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Abstract
Multi-brand analysis based on review comments and ratings is a commonly used strategy to compare different brands in
marketing. It can help consumers make more informed decisions and help marketers understand their brand’s position in
the market. In this work, we propose a multifacet hierarchical sentiment-topic model (MH-STM) to detect brand-associated
sentiment polarities towards multiple comparative aspects from online customer reviews. The proposed method is built on
a unified generative framework that explains review words with a hierarchical brand-associated topic model and the overall
polarity score with a regression model on the empirical topic distribution. Moreover, a novel hierarchical Pólya urn (HPU)
scheme is proposed to enhance the topic-word association among topic hierarchy, such that the general topics shared by
all brands are separated effectively from the unique topics specific to individual brands. The performance of the proposed
method is evaluated on both synthetic data and two real-world review corpora. Experimental studies demonstrate that the
proposed method can be effective in detecting reasonable topic hierarchy and deriving accurate brand-associated rankings on
multi-aspects.

Keywords Hierarchical topic model · Joint modeling · Pólya urn scheme · Stochastic EM · Topic regression

1 Introduction

As online activities and intelligence advance, an increas-
ing amount of online reviews provide a practical way to
understand customers’ feedback tomultiple aspects of online
products and services. Typically, a customer tends to express
positive or negative opinions on different aspects of a product
type or brand. The multifacet information in reviews enables
a data-driven comparative analysis of different online enti-
ties, including but not limited to different products (He et al.
2023), brands (Alzate et al. 2022), platforms (Zhang et al.
2019), and even cultures (Brand et al. 2022). The primary
interest of this study is to conduct a thorough modeling
and analysis on the customer reviews for automatic multi-
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brand comparison, namely, to compare multifacet features
and advantages of different brands in marketing. Note that
the proposed method can be extended to other review-based
multifacet comparison across different entities of interest.

Overall, the existing researches on brand aspect detec-
tion from online reviews are mainly built on classical topic
models, where all topics are organized in a flat structure that
assumes equal information granularities among topics. How-
ever, in practice, the aspects embedded in reviews tend to
demonstrate different granularities, which naturally form a
tree structure. For example, Fig. 1 illustrates online customer
reviews on several laptop brands. Each review is tagged with
a certain brand and composed of a plain text that describes
customer’s opinions on multi-aspects of the bought laptop as
well as an overall rating that indicates the general sentiment
polarity. The multi-aspect information in brand-associated
reviews can be captured by a tree structure of product aspect
nodes shared by all brands, where different brands present
different distributions on the aspect nodes, and each aspect
node is linked to multiple brand-specific sentiment polarities
that summarize the brand competitive performance on that
aspect and influence the overall ratings observed in brand
reviews.
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Fig. 1 Illustration of laptop
reviews with respect to various
brands. Each review is
composed of a plain text and an
overall rating. Different brands
share multiple comparative
aspects represented by a tree
structure of product aspect
nodes with respective
distributions on that, where each
aspect node is linked to multiple
brand-specific sentiment
polarities that influence the
overall ratings in brand reviews

For the purpose of multi-brand comparison, a hierar-
chical structure of comparative aspects rather than its flat
counterpart is preferred, on account of enhanced brand dif-
ferentiation with deepened levels in the hierarchy. A flat
structure assumes the global background and local ratable
aspects in reviews aremixedup, such that the local aspects are
smoothed by their shared background (Titov and McDonald
2008). In contrast, a hierarchical structure presents a vary-
ing degree of smoothness among multi-level aspects, where
upper aspects of hierarchy summarize product background
and general property shared among all brands, and deeper
aspects capture fine-grained characteristics specific to indi-
vidual brands. Therefore, the brand-associated strengths and
weaknesses can be degeneralized from their shared back-
ground by digging into the hierarchy, which enables a salient
comparison.

We propose a multifacet hierarchical sentiment-topic
model (MH-STM) for automatic multi-aspect brand compar-
ison based on the brand-associated review corpora including
both review texts and overall ratings, as illustrated in Fig. 1.
The proposed MH-STM employs a unified framework that
combines the extraction of hierarchical aspects from reviews
and acquiring of brand-associated sentiment scores specific
to multi-aspects. For deriving the hierarchical comparative
aspects amongbrands, theMH-STMborrows the idea of hier-
archical topicmodels (HTMs; Liu et al. 2016) that are natural
extension of flat topic models. In theMH-STM, we adopt the
hierarchical topic assumptions of hierarchical latent Dirich-
let allocation (hLDA; Blei et al. 2010) for the tree-structured
product aspects as in Fig. 1, and brand-associated reviews are
distributed respectively over the shared topic tree.

However, a challenge of applying hLDA and its variants
to our problem directly is that the detection of topic hierar-
chy in these models relies only on word co-occurrence rules

without considering the general-to-specific characteristics of
words explicitly. Some researches (Kang et al. 2012; Xu et al.
2018) have shown that hLDA could produce unreasonable
hierarchy. For example, some semantically general words
are assigned with the topics of lower levels if those words
do not occur frequently enough. In contrast, some seman-
tically specific but frequently occurring words are wrongly
assigned to topics of upper levels. Thismismatch bringsmore
uncertainties in differentiating the brand-associated proper-
ties from their shared background. To address this challenge,
we develop a hierarchical Pólya urn (HPU) scheme that can
be properly applied to hierarchical topic models for enhanc-
ing the topic level assignments of words based on their
general-to-specific semantics, namely, a generalword ismore
bursty around the root topic, and a specific word is more
bursty around a leaf topic.

Overall, the major contributions of this work are two-fold.
First, we propose a multifacet hierarchical sentiment-topic
model that detects brand-associated comparative aspects in
hierarchy and customers’ aspect-specific polarities towards
different brands jointly from online reviews. Compared to
other multi-brand models, it is constructed on a hierarchical
structure of multiple product aspects for enhanced brand dif-
ferentiation with deepened levels in hierarchy. Second, we
introduce a novel hierarchical Pólya urn (HPU) scheme in
the inference of topic hierarchy among multiple brands. By
incorporating different burstiness of review words in topic
hierarchy according to their general-to-specific characteris-
tics, it improves the separationof general aspects sharedby all
brands from the unique aspects specific to individual brands,
resulting in a more accurate multi-brand comparison. The
proposed model produces a ranked list of brands on various
customer-concerned aspects that enables a straightforward
brand comparison.
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The outline of this article is organized as follows. Section2
provides a literature review in the related field. Section3
details the proposed MH-STM with inference via a hierar-
chical Pólya urn scheme. Section4 elaborates performance
of the proposed method through simulation. Section5 evalu-
ates model performance using two real-world online review
corpora. We conclude this work with discussions in Sect. 6.

2 Literature review

2.1 Review-based brand comparison

Review-based comparison of multiple brands can help con-
sumers make more informed purchasing decisions and help
marketers understand their brand’s position in the mar-
ket (Colladon 2018; Mitra and Jenamani 2020). Recent
researches mainly aim to derive brand-associated polari-
ties from user-generated reviews. Several works considered
a two-stage procedure (Zhang et al. 2015; Barry et al.
2018; Sajid et al. 2022), which first detects brand-associated
evaluation aspects from reviews by implementing probabilis-
tic topic models (Blei et al. 2003; Vayansky and Kumar
2020), and subsequently tracks customers’ orientations to
the extracted aspects or topics of different brands via senti-
ment analysis. In the first stage, the hierarchical topic models
(HTMs; Liu et al. 2016) can be applied to derive the hierar-
chical comparative aspects among brands. Commonly used
HTMs include twomainstreamstructures:Hierarchical latent
Dirichlet allocation (hLDA; Blei et al. 2010) and hierarchi-
cal Pachinko allocation model (hPAM; Mimno et al. 2007).
Specifically, hLDA defines a tree-structure hierarchy where
each child topic node has only one parent, and hPAM is built
on a directed acyclic multilevel graph where a lower-level
topic correlates with multiple upper-level topics. An obvious
limitation of the two-stage method is that the topic extraction
is unsupervised and separated from the subsequent sentiment
analysis, leading to reduced predictive power for customers’
brand-associated polarities (Blei and McAuliffe 2007).

Joint sentiment-topic modeling of review texts and ratings
provides a powerful solution to the problem of two-stage
methods (Liang et al. 2023). There are also several works
using a joint approach that derives brand-associated com-
parative aspects and customer polarities towards the brands
simultaneously. For example, the text-based ideal point
(TBIP) model (Vafa et al. 2020) is constructed based on an
unsupervised Poisson factorisation to infer brand-level polar-
ity scores that influence the word distributions of polarity-
bearing topics shared among brands. Moreover, the brand
topic model (BTM) by Zhao et al. (2021) extended the TBIP
model by incorporating supervision from the document-level
sentiment labels, leading to improved performance in brand
ranking. And Zhao et al. (2023) further proposed a dynamic

variant of BTM for tracking the latent brand polarity scores
over time. However, these joint models often focus on the
overall brand polarity comparison. They do not provide brand
rankings under multiple aspects directly, which is less infor-
mative for the decision making of brand market strategies.

2.2 Pólya urn scheme in topic modeling

The simple Pólya urn scheme (SPU) can be naturally com-
bined with topic modeling for enhancing the topic-word
association (Mahmoud 2008). The SPU scheme presents
a self-reinforcing property known as “the rich get richer”,
which helps to capture the word burstiness in a document,
i.e., if a word appears once, it is more likely to appear again
(Doyle and Elkan 2009). This property enables SPU to show
superior performance in the topicmodelingof text documents
(Madsen et al. 2005). Recently, some enhanced Pólya urn
schemes have been proposed for improving the topic-word
associations in topic inference, such as generalized Pólya
urn (GPU; Li et al. 2016) and weighted Pólya urn (WPU;
Wang et al. 2020). But these methods are mainly designed
for non-hierarchical topic models.

For adaption to hierarchical topic relations, Xu et al.
(2018) combined GPU with hierarchical topic sampling to
produce a topic hierarchy with improved coherence and
reasonable structure. However, it relies on the prior knowl-
edge extracted frommultiple domains’ corpora. Liang (2024)
developed an enhanced Pólya urn scheme by adapting the
sampling weights of words to their general-to-specific char-
acteristics in hierarchywithout requiring any external knowl-
edge.However, it still adopts equal burstiness ofwords across
hierarchy following the assumption of SPU. In comparison,
our proposed HPU scheme considers different burstiness
of words in topic hierarchy relying only on their general-
to-specific characteristics, namely, a general word is more
bursty around the root topic, and a specific word is more
bursty around a leaf topic.

3 Amultifacet hierarchical sentiment-topic
model

For extracting comparative aspects among different brands as
well as brand-associated sentiment scores for multi-aspects,
Sect. 3.1 introduces a multifacet hierarchical sentiment-topic
model (MH-STM), and Sect. 3.2 combines it with a novel
hierarchical Pólya urn (HPU) scheme for enhancing the
topic-word association in topic hierarchy. Finally, Sect. 3.3
demonstrates a stochastic EM algorithm formodel inference.
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3.1 Model formulation

Consider the data consisting of product reviews each indexed
by d ∈ {1, 2, · · · , Db} belonging to each of competitive
brands b ∈ {1, 2, · · · , B} in a market. Without loss of gener-
ality, each review d contains a normalized overall polarity
score yd ∈ [0, 1] and Sd review sentences each indexed
by s ∈ {1, 2, · · · , Sd}. Suppose a review sentence s in

review d contains Nd,s words denoted as {wd,s,n}Nd,s
n=1 , thus

having the total number of words in review d denoted as
Nd = ∑Sd

s=1 Nd,s , and each word in the observed sen-
tence is assumed to be from the vocabulary indexed by
v ∈ {1, 2, · · · , V }.

The MH-STM employs a unified frame of probabilistic
generative process that explains the observedwords and over-
all polarity scores in brand-associated reviews jointly. As
illustrated in Fig. 1, the reviews are explained by mixtures of
latent topics that are organized in a tree with a pre-defined
depth L and unbounded branches. Each topic node k is rep-
resented by a V -dimension multinomial word distribution
φk drawn from a symmetric Dirichlet prior: φk ∼ Dir(η),
where η = (η, · · · , η)T . Overall, a topic located deeper in
the tree represents a more fine-grained aspect that customers
are concerned with.

Given a topic node k in the tree, all direct child nodes of
k compose its child set�(k) that corresponds to each subdivi-
sionof the topic, e.g.,�(Keyboard)={Backlight, Button}
in Fig. 1. And k’s ancestor set V(k) is composed of all
other nodes on the way from the node k to the root,
e.g., V(Backlight) = {Keyboard, LaptopQuali t y} in
Fig. 1. A path is defined as a sequence of distinct topic
nodes connected by parent–child edges in the tree: c =
(c1, c2, · · · , cL)T , cl ∈ �(cl−1),∀l ∈ {2, · · · , L}, where
c1 is the root node, and cL is a leaf node. Each path denotes a
coherent semantic theme of reviews with different informa-
tion granularities captured by each level’s node in the path,
e.g., c = (LaptopQuali t y, Keyboard, Button)T in Fig. 1.

To organize latent topics in an unbounded tree, we employ
thenestedChinese restaurant process (nCRP;Blei et al. 2003)
that is widely used in hierarchical topic modeling to place a
nonparametric prior partitions on possible topic trees. It is
assumed that different brands share the same hierarchical
structure of topic nodes but with respective proportions over
the nodes, which means each brand’s reviews are partitioned
by their respective nCRPs. The partitioning process of nCRP
specific to each brand is achieved by recursively traversing
the entire tree from a specified root node. For example, let
c1 be the root topic and selected as the beginning node, once
given the previous i − 1 document assignments of brand b,
the i th subsequent document of brand b traverses each level
of tree by nCRP with parameter γ , resulting a path of topics
c = (c1, · · · , cL)T ∼ nCRP(γ, b). Specifically, for each

level l ∈ {2, · · · , L}, it draws a direct child topic node under
cl−1 with the following distribution:

p
(
cl = k|cl−1

)

=
⎧
⎨

⎩

Mb,k+1
γ+Mb,cl−1+|�(cl−1)| if k is an existing child node of cl−1,

γ
γ+Mb,cl−1+|�(cl−1)| if k is a new child node,

(1)

where Mb,k is the number of previous document visits at
topic node k in the corpus of brand b, specially having
Mb,c1 = i −1 in the i th trial. The hyperparameter γ governs
the likelihood of creating a new child node in topic hierarchy.
Laplace smoothing is additionally incorporated to prevent
zero probability values, where |�(cl−1)| represents the num-
ber of existing child nodes descending from cl−1. The nCRP
allows continuous change and branching of topic groups in
a hierarchy, where the total number of topics is decided by
data.

Each review is allowed to have multiple paths through the
tree as there could be multiple semantic themes in the same
review. Specifically, each review sentence is assigned to a
single path with L-level topics based on the brand-specific
nCRP prior. Once a path cd,s is selected for a review sentence
indexed by (d, s), the generative process of words in the sen-
tence reduces to a flat LDA model (Blei et al. 2003). In this
case, sentencewords {wd,s,n}Nd,s

n=1 are respectively assigned to

different levels {ld,s,n}Nd,s
n=1 along the selected path based on

an L-dimension multinomial distribution Multi(θd,s). θd,s

is drawn from a symmetric Dirichlet prior on level distribu-
tions: θd,s ∼ Dir(α), where α = (α, · · · , α)T . The review
sentence path cd,s and each word’s level assignment ld,s,n

jointly specifies the corresponding topic assignment of word:
kd,s,n ≡ cd,s,ld,s,n . After that each sentence word is drawn
from the word distribution φkd,s,n

independently conditioned
on its topic assignment.

We consider the polarity score yd accompanying each
review d as a response variable in the regression, which
is referred to as polarity response hereafter. It relies on
brand-specific regression parametersβb corresponding to the
extracted topics {k}, and uses the empirical distribution of

review d over topics as regressors: xdk = 1
Nd

∑Sd
s=1

∑Nd,s
n=1 I(

kd,s,n = k
)
. The fitting of polarity response yd , in turn,

helps to inform the recovery of topics by incorporating their
association with extremes on these topics. Specifically, the
brand-specific topic regression parameters βb indicate cus-
tomers’ sentiment polarities towards various topics or aspects
of each brand, which can be used for ranking brand perfor-
mances in multiple aspects.

A generative procedure summarizing the proposed MH-
STM is illustrated in Algorithm 1. Figure2 shows a plate
notation of the generative procedure accordingly. It is
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assumed that only review words {wd,s,n} and overall polar-
ity responses {yd} are observed, and they are both affected
by an infinite number of tree-structured latent topics that
are positioned by corresponding assignments of path cd,s ∼
nCRP(γ, b) and level ld,s,n ∼ Multi(θd,s) in the tree. The
observed review words are generated by multinomial word
distributions φk conditioned on their topic assignments, and
review’s polarity response variables are explained by the
topic regression coefficients βb

k specific to each brand.

Algorithm 1: Generative procedure of reviews in MH-

STM
• For each topic node k in the tree:

1. Draw a multinomial word probability φk ∼
Dir(η) specific to the topic k.

2. For each brand b ∈ {1, · · · , B}:
(a) Draw a brand-specific regression parameter

βb
k ∼ N (μ, σ 2).

• For each review d ∈ {1, · · · , Db} of brand b:

1. For each sentence s ∈ {1, · · · , Sd} of review d:

(a) Draw a path cd,s ∼ nCRP(γ, b), where

cd,s = (cd,s,1, · · · , cd,s,L )T includes each

level’s topic along the path.

(b) Draw an L-dimensional topic level multin-

omial distribution θd,s ∼ Dir(α).

(c) For each word token n ∈ {1, · · · , Nd,s} in
the review-sentence pair (d, s):

(i) Draw topic level ld,s,n ∼ Multi(θd,s),

which specifies the corresponding topic

kd,s,n ≡cd,s,ld,s,n along the selected path.

(ii) Draw word wd,s,n ∼ Multi(φkd,s,n
).

2. Draw polarity response yd ∼ N ((xd)Tβb, ρ2),

where xdk = 1
Nd

∑Sd
s=1

∑Nd,s
n=1 I

(
kd,s,n = k

)
.

3.2 Enhancing topic-word association via Pólya urn
scheme

As illustrated in Fig. 2, the multinomial word distribution φk
conditioned on topic k is usually drawn from a symmetric
Dirichlet prior: Dir(η), where η = (η, . . . , η)T . In practice,
however, it is common to deal directly with the “collapsed”
distribution by integrating over the topic-word multinomial
φk (Mimno et al. 2011):

Fig. 2 Graphical representation of MH-STM. The shaded circles rep-
resent observable variables, dashed circles represent hyperparameters,
dotted circles represent latent variables, and the rest solid circles repre-
sent model parameters

p(w | k, η,W) = Nk,w + η
∑V

v=1

(
Nk,v + η

) , (2)

which is a function of the hyperparameter η and the number
of each word assigned to that topic, i.e., Nk,v . This collapsed
distribution is known as Dirichlet compound multinomial
(DCM) or multivariate Pólya distribution (Doyle and Elkan
2009). It breaks the assumption of conditional independence
between word tokens given topics, but has been proven to
show substantially better performance than traditional multi-
nomials in the modeling of text documents (Madsen et al.
2005). In the following parts, we start with introducing the
existing simple Pólya urn scheme that constructs DCM in
flat topic models, and then we propose a novel hierarchical
Pólya urn scheme that adapts to topic hierarchy.

3.2.1 Simple Pólya urn scheme

The process for generating a sequence ofwords following the
DCM distribution is known as the simple Pólya urn (SPU)
scheme (Mahmoud 2008), which employs an analogy of urns
with colored balls to interpret the topic-word distribution.
Let u0k = η be an urn initially containing an equal number
of η standard balls in one of V distinct colors, and U0 =
[u01, u02, · · · , u0K ]T represent K urns in the same initial states.
In this context, the urns and different colored balls represent
K topics and V distinct words, respectively. Starting at time
i = 0, each time a colored ball is randomly drawn from an
urn, it is returned to the urn along with another ball of the
same color. If {(ki , vi )} is a sequence of balls each in color of
vi ∈ {1, · · · , V } and drawn from the urn ki ∈ {1, · · · , K },
then the state of urns can be describe as a recurrent process
as:

Ui+1 = Ui + Ei , (3)
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where Ei is a K × V matrix with 1 in dimension of (ki , vi )
and 0 elsewhere. This process is equivalent to the marginal
distribution inEq. (2)with aDirichlet prior and amultinomial
likelihood, where the proportion of colored balls in an urn
reflects the word distribution under a topic. As a sampled
color is more likely to be sampled from the same urn again
in the next round, the SPU scheme enables to capture the
word burstiness in a document, i.e., if a word appears once,
it is more likely to appear again (Doyle and Elkan 2009).

3.2.2 Hierarchical Pólya urn scheme

The SPU scheme is designed for flat topic structure, where
all word tokens are equally bursty under each of topics while
ignoring the hierarchical relationship among them. Liang
(2024) has developed an enhanced Pólya urn scheme that
adapts the sampling weights of balls to their general-to-
specific characteristics in hierarchy. However, it still adopts
the assumption of equal burstiness across hierarchy, i.e., it
still follows the stochastic process in Eq. (3). Therefore, we
introduce a hierarchical Pólya urn (HPU) scheme in this part
for incorporating adaptive word burstiness in hierarchical
topic modeling.

Formally, given a sequence of balls {(ki , vi )}, we propose
the HPU scheme with urns’ state process as

Ui+1 = Ui + Ei + Ẽi � Ai , (4)

where Ẽi is a K × V matrix with 1 in each dimension of
{(k, vi ) : k ∈ V(ki )} and 0 elsewhere, Ai is a K × V addi-
tion weight matrix that stores the weights of additional balls
put to all ancestor urns in V(ki ), and � performs Hadamard
product of two matrices. According to the process specified
by Eq. (4), when a colored ball is drawn from a certain urn,
the selected ball and a new ball in the same color are put
back to the urn, and additionally some weighted balls in the
same color will be placed to the urn’s all ancestor urns. By
applying this HPU scheme in a hierarchical topic model, the
consistency between parent and child topics is enhanced such
that a child topic’s frequent word is also likely to appear in
its parent.

The additionally placed balls are weighted by their
general-to-specific characteristics along thehierarchy. Specif-
ically, we define the addition weight matrix Ai = [aikv]K×V

as

aikv = min

(
Ent(�(k) | v)

Ent(�(k))
, 1

)

,

Ent(�(k)) = −
∑

k′∈�(k)

p(k′) log p(k′),

Ent(�(k) | v) = −
∑

k′∈�(k)

p(k′ | v) log p(k′ | v),

(5)

wherewe use the index variables k and v for denoting the cor-
responding indexed urn (topic) and ball (word) respectively.
Ent(�(k) | v) and Ent(�(k)) represent Shannon’s entropy
on the set of k’s direct children �(k) with and without the
specified word v respectively, which measures the uncertain-
ties of distinguishing one child topic from another in �(k).

The addition weights specified above range in [0, 1], and
their values rely only on intermediate topic sampling results
with no requirement for external knowledge.When the infor-
mation gain Ent(�(k)) − Ent(�(k) | v) ≤ 0, it triggers the
maximum addition weight akv = 1. It is desired that a word
should bemoreweighted in the parent node k if it is shared by
each child node in�(k). In contrast, it triggers the minimum
addition weight akv = 0 when Ent(�(k) | v) = 0, which
means a word should be less weighted in the parent node k
if it is associated mainly with a specific child topic in �(k).
Under this rule, we achieve a desired concept tree that places
semantic notions of generality to the root and the counterpart
of specificity to the leaves (Tumpa and Ali 2018).

A sequence of words under topics generated by the HPU
process defines a set of topic-specific word distributions as:

p(w | k, η,W) = Wk,w + η
∑V

v=1

(
Wk,v + η

) , (6)

where Wk,v denotes the cumulative weights of each word v

under the topic k. It can be seen as a weighted version of the
classical DCM in Eq. (2).

Figure 3 illustrates some sampling instances of the pro-
posed HPU scheme in comparison with SPU, which are both
applied to a two-level hierarchy. Compared to SPU, HPU
adds additional words to the parent topics with weights that
are consistent with the general-to-specific characteristics of
different words. For example, a general word v shared by dif-
ferent child topics of k leads to a lower information gain and
a higher addition weight of akv according to Eq. (5), which
makes it more bursty to the parent topic k (e.g., the left case
in Fig. 3b). On the contrary, a word specific to a certain child
topic k′ ∈ �(k) brings higher information gain in differen-
tiating the branches under parent topic k, leading to a lower
value of akv that prevents v to be assigned to the parent topic
k (e.g., the right case in Fig. 3b).

Overall, SPU assumes equal word burstiness under var-
ious topics, while HPU scheme produces word-specific
burstiness that adapts to topic hierarchy, where the general
words are more likely to repeat within a document around
the root topic. Therefore, the root node tends to place prob-
ability mass on general words, and the leaf nodes place on
specific words, such that the neutral topics at the top that are
general to all brands are distinct from the polarised topics
at the bottom that are specific to different brands, leading to
accurate brand comparison in the shared topic hierarchy.
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Fig. 3 Comparison of simple
and hierarchical Pólya urn
schemes in hierarchical topic
modeling. Urns represent topics
and balls with different
numbers/colors represent
different words. Grey balls
(No.1–2) represent general
words that are shared among
child topics, while balls in color
of blue (No.3–5), green
(No.6–8), and orange (No.9–11)
are specialized words for each
child topic, respectively

3.3 Model inference

The proposed model is parameterized by 	 = (θ,φ,β).
Overall, we employ a probabilistic frame of stochastic EM
that is commonly adopted for the inference of supervised
topic models (Boyd-Graber and Resnik 2010; Nguyen et al.
2013). The stochastic EM algorithm alternates between a
Gibbs sampling E-step and an optimization M-step. Specifi-
cally, in the E-step, we conduct a collapsed Gibbs sampling
that employs the proposed HPU scheme to construct a
Markov chain over two groups of latent variables, i.e., the
path assignment c of each review sentence and the topic level
assignment l of each word. During the sampling process,
one latent group in {c, l} is sampled conditioned on the other
by a set of conditional independence assumptions illustrated
in Fig. 2, and all other variables such as φ, θ are integrated
out. In the M-step, we optimize the multi-level topic regres-
sion parametersβ bymaximum likelihood estimation (MLE)
given samples of {c, l} in E-step. Let us provide a detailed
explanation of the two steps below.

Sampling c in E-step: Conditioned on the observed words
wd,s and its corresponding polarity response yd of a certain
review-sentence pair (d, s) under brand b, as well as fixed
topic levels ld,s of the words wd,s , the probability of assign-
ing (d, s) to a path c is

p(cd,s = c|c−(d,s), ld,s,wd,s, yd , b,β
b)

∝ p(wd,s |cd,s = c, ld,s)

× p(yd |cd,s = c, ld,s,β
b)

× p(cd,s = c|c−(d,s), b),

(7)

where c−(d,s) represents the path assignments of all review
sentences other than (d, s) in review corpus. From the per-
spective of Bayes’ rule, the first two terms can be seen as the
likelihood of observed words and polarity response given a
selected path, and the third term is the prior on path cd,s

implied by the nCRP under brand b. Specifically, the prior
probability of cd,s under brand b is derived by the nCRP in
Eq. (1) as
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p(cd,s = c|c−(d,s), b) ∝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∏L
l=2

M−(d,s)
b,cl

+1

γ+M−(d,s)
b,cl−1

+|�(cl−1)|
if c is an existing path,

γ

γ+M−(d,s)
b,cl∗ +|�(cl∗ )|

∏l∗
l=2

M−(d,s)
b,cl

+1

γ+M−(d,s)
b,cl−1

+|�(cl−1)|
if c is a new path that branches
under an internal node at level l∗,

(8)

where M−(d,s)
b,cl

is the total number of sentence visits at the
topic node cl in brand b’s corpus excluding the review-
sentence pair (d, s). Moreover, the word likelihood ofwd,s is
derived by the collapsed multivariate Pólya distribution that
integrates out the topic-word multinomials φ:

p(wd,s |cd,s = c, ld,s)

=
Nd,s∏

n=1

p(wd,s,n | k = cld,s,n ,w
−(d,s), k−(d,s))

=
Nd,s∏

n=1

∫

φk

φk,wd,s,n p(φk | w−(d,s), k−(d,s)) dφk

=
Nd,s∏

n=1

E(φk,wd,s,n | w−(d,s), k−(d,s))

=
Nd,s∏

n=1

W−(d,s)
k=cld,s,n ,wd,s,n

+ η

∑V
v=1

(
W−(d,s)

k=cld,s,n ,v + η
) ,

(9)

where W−(d,s)
k,v represents the cumulative weights of word

token v under the specified topic k in the entire corpus
excluding review-sentence pair (d, s). It is analogous to the
introduced Pólya urn process that chooses a ball in vth color
from the urn indexed by k based on the weighted proportions
of existing balls in it, and η measures the initial weights of
balls at the beginning of sampling. Specifically, the cumu-
lative weights [Wk,v]K×V of different tokens in a set of
hierarchically structured topics are updated dynamically fol-
lowing the proposed HPU scheme, which is elaborated in
Algorithm 2.

Finally, the conditional density of yd is derived by a nor-
mal linear regression based on brand-associated regression
parameters:

yd | cd,s = c, ld,s,β
b ∼ N

(
(xd)Tβb, ρ2

)
, (10)

where each xdk = 1
Nd

∑Sd
s′=1

∑Nd,s′
n′=1 I(kd,s′,n′ = k).

Sampling l in E-step: Alternately, when the path cd,s is
selected for review-sentence pair (d, s) under brand b, we
assign each word token wd,s,n in (d, s) to a level l based on
the following probability:

p(ld,s,n = l|cd,s, ld,s,−n, wd,s,n, yd , b,β
b)

∝ p(wd,s,n|ld,s,n = l, cd,s) × p(yd |ld,s,n = l, cd,s,β
b)

×p(ld,s,n = l|ld,s,−n). (11)

The prior of ld,s,n can be derived by integrating out θd,s via
Dirichlet-multinomial conjugacy:

p(ld,s,n = l|ld,s,−n)

=
∫

θd,s

p(ld,s,n = l | θd,s)p(θd,s | ld,s,−n) dθd,s

=
∫

θd,s

θd,s,l p(θd,s | ld,s,−n) dθd,s

= E(θd,s,l | ld,s,−n)

= N−(d,s,n)
d,s,l + α

∑L
l ′=1

(
N−(d,s,n)

d,s,l ′ + α
) ,

(12)

where N−(d,s,n)
d,s,l represents the total number of words

assigned to the lth level in (d, s) excludingwd,s,n . Similarly,
the likelihood of word wd,s,n given its level assignment with
all observations excluding (d, s, n) is derived as

p(wd,s,n | ld,s,n = l, cd,s)

=
W−(d,s,n)

k=cd,s,l ,wd,s,n
+ η

∑V
v=1

(
W−(d,s,n)

k=cd,s,l ,v
+ η

) . (13)

And the conditional density of yd is in the same form with
Eq. (10).

Optimizing β in M-step:Given empirical regressors xdk =
1
Nd

∑Sd
s=1

∑Nd,s
n=1 I(kd,s,n = k) from the samples of (c, l) inE-

step, we update the estimation of multi-level topic regression
parameters β via MLE on observed polarity responses y.
That is β̂ = argmax

β

L( y,β) with

L( y,β) = − 1

2ρ2

B∑

b=1

Db∑

d=1

(
yd − (xd)Tβb

)2
. (14)

The stopping criterion of algorithm is defined on the
difference between log-likelihoods of observed review doc-
uments D = { y,W} in two successive steps: L(D,	i+1) −
L(D,	i ) < ε. The overall procedure of model inference
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is summarized in Algorithm 2. It requires four hyperparam-
eters: γ , η, α, ρ. We set the variance of polarity response
as ρ2 = 0.5 following Nguyen et al. (2013), a symmetric
Dirichlet parameter η = 0.1 following Blei et al. (2003),
and update other hyperparameters γ, α of hierarchical topic
modeling via Bayesian optimization in practice.

In each iteration of model inference, the computation
burden falls mainly on the E-step that is affected by the
vocabulary size V and tree depth L . The vocabulary size
V mainly influences the update of addition weight matrix
A in E-step. As the computation complexity of A’s update
is O(KV ), this step will scale linearly with V . Moreover,
the depth L of topic tree mainly influences the path and
level samplings in E-step. Specifically, the total computa-
tion complexity of E-step with respect to the tree depth L is
O(

∑B
b=1

∑Db
d=1

∑Sd
s=1(1 + Nd,s)L), and this step will scale

linearly with L .

4 Simulation study

In this section, we conduct different simulation scenarios for
evaluating the performance of our proposed model exten-
sively. We first consider a small-sized demonstration in
Sect. 4.1 for visualization and qualitative analysis. Then we
conduct quantitative comparison in twoaspects on larger sim-
ulated corpora in Sect. 4.2: one is the accuracy ofmulti-aspect
brand rankings, and the other is the quality of extracted topic
hierarchy.

Data was generated to reasonably resemble the observed
review corpora under various hierarchical topic structures.
Considering the hyperparameter η governs the smoothing
degree of each topic over vocabulary, e.g., a larger η tends to
generate a more smoothed topic-word distribution, we also
demonstrate the simulation results under different values of
η. Moreover, we compare the proposed method with the fol-
lowing baseline models:

M1: SLDA (Blei andMcAuliffe 2007) is a supervised LDA
model that extends classical LDAwith a response vari-
able predicted by latent topics. We employed separate
regressions on each brand corpus to obtain brand-
associated aspect polarities. Thefixednumber of topics
in SLDA is set equal to the number of leaf nodes in the
hierarchical model.

M2: SHLDA (Nguyen et al. 2013) is a supervised hier-
archical LDA model. We also employed separate
regressions on each brand corpus for brand compar-
ison.

Algorithm 2: Stochastic EM algorithm for MH-STM

with HPU scheme.
Input: review collection {{wd , yd }Db

d=1}Bb=1, hyperparameters γ ,

η, α, ρ.

Output: Topic hierarchy with brand-associated regression

parameters of topics.

Initialize root topic of the tree and the addition weight matrix

A0 = A1 = [0]K×V ;

for each iteration i ∈ {1, · · · , I } do
/* Sampling paths in E-step */

for each review-sentence pair (d, s) under brand b do
Exclude (d, s) associated with its path assignment cd,s

from count variables:

M−(d,s)
b,cd,s,l

← Mb,cd,s,l − 1 for ∀l ∈ {1, . . . , L};
W−(d,s)

kd,s,n ,wd,s,n
← Wkd,s,n ,wd,s,n − 1 for

∀n ∈ {1, · · · , Nd,s};
W−(d,s)

k,wd,s,n
← Wk,wd,s,n − ai−1

kwd,s,n
for

∀n ∈ {1, · · · , Nd,s}, ∀k ∈ V(kd,s,n);

Sample a new path cd,s for wd,s via Equations (7)–(10);

Update count variables with the new path cd,s :

Mb,cd,s,l ← M−(d,s)
b,cd,s,l

+ 1 for ∀l ∈ {1, . . . , L};
Wkd,s,n ,wd,s,n ← W−(d,s)

kd,s,n ,wd,s,n
+ 1 for

∀n ∈ {1, · · · , Nd,s};
Wk,wd,s,n ← W−(d,s)

k,wd,s,n
+ aikwd,s,n

for

∀n ∈ {1, · · · , Nd,s}, ∀k ∈ V(kd,s,n);

end
/* Sampling levels in E-step */

for each review-sentence pair (d, s) do
for each word wd,s,n, n = 1, . . . , Nd,s do

Exclude wd,s,n associated with its level assignment

ld,s,n from count variables:

N−(d,s,n)
d,s,ld,s,n

← Nd,s,ld,s,n − 1;

W−(d,s,n)
kd,s,n ,wd,s,n

← Wkd,s,n ,wd,s,n − 1;

W−(d,s,n)
k,wd,s,n

← Wk,wd,s,n − aikwd,s,n
for

∀k ∈ V(kd,s,n);

Sample a new level ld,s,n for wd,s,n via

Equations (11)–(13);

Update count variables with the new level ld,s,n :

Nd,s,ld,s,n ← N−(d,s,n)
d,s,ld,s,n

+ 1;

Wkd,s,n ,wd,s,n ← W−(d,s,n)
kd,s,n ,wd,s,n

+ 1;

Wk,wd,s,n ← W−(d,s,n)
k,wd,s,n

+ aikwd,s,n
for

∀k ∈ V(kd,s,n);

end

end
Update addition matrix Ai+1 via Equation (5);

/* M-step */

Update β by MLE on Equation (14);

end
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4.1 Qualitative comparison with topic tree
visualization

Wefirst illustrate the effectiveness of the proposedMH-STM
model on a synthetic corpus with a small vocabulary. We
generate a synthetic corpus that consists of 10 brands each
having 200 documents from a 9-term vocabulary represented
by a 3 × 3 grid. The observed words are generated by a
three-level topic tree with 1, 3, 9 topics at the first level,
second level, and third level, respectively. The root topic has
a uniform distribution over the entire vocabulary grid. Topics
at the second level are uniformly distributed over the terms
in each row of the grid. Topics at the third level have full

probability concentrated at a single term from the row of its
parent.

The results of topic hierarchy inferred from the synthetic
data above are visualized in Fig. 4. The proposed MH-STM
model successfully recovers the original hierarchical struc-
ture, and the inferred topics byMH-STMare almost identical
to the original topics. By contrast, in the tree derived by
SHLDA, the first and second level topics are almost iden-
tical to the original topics, while the third level topics are
disturbed by some noise words. In addition, the topic tree
inferred by SHLDA exhibits higher disorders in hierarchical
affinity. For example in Fig. 4b, the topic 1-1-3 is more close
to the second-level topic 1-2 than its direct parent topic 1-1.
This observation is consistent with the quantitative compar-

Fig. 4 Topic trees inferred from synthetic data. Each cell corresponds to a single word, and is shaded with intensity proportional to the probability
of each word in the topic
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ison results of hierarchical affinity scores in the following
Tables 2 and 4, that MH-STM is much preferred for reason-
able parent–child relations in extracted hierarchy.

4.2 Quantitative analysis

Tohave a comprehensive examination of the proposedmodel,
we evaluate the proposed method on a set of synthetic cor-
pora that are generated under different scenarios of topic
structures and distribution parameters. Each experimental
corpus is generated from a three-level topic hierarchy with
a vocabulary of 100 terms. We consider different probabil-
ity distributions specific to totally B = 10 brands on the
topic hierarchy, and generate Db = 200 synthetic reviews
respectively for each brand relying on the generative process
in Sect. 3.1, with each review including Sd = 5 sentences in
average length of Nd,s = 10 words.

In each simulation scenario, we consider the brand topic
regression parameter βb

k ∼ N (μ, σ 2
l(k)), where μ = 0 and

σ = (σ1, σ2, σ3)
T = (1, 2, 3)T , depending on the topic level

l(k) ∈ {1, 2, 3} in the three-level hierarchy. This formula-
tion induces higher variance of brand polarities towards leaf
topics, which is consistent with the real-world observation
in Fig. 5. We assume a symmetric Dirichlet with hyperpa-
rameter α = (1.0, 1.0, 1.0)T for the 3-dimensional topic
proportion vector θ ∼ Dir(α) of each sentence. We also
set ρ = 1 as the standard deviation for generating polarity
responses in all of simulation cases.

To assess the effectiveness of the proposed model in a
variety of experimental scenarios, we designed hierarchi-
cal structures following the simulation settings similar to
the settings in other hierarchical topic models (Blei et al.
2003, 2010). For example, the scales of their ground-truth
topic hierarchies are generally 3-level tree structures, ranging
3–5 branches from the root. Similarly, we designed several
3-level topic hierarchies denoted as n(t1, . . . , tn): 3(3,2,4),
4(6,5,2,4), 5(3,5,5,2,1). Here n is the number of branches
from the root and t j is the number of children under the
j th branch. Given the fixed tree structure with finite paths
of topics, the path assignments of each brand’s reviews
are decided by brand-specific distributions over paths that
are randomly generated. Moreover, we consider different
smoothing parameters η ∈ {0.01, 0.1, 1.0} for drawing the
topic components.

4.2.1 Multi-aspect brand ranking evaluations

We report the multi-aspect brand ranking results based on
several evaluationmetrics that are commonly used in ranking
tasks: (1) Two correlation coefficients respectively for Spear-
man’s correlations and Kendall’s Tau. Both metrics measure
how well the predicted brand aspect rankings correlate with

their ground-truth aspect ratings under each leaf topic. (2)
Average precision (AP@K) that evaluates the model’s top-K
recommendation performance in ranking different brands for
a specified aspect. We treat each leaf topic as a query, and the
top K of brands ranked by ground-truth aspect ratings as the
relevant items. The AP@Kmeasures howmany of the top-K
brands recommended by a model are included in the relevant
items and how highly they are ranked. A higher AP@K indi-
cates better top-K recommendation performance of a model.
Specifically, we report the average results of AP@5 corre-
sponding to top-5 recommendation for each leaf topic.

For each model, we repeat the inference algorithm 20
times with various initializations driven by different random
seeds and take the average results. Table 1 summarizes the
average results of different metrics as well as their standard
deviations for each model, where the best results are in bold.
Overall, our proposedMH-STMmodel achieves the best per-
formance in multi-aspect brand comparison. Although the
performance decays with larger values of η, MH-STM still
dominates other alternatives. The performance decay under
large η is expected, as large values of η produce highly
smoothed word distributions across topics, leading to dif-
ficulty in separating one topic from another based on their
word co-occurrence rules.

4.2.2 Recovery of topic structure

Wequantitatively evaluate the performanceof differentmeth-
ods in topic recovery by four measures, including: (1)
Topic accuracy that quantifies the proportion of correct topic
assignments in synthetic documents. Considering the issue
of label switching between the learned topics and the ground-
truth ones, we find the optimal alignment between the learned
and the ground-truth topics by Kuhn-Munkres algorithm
(Lovász and Plummer 2009). (2) Held-out likelihood that
evaluates how well the trained model explains the held-out
data. It is defined as the average log-likelihood per word of a
held-out corpus given the trained model, which is estimated
by the importance samplingmethods inWallach et al. (2009).
(3) The coherence scores of top-5 words under each topic. A
higher coherence score indicates a superior topic that better
captures the word co-occurrence rules in corpus. We adopt
the topic coherence metric by Mimno et al. (2011):

Coherence
(
k; V (k)

)
=

5∑

i=2

i−1∑

j=1

log
DF

(
v

(k)
i , v

(k)
j

)
+ 1

DF
(
v

(k)
j

) ,

where V (k) =
(
v

(k)
1 , · · · , v

(k)
5

)
represents the top 5 words

assigned with topic k, DF
(
v

(k)
j

)
is the document frequency

of word v
(k)
j , and DF

(
v

(k)
i , v

(k)
j

)
is the co-document fre-
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Table 1 Comparison results of
multi-aspect brand rankings on
simulated corpora

Hierarchy η Metrics SLDA SHLDA MH-STM

3(3,2,4) 0.01 Spearman’s 0.602 (0.013) 0.560 (0.021) 0.680 (0.016)

Kendall’s tau 0.511 (0.011) 0.492 (0.018) 0.580 (0.014)

AP@5 0.760 (0.009) 0.781 (0.012) 0.842 (0.008)

0.1 Spearman’s 0.584 (0.015) 0.626 (0.022) 0.732 (0.016)

Kendall’s tau 0.477 (0.013) 0.540 (0.018) 0.628 (0.014)

AP@5 0.745 (0.013) 0.828 (0.011) 0.887 (0.011)

1 Spearman’s 0.234 (0.022) 0.246 (0.024) 0.406 (0.015)

Kendall’s tau 0.180 (0.018) 0.190 (0.018) 0.309 (0.012)

AP@5 0.517 (0.016) 0.602 (0.019) 0.698 (0.011)

4(6,5,2,4) 0.01 Spearman’s 0.573 (0.012) 0.575 (0.014) 0.640 (0.015)

Kendall’s tau 0.444 (0.010) 0.461 (0.012) 0.517 (0.013)

AP@5 0.783 (0.008) 0.766 (0.010) 0.802 (0.012)

0.1 Spearman’s 0.479 (0.012) 0.563 (0.015) 0.667 (0.015)

Kendall’s tau 0.361 (0.010) 0.457 (0.012) 0.542 (0.012)

AP@5 0.676 (0.009) 0.777 (0.012) 0.847 (0.008)

1 Spearman’s 0.104 (0.016) 0.146 (0.017) 0.214 (0.015)

Kendall’s tau 0.090 (0.011) 0.106 (0.014) 0.172 (0.009)

AP@5 0.524 (0.011) 0.553 (0.008) 0.612 (0.008)

5(3,5,5,2,1) 0.01 Spearman’s 0.529 (0.011) 0.505 (0.018) 0.591 (0.011)

Kendall’s tau 0.419 (0.010) 0.402 (0.014) 0.467 (0.011)

AP@5 0.769 (0.008) 0.783 (0.010) 0.825 (0.010)

0.1 Spearman’s 0.497 (0.011) 0.530 (0.009) 0.642 (0.011)

Kendall’s tau 0.378 (0.010) 0.422 (0.008) 0.528 (0.009)

AP@5 0.730 (0.008) 0.776 (0.009) 0.837 (0.007)

1 Spearman’s 0.087 (0.017) 0.196 (0.020) 0.235 (0.013)

Kendall’s tau 0.063 (0.013) 0.147 (0.016) 0.176 (0.010)

AP@5 0.538 (0.016) 0.619 (0.010) 0.642 (0.006)

quency of both words. (4) The hierarchical affinity score
that measures the goodness of a topic hierarchy (Kim et al.
2013). It is defined as the ratio of the average cosine similarity
between the second-level topics and their direct children top-
ics to the average cosine similarity between the second-level
topics and their non-children topics at the third level. A lower
hierarchical affinity score, especially lower than 1, indicates
higher disorders in tree’s parent–child affinity that a parent
topic node tends to violate its direct children in semantic
consistency.

The average values and standard deviations of different
performance metrics for alternative models are presented in
Table 2, where the best results are in bold. Overall, our pro-
posed MH-STM model achieves the highest topic accuracy
and coherence, indicating its superiority in the unsupervised

discovery of latent topics. In comparison with SHLDA,MH-
STM produces uniformly higher hierarchical affinity scores,
which demonstrates that the discovered topic trees by MH-
STM show higher consistency among parent–child relations,
and this result is also in accord with the qualitative com-
parison on visualized hierarchies in Sect. 4.1. Likewise, the
affinity performance degrades under a large value of smooth-
ing parameterη, as large values ofη produce highly smoothed
word distributions across topics, leading to difficulty in
separating one topic from another and higher disorders in
parent–child relations. In terms of held-out likelihood, the
hierarchical models (i.e., SHLDA and MH-STM) produce
generally better results than the flat model of SLDA. How-
ever, the proposed MH-STM is overtaken by SHLDA in
likelihood comparison. This loss is induced by the enhanced
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Table 2 Comparison results of
topic quality on simulated
corpora

Hierarchy η Metrics SLDA SHLDA MH-STM

3(3,2,4) 0.01 Topic accuracy 0.566 (0.006) 0.546 (0.010) 0.583 (0.010)

Held-out likelihood −2.713 (0.002) −2.654 (0.003) −2.663 (0.004)

Coherence −1.456 (0.021) −1.608 (0.072) −1.265 (0.020)

Hierarchical Affinity - 2.748 (0.486) 3.185 (0.298)

0.1 Topic accuracy 0.438 (0.004) 0.475 (0.009) 0.513 (0.008)

Held-out likelihood −3.924 (0.003) −3.881 (0.002) −3.902 (0.003)

Coherence −1.772 (0.009) −1.737 (0.010) −1.700 (0.017)

Hierarchical Affinity - 1.654 (0.155) 1.994 (0.081)

1 Topic accuracy 0.146 (0.001) 0.192 (0.003) 0.225 (0.004)

Held-out likelihood −4.520 (0.001) −4.489 (0.001) −4.503 (0.001)

Coherence −2.165 (0.009) −2.170 (0.006) −2.144 (0.006)

Hierarchical Affinity - 1.015 (0.023) 1.183 (0.010)

4(6,5,2,4) 0.01 Topic accuracy 0.507 (0.007) 0.472 (0.006) 0.546 (0.007)

Held-out likelihood −2.952 (0.003) −2.869 (0.003) −2.899 (0.003)

Coherence −2.147 (0.05) −1.872 (0.069) −1.614 (0.028)

Hierarchical Affinity - 1.847 (0.192) 3.032 (0.177)

0.1 Topic accuracy 0.393 (0.005) 0.396 (0.005) 0.427 (0.005)

Held-out likelihood −4.045 (0.003) −3.985 (0.002) −4.013 (0.002)

Coherence −1.994 (0.008) −1.984 (0.009) −1.868 (0.010)

Hierarchical Affinity - 1.249 (0.059) 1.926 (0.062)

1 Topic accuracy 0.082 (0.001) 0.117 (0.001) 0.127 (0.001)

Held-out likelihood −4.544 (0.000) −4.490 (0.001) −4.502 (0.001)

Coherence −2.275 (0.005) −2.286 (0.004) −2.241 (0.004)

Hierarchical Affinity - 0.997 (0.006) 1.233 (0.034)

5(3,5,5,2,1) 0.01 Topic accuracy 0.495 (0.007) 0.493 (0.010) 0.548 (0.008)

Held-out likelihood −2.932 (0.002) −2.815 (0.004) −2.864 (0.004)

Coherence −2.063 (0.048) −1.832 (0.057) −1.634 (0.041)

Hierarchical Affinity - 2.400 (0.192) 3.778 (0.210)

0.1 Topic accuracy 0.407 (0.006) 0.411 (0.006) 0.459 (0.006)

Held-out likelihood −4.009 (0.002) −3.933 (0.002) −3.968 (0.002)

Coherence −1.957 (0.009) −1.950 (0.009) −1.849 (0.008)

Hierarchical Affinity - 1.425 (0.073) 2.488 (0.091)

1 Topic accuracy 0.087 (0.001) 0.113 (0.001) 0.132 (0.001)

Held-out likelihood −4.544 (0.000) −4.487 (0.001) −4.501 (0.001)

Coherence −2.264 (0.006) −2.260 (0.003) −2.239 (0.004)

Hierarchical Affinity - 0.988 (0.007) 1.251 (0.021)

sampling process of HPU on the proposed model, during
which the observed words are sampled based on not only
their full probabilities but also their general-to-specific char-

acteristics, such that the final results deviate slightly from
a maximum likelihood. However, a slight loss of likelihood
is worth for more interpretable topics and higher predictive
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accuracy in brand ranking. Moreover, the loss of held-out
likelihood by MH-STM is consistent with the observations
in previous studies on topic comparison (Chang et al. 2009;
Mimno et al. 2011) that higher likelihood of held-out docu-
ments could violate the judgementof topic coherence in an
interpretable latent space.

5 Real-data case studies

In this section, we evaluate the proposed method under two
representative review corpora in the real case studies: laptop
review corpus and beer review corpus.

Laptop review corpus (Data 1): This corpus (Ni et al.
2019) consists of customer reviews with corresponding over-
all ratings on Amazon that belong to four laptop brands:
Dell, HP, Lenovo, andApple. After preprocessing, it contains
100,931 reviews with a vocabulary of 1,642 unique terms.

Beer review corpus (Data 2): The beer review corpus
(McAuley et al. 2012) consists of beer reviews on RateBeer
that belong to 26 brewers each regarded as a brand. Specif-
ically, each review is accompanied by both an overall rating
and four aspect-specific ratings that correspond to four per-
formance aspects of beer: appearance, aroma, palate, and
taste. Given the four aspects and their aspect-specific ratings
as the ground truth, the multi-aspect brand ranking results
can be validated. After preprocessing, the corpus contains
89,309 reviews with a vocabulary of 1,318 terms.

For both corpora, we implemented a series of pre-
processing procedures. The data pre-processing on review
texts includes sentence and word tokenizations, removing
terms such as punctuations, digits, stop words, infrequent
words, and stemming each word to its root for a dense
vocabulary. As the overall ratings and various aspect ratings
originally range in different scales, we map them uniformly
to [0, 1] by performing a min-max normalization.

All models are implemented on individual sentences of
reviews for leveraging the sentence-level information. Fol-
lowing the practice in Nguyen et al. (2013), we set regression
parameters of the root node to zero for both hierarchicalmod-
els, i.e., SHLDA and MH-STM. It is reasonable to assume
that root node would not change the response variable since
it is associated with every document.

5.1 Multi-aspect brand rankings

As the laptop review corpus does not provide ground truth
aspect-specific ratings, we examine the multi-aspect brand
ranking results only on the beer review corpus (Data 2).
Specifically, all models were trained on the entire beer corpus
(Data 2) with only overall ratings, and the aspect-specific rat-
ingswere held out for validation. To align the topics extracted
freely from corpus to the four specified aspects, we adopt

Table 3 Multi-aspect brand ranking evaluations on beer review corpus

Beer aspect Metrics SLDA SHLDA MH-STM

Appearance Spearman’s 0.246 0.458 0.586

Kendall’s tau 0.182 0.323 0.434

AP@10 0.438 0.642 0.674

AP@5 0.357 0.457 0.547

Aroma Spearman’s 0.636 0.815 0.875

Kendall’s tau 0.471 0.637 0.723

AP@10 0.602 0.897 0.918

AP@5 0.543 0.910 0.910

Palate Spearman’s 0.385 0.855 0.936

Kendall’s tau 0.268 0.673 0.785

AP@10 0.534 0.969 0.990

AP@5 0.384 0.843 0.960

Tastea Spearman’s 0.480 0.904 0.957

Kendall’s tau 0.372 0.766 0.858

AP@10 0.588 0.931 0.966

AP@5 0.457 0.960 0.955

four hold-out corpora each composed of review sentences
annotated with corresponding aspect labels. Each annotated
corpus is matched with the model’s extracted topics and rep-
resented as a topic distribution specific to that aspect. After
that, the brand rankings in an aspect are predicted by their
mean polarity responses with respect to the aspect’s distri-
bution over topics.

We report the multi-aspect brand ranking results of dif-
ferent models in Table 3, where the best results are in
bold. Similarly, themodel performance inmulti-aspect brand
ranking is quantitatively evaluated by the following met-
rics: (1) The average results of Spearman’s correlations
and Kendall’s Tau for ranking different brands in each
aspect. (2)Mean average precision (AP@5 andAP@10) that
evaluates the model’s top-5 and top-10 recommendation per-
formances in each aspect. It can be seen from Table 3 that
MH-STM achieves the best performance in aspect-specific
brand rankings. Overall, hierarchical models (i.e., SHLDA
and MH-STM) outperform the flat model (i.e., SLDA) in
producing accurate brand rankings for a specified aspect.
Compared to SHLDA, MH-STM can provide an improved
brand differentiation by integrating brand preference on topic
distributions and an enhanced HPU scheme.

5.2 Quality of discovered topics

We also compare the performance of different models in
terms of topic findings that are measured by several quantita-
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Table 4 Topic quality
evaluations on two corpora Dataset Metrics SLDA SHLDA MH-STM

Beer Coherence ↑ −3.140 −3.885 −3.134

Held-out likelihood ↑ −5.640 −5.241 −5.246

Hierarchical Affinity ↑ – 2.247 4.804

Laptop Coherence ↑ −3.306 −3.184 −3.068

Held-out likelihood ↑ −6.164 −5.974 −6.021

Hierarchical Affinity ↑ – 1.450 4.639

tive metrics commonly used in topic models: (1) Coherence
score for top 10 words of each topic. (2) Held-out likelihood.
We perform a 5-fold cross validation on the experimental cor-
pora and report their average results. (3) Hierarchical affinity
for measuring the goodness of a topic hierarchy.

Table 4 summarizes the topic quality metrics from dif-
ferent models on the two corpora. It is seen that MH-STM
achieves the best coherence on both corpora, where the best
results are in bold, and it exceeds the SHLDA model in
discovered hierarchical affinity. The held-out likelihoods of
MH-STM outperform the flat model of SLDA but slightly

Fig. 5 Portions of 3-level topic
hierarchy discovered from
laptop reviews by SHLDA and
MH-STM. Each topic is
represented by its top 10 words
with corresponding word
probabilities under the topic.
The numbers on the right side of
each topic are brand-specific
regression parameters learned
with that topic
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fall behind the SHLDA on both corpora, which is consistent
with the simulation observations in Table 2.

5.3 Qualitative analysis on topic hierarchy

It is also interesting to visualize the topic hierarchies obtained
from the proposed method. Figure5 illustrates portions of
3-level topic hierarchies discovered from the laptop corpus
respectively by SHLDA and MH-STM, where the top words
with their probabilities and the brand regression parameters
specific to each topic are presented. Both hierarchies present
a general-to-specific tendency that root topics are general,
and topics close to the leaves are more specific. Moreover,
the regression parameters close to leaf topics learned by
bothmodels present overall higher variations amongdifferent
brands, indicating that customers’ polarities towards differ-
ent brands are more differentiated in lower-level topics. One
can obtain aspect-specific brand rankings by referring to the
brand regression parameters of that aspect Fig. 5.

One can see that MH-STM provides a better hierarchi-
cal topic-word association in comparison with SHLDA. For
example, the general word “laptop” is mixed in each level
of the hierarchy by SHLDA, while it is concentrated on
the root topic by MH-STM. On the other hand, the aspect-
specific words are more assigned with lower-level topics
by MH-STM. For instance, the top word “window” under
the root topic by SHLDA is degraded in the root topic by
MH-STM.Overall, this qualitative comparison result demon-
strates the effectiveness of the proposed HPU scheme, in
which words are assigned with different weights along the
hierarchy, forcing topic-word associations to coincide with
their general-to-specific characteristics.

5.4 Runtime comparison

The runtime of different methods on the two real-world
datasets are investigated in Fig. 6. All methods were imple-
mented inPython3.10 and conducted on a64-bitWindows11
machine with Intel Core Ultra 7 processor and 32GB mem-
ory. It shows the runtime of MH-STM ranks between the
other two methods. Specifically, compared to the other hier-
archical method SHLDA, the proposed model requires an
additional update of weight matrix in each iteration, lead-
ing to relatively higher computational cost than the SHLDA
model.

6 Conclusion

In this work, proposed a multifacet hierarchical sentiment-
topic model (MH-STM) for multi-aspect brand comparison
automatically from online reviews. The proposed model is
capable of extracting both hierarchically structured topics

Fig. 6 Runtime of different methods on two datasets

shared among various brands and topic-specific sentiment
polarities across brand competitors via a unified genera-
tive framework. Moreover, the hierarchical topic modeling
is combined with a novel hierarchical Pólya urn scheme that
enhances the topic-word association by incorporating differ-
ent burstiness of words among the topic hierarchy based on
their general-to-specific characteristics.

Through two real case studies from Amazon’s laptop
review corpus and RateBeer’s beer review corpus, it is found
that the proposed MH-STM have the merits in two major
aspects. First, the extracted topics show higher coherence
and more reasonable hierarchical relations. Second, the pro-
posed method produces more accurate brand rankings on a
specified aspect. Note that the proposedmethod can be easily
adapted to a broad range of online review corpora in different
application areas, serving as an effective tool of online brand
positioning.

There are several directions for the future work. It is
worthwhile to consider a scalable extension of the MH-STM
model. The current model applies a fully collapsed Gibbs
sampler and requires an additional update of weight matrix
in each iteration. It will be interesting to incorporate some
efficient partially collapsed Gibbs sampling algorithms for
hierarchical topic models (Chen et al. 2018) to develop scal-
able algorithms. In the current simulation, we conduct model
evaluation on moderate-scale topic hierarchies to achieve
a balance between the efficiency and effectiveness of vali-
dation. With a scalable extension, model evaluation can be
conducted efficiently on a larger-scaled topic hierarchy with
extended breadth and depth, which can better approximate
the real topic hierarchies in practical applications. Another
potential extension is to handle unbalanced topic hierarchies.
The current model could overlook some scarce topics when
there are extremely unbalanced topic distributions. One rem-
edy for improvement is to incorporate prior knowledge such
as topic seeds (Jagarlamudi et al. 2012), or uncover topics
from word co-occurrence networks where the distribution
over topics is less skewed (Zuo et al. 2016).
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