with respect to y1 and y2: The residual distri
butions of AGP are much narrower than the corre
sponding linear regression models. The width of the 
residual distribution for AGP model is similar to the 
shape of the residual distribution for random forest 
model with respect to y1; while the width of the 
residual distribution of AGP model is smaller than 
random forest model.

In Figure 6, we compare the average predicted 
response ŷ1 and underlying response ~y1 over weights 
ratio z1; the deviation threshold z2; percentage of mis
labeled data z3; and variance of proportions of classes, 
denoted as z5; respectively. The visual representation 
in this figure utilizes red triangles to mark the average 
experimental results while the blue squares represent 
the average AGP predictions. The observation of these 
red triangles overlapping with blue squares indicates a 
significant consistency in how the AGP method 

Table 3. Comparison results of the additive Gaussian process 
(AGP) model, linear regression (LM) and random forest (RF) 
models with respect to mean square error (MSE1 for y1 and 
MSE2 for y2) and Nash-Sutcliffe efficiency (NSE1 for y1 and 
NSE2 for y2).
Metric AGP LM RF

MSE1 8:7147� 10−5 0.0028 8:3581� 10−5

NSE1 0.9864 0.9019 0.9854
MSE2 6:1186� 10−5 0.0006 0.0002
NSE2 0.9980 0.8996 0.9938

Figure 5. Residual distributions of additive Gaussian (AGP) (left), linear regression model (linear reg) (mid), and random Forest 
(right) models with respect to prediction accuracy y1 (pred acc) and detection accuracy y2 (detect acc).

10 J. LIAN ET AL.



predicts the actual response surface. It also reflects the 
AGP’s quantification on the true underlying patterns 
or relationships between inputs and y1: For Figure 7, 
its focus is on comparing the average predicted 

response ŷ2 and underlying response ~y2 over the same 
inputs as Figure 6. Similar to the previous figure, the 
overlap between blue squares and red triangles dem
onstrates that the AGP method maintains its 

Figure 6. Comparison of average AGP outputs with the actual value of prediction accuracy y1 versus weights ratio z1; a z2; per
centage of mislabeled data z3; and variance of proportions of classes z5:

Figure 7. Compare average AGP outputs with the actual value of detection accuracy y2 versus weights ratio z1; a z2; percentage 
of mislabeled data z3; and variance of proportions of classes z5:
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effectiveness in accurately modeling the actual 
response surface for y2: This overlapping indicates 
that the AGP method consistently performs well in 
terms of both metrics, showing its adaptability and 
robustness across various scenarios. This evidence is 
further demonstrated through separate comparisons 
conducted on MNIST and FashionMNIST test sam
ples, as detailed in Appendix D.

4.5. Summary of findings

By comparing the results from the results of data visu
alization and the examination of the AGP modeling 
performance, we have found several interesting 
insights for the mislabeling detection algorithm 
studied in this article.

First, it is not surprising that the proportions of 
mislabeled data significantly affect the performance of 
detection accuracy. Moreover, changes in class imbal
ance can also diminish the detection accuracy. 
However, not all data quality factors have profound 
effects on the detection accuracy. In our study with 
two types of benchmark datasets (MNIST and 
FashionMNIST), the detection accuracy is robust 
against the type of data used in the proposed method. 
We observe that the optimal setting of two hyper- 
parameters, weights ratio z1 and threshold z2 are quite 
similar when the data types (datasets) are different. 
This indicates that the MLD algorithm has a similar 
capacity to derive the differences between malicious 
items and normal items when the datasets are not the 
same and the hyper-parameters of the detection algo
rithm do not have an interaction effect with data type. 
Second, the MLD algorithm turns conservative (detec
tion accuracy in low variance) when its capacity to 
detect mislabeled data is poor. When the detection 
accuracy is relatively high, in our cases, roughly larger 
than 0.7, the stability and the average performance of 
the detection algorithm are positively associated. 
Third, the detection accuracy and the classification 
accuracy can be of different characteristics. A combin
ation of both metrics can help distinguish if the algo
rithm is affected by the primary information in the 
dataset (data type factor).

5. Discussion and conclusion

In this work, we establish a QE-AI framework to 
comprehensively investigate how data quality factors 
(e.g., data type, percentage of mislabeled data, class 
imbalance in training data) and hyper-parameters of 
algorithms affect the quality of the AI algorithms. The 

proposed QE-AI framework can set an evaluation 
protocol for AI algorithm practitioners to evaluate the 
quality of a set of AI algorithms, and enhance AI 
transparency with understanding of the uncertainty of 
AI algorithms.

There could be some limitations of the current 
work. First, we chose a mislabeled data detection algo
rithm and then evaluate it on two similar datasets to 
describe the proposed framework. However, the QE- 
AI framework is not limited to this particular MLD 
algorithm. It can be extended to other AI algorithms 
whose quality assurance is affected by various data 
quality factors and their internal structure. Besides, 
the evidence provided in the summary may need fur
ther validation across a broader range of usage sce
narios in other datasets. Second, the number of classes 
in this study is around ten, not as large as the hun
dreds present in some benchmark data. For data with 
a large number of classes, such as the CIFAR100 data
set with 100 classes, the proposed design construct 
may encounter certain computational difficulties. 
Third, the AGP modeling technique does not inher
ently accommodate constraints on the inputs. 
Although this limitation does not substantially com
promise the AGP’s predictive performance, it will be 
interesting to examine such a limitation in a rigorous 
manner.

For future works, one can consider a sequential 
design based on surrogate modeling to handle the 
sensitivity concern and limitation of design runs. Note 
that we currently consider a cross array between the 
data quality factors and algorithm hyper-parameter 
factors. The cross array can lead to a large design size, 
which may not be very realistic in practice. The com
putation time of training the AGP model with a large 
run size can take several hours. To mitigate this issue, 
one can adopt the ideas of sliced Latin hypercube 
design to construct a small-size design with good pro
jection properties (Ba, Myers, and Brenneman 2015; 
Deng, Hung, and Lin 2015). Moreover, one can also 
consider the sparse Gaussian process to enhance the 
computational efficiency of surrogate modeling. 
Additionally, it is appealing to extend the QE-AI 
framework to handle more factors related data quality 
or hyperparameters for the other interesting investiga
tions, such as multiple mislabeling detection algo
rithms on multiple types of datasets with different 
numbers of classes. For models that incorporate net
work architecture, parameters pertaining to the archi
tecture can be considered as inputs to be integrated 
into the framework for gauging their effects.
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Appendix A. Proof of proposition 1

Proof. Let p ¼ 2m and h follow a uniform distribution in 
the region H ¼ fh : 0 � hl � 1,

Pm
l¼1 hl ¼ 1g: Then 

dpðhÞ ¼ ðm−1Þ!ffiffiffi
m
p dh:

Ehðf ðXjhÞÞ ¼
ð

H
f ðXjhÞdpðhÞ

¼

ð

H
f ðXjhÞ

ðm − 1Þ!
ffiffiffiffi
m
p dh

¼

ð

Sm−1

ffiffiffiffi
m
p

f Xjh1, :::, hm−1, 1 −
Xm−1

l¼1
hl

 !

�
ðm − 1Þ!

ffiffiffiffi
m
p dh1:::dhm−1

¼ ðm − 1Þ!
ð

Sm−1

f Xjh1, :::, hm−1, 1 −
Xm−1

l¼1
hl

 !

dh1:::dhm−1

¼ ðm − 1Þ!
XN−1

i¼1

XN

j¼iþ1

ð

Sm−1

fði, jÞðXjh1, :::, hm−1Þ

dh1:::dhm−1, 

where Sm−1 ¼ fh : 0 � h1, h2, :::, hm−1 � 1,
Pm−1

l¼1 hl � 1g:
Here the expression of fði, jÞðXjh1, :::, hm−1Þ is 

fði, jÞðXjh1, :::, hm−1Þ ¼
Pm−1

l¼1 hldði, jÞl þ 1 −
Pm−1

l¼1 hl

� �

dði, jÞm

� �−m
;

dði, jÞl ¼ ðxil − xjlÞ
2
: Suppose

Qmðm, aÞ ¼
ð

Sm−1

Xm−1

l¼1
hldl þ 1 −

Xm−1

l¼1
hl

 !

a

 !−m

dh1:::dhm−1:

For a 6¼ dm−1; Qmðm, aÞ ¼ 1
ðm−1Þða−dm−1Þ

ðQm−1ðm − 1, 
dm−1Þ − Qm−1ðm − 1, aÞÞ: It is easy to see that Q2ð2, aÞ ¼
1=ðd1aÞ: Therefore, Qmðm, aÞ ¼ 1=fðm − 1Þ!d1:::dm−1ag;
then Qmðm, dmÞ ¼ 1=fðm − 1Þ!d1:::dm−1dmg (Joseph, Gul, 
and Ba 2015). Here we prove that the expected objective 
function over H ¼ fh : 0 � hl � 1,

Pm
l¼1 hl ¼ 1g is a scalar 

of the the expected objective function over Sm−1 ¼ fh : 0 �
h1, h2, :::, hm−1 � 1,

Pm−1
l¼1 hl � 1g: Therefore, the two 

expected objective function share the same kernel.           w
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Appendix B. Validation of covariance matrix of 
additive Gaussian process

Lemma 1 (Schur Product Theorem).
If D is an N � N positive semidefinite matrix with no 

diagonal entry equal to zero and E is an N � N positive def
inite matrix, then D � E is positive definite. If both D and E 
are positive definite, then D � E is positive definite as well 
(Horn and Johnson 2012).

Proposition 2. For the collected data ð~y, ~W ¼ ð~X , ~ZÞÞ, 
where ~X is the N � ~p continuous covariates matrix and ~Z is 
the N � ~q binary covariates matrix. Then the covariance 
matrix of ~y is a positive definite matrix.

Proof. The covariance matrix for ~y is

R~y , ~y ¼
X~q

h¼1
ðRhð~wi, ~wjÞÞN�N

¼
X~q

h¼1
ðs2whð~xi, ~x jÞ/hð~zhi, ~zhjÞÞN�N

¼
X~q

h¼1
s2ðwhð~xi , ~x jÞÞN�N � ð/hð~zhi , ~zhjÞÞN�N , 

where � is Schur product, i, j ¼ 1, 2, :::, N: Denote 
ðwhð~xi , ~x jÞÞN�N as Ch; ð/hð~zhi , ~zhjÞÞN�N as Bh: Note that 
Ch’s are positive definite matrices. Bh can be obtained by

Bh ¼ ~Ah
1 qh
qh 1

� �

~AT
h , 

where ð~AhÞ is a ~q � 2 matrix, and

ð~AhÞi, 1 ¼
0, if ~zhi ¼ 0;

1, if ~zhi ¼ 1: ð
~AhÞi, 2 ¼

1, if ~zhi ¼ 0;

0, if ~zhi ¼ 1:

��

Since 1 qh
qh 1

� �

is positive definite, then Bh is as least 

positive semidefinite with all diagonal entries equal to 1. 
Followed by Lemma 1, Bh � Ch is positive definite. 
Therefore, the covariance matrix R~y , ~y is positive definite.   w

Appendix C. Derivatives of the log-likelihood 
function

Given ~y and ~W ; we build the log-likelihood function

lðb, s2Þ ¼ −
N
2

log ð2pÞ −
N
2

log ðs2Þ −
1
2

log ðdetðR~y , ~yÞÞ

−
1

2s2 ~yTR−1
~y , ~y ~y:

To maximize the log-likelihood function, firstly, we 
maximize it with respect to s2 given fixed b: Take derivative 
with respect to s2 

0¼set @lðs2jbÞ

@s2 ¼ −
N

2s2 þ
1

2ðs2Þ
2 ~yTR−1

~y , ~y ~y:

Therefore, ŝ2 ¼ ~yTR−1
~y , ~y ~y=N: Then we maximize the log- 

likelihood given s2 ¼ ŝ2: Take derivatives with respect to 
b ¼ ðq, ϑ, gÞ

@Rhðð~zhi, ~xiÞ, ð~zhj, ~xjÞÞ

@ϑh
¼ Rhðð~zhi, ~xiÞ, ð~zhj, ~x jÞÞ

�
jj~xi − ~x jjj

ϑ2
h

,

@Rhðð~zhi, ~xiÞ, ð~zhj, ~xjÞÞ

@g
¼

1 i ¼ j
0 i 6¼ j

(

,

@Rhðð~zhi, ~xiÞ, ð~zhj, ~xjÞÞ

@qh
¼

0 i ¼ j
Rhðð~zhi, ~xiÞ, ð~zhj, ~x jÞÞi 6¼ j

(

,

@R−1
~y , ~y

@b
¼ −R−1

~y , ~y
@R~y , ~y

@b
R−1

~y , ~y ,

@logðdetðR~y , ~yÞÞ

@b
¼ tr R−1

~y , ~y
@R~y , ~y

@b

� �

,

@lðbjŝ2Þ

@b
¼ −

1
2

tr R−1
~y , ~y
@R~y , ~y

@b

� �

þ
N
2

~yTR−1
~y , ~y

@R~y , ~y
@b

R−1
~y , ~y ~y

~yTR−1
~y , ~y ~y

, 

and obtain b̂ by minimizing the negative log-likelihood 
function given ŝ2 through derivative based optimization, 
such as Broyden –Fletcher–Goldfarb–Shanno (BFGS) algo
rithm. Repeatedly maximize the log-likelihood function with 
respect to s2 and b until they converge.
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Appendix D. Compare prediction of AGP with actual experimental results

Figure D1. Average predicted detection accuracy y2 versus weights ratio z1 (Left), the deviation of threshold z2 (mid), and propor
tion of mislabeled training data z3 (right) for MNIST (upper) and FashionMNIST (lower) datasets.
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Figure D3. Average predicted prediction accuracy y1 (right) and detection accuracy y2 (Left) versus variance of proportions of 
classes z5 for MNIST (upper) and FashionMNIST (lower) datasets.

Figure D2. Average predicted prediction accuracy y1 versus weights ratio z1 (Left), the deviation of threshold z2 (mid), and propor
tion of mislabeled training data z3 (right) for MNIST (upper) and FashionMNIST (lower) datasets.
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