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ABSTRACT
Single-crystal silicon ingots are produced from a complex crystal growth process. Such a process is sen-
sitive to subtle process condition changes, which may easily become failed and lead to the growth of a
polycrystalline ingot instead of the desired monocrystalline ingot. Therefore, it is important to model this
polycrystalline defect in the crystal growth process and identify key process variables and their features.
However, to model the crystal growth process poses great challenges due to complicated engineering
mechanisms and a large amount of functional process variables. In this article, we focus on modeling the
relationship between a binary quality indicator for polycrystalline defect and functional process variables.
We propose a logistic regression model with hierarchical nonnegative garrote-based variable selection
method that can accurately estimate the model, identify key process variables, and capture important fea-
tures. Simulations and a case study are conducted to illustrate the merits of the proposed method in pre-
diction and variable selection.

1. Introduction

Wafer manufacturing is an important upstream process for
many high-tech products, such as computer electronics, auto-
matic control devices, solar cells, etc. Such a manufacturing
process consists of many stages, including crystal growth, wire
slicing, etching, lapping, polishing, etc. The crystal growth pro-
cess is the first step to produce a silicon ingot, which deter-
mines the initial quality for downstream products. Therefore, it
is extremely important to control the quality at this stage.

The majority of crystal ingots used in industry are grown by
the Czochralski crystal growth process (CZ process); see Fisher
et al. (2012) for details. A successful CZ process is maintained at
an extremely high temperature formore than 60 hours. The pro-
cess can be divided into the following phases (Zulehner, 1983;
Dhanaraj et al., 2010). First, the polycrystalline silicon is melted
in a silica crucible. Then, a precisely oriented seed crystal is
dipped into the melt. Then, by jointly controlling the thermal
gradient and pulling speed, the ingot grows to the desired diam-
eter. Afterwards, the ingot is slowly pulled upwards and simulta-
neously rotated. This pulling and rotation process lasts for more
than 20 hours, which is called the “body growth phase.” This
body growth phase is themost important phase during aCZpro-
cess, since themajority of an ingot is grown in this phase. Finally,
the ingot finishes its growth after a tailing phase. The above ingot
growth process takes place in industrial CZ furnaces, as shown
in Fig. 1(a) (Zhu et al., 2014). Inside the furnace, the structure
and operation conditions in the hot zone are critical for the ingot
growth (Fig. 1(b), Zhang et al., 2014).
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Due to the high energy consumption and long cycle time in
theCZprocess, any quality defect of the ingot results in large lev-
els of waste in terms of energy, time, and cost. The quality defects
include microscopic defects and macroscopic defects (Dhanaraj
et al., 2010). Examples of microscopic defects are voids, intersti-
tials, dislocations, etc., which affect the electronic and mechan-
ical properties of downstream products (Mahajan, 2000). The
macroscopic defects are more severe and may cause failure of
the entire growth process. In such a situation, the manufacturer
has to discard the nonconforming segments of the ingot or re-
melt the material and repeat the growth process, which leads to
furtherwaste. Among thesemacroscopic defects, polycrystalline
defects are the most frequently observed type. Polycrystalline
defects refer to the phenomenon that the desired monocrys-
talline ingot becomes polycrystalline. Once a segment of the
ingot becomes polycrystalline, the entire segment has to be dis-
carded (Zhang et al., 2014). Thus, it is critical to reduce this type
of quality defect during the manufacturing process. In the lit-
erature, defect analysis in crystal growth is mainly focused on
microscopic defects (Voronkov, 1982; Sinno et al., 2000; Brown
et al., 2001; Dhanaraj et al., 2010). In this article, we focus on
modeling polycrystalline defects during the body growth phase,
since themajority of polycrystalline defects appear in this phase.

To model the polycrystalline defect, we use a binary variable
as the indicator for the formation of polycrystalline defects and
propose a logistic regression model to model the binary quality
variable (response) with the functional process variables (pre-
dictors). Engineering knowledge suggests that the features of
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Figure . A schematic of a crystal growth furnace: (a) the furnace and (b) the internal structure of the chamber (hot zone). Reproduced from Zhu et al. () and
Zhang et al. ().

the process variables should be captured, as sudden changes in
the process variables are potential root causes for polycrystalline
defects. Therefore, we adopt wavelet analysis for each functional
process variable. Wavelet analysis is selected due to its excel-
lent performance in extracting features from local time and fre-
quency (Mallat, 1989). Thus, all of the wavelet coefficients of
a functional process variable form a group of features. In this
article, the wavelet coefficients of a process variable are called
“features” or “local features” and each process variable has a
“group” of corresponding features. The objective is to identify
both key process variables and significant features. Therefore,
a logistic regression with Hierarchical Non-Negative Garrote
(HNNG)-based variable selection is used.

The Non-Negative Garrote (NNG) proposed by Breiman
(1995) is a shrinkage method for estimating a parsimonious
model. The NNG was first proposed for variable selection in
linear models (Breiman, 1995; Jin and Deng, 2015). Makalic
and Schmidt (2011) developed an NNG for logistic regression
models. Consistency in prediction and variable selection of the
NNG was studied in Yuan and Lin (2007). However, none of
the existing NNG-based variable selection methods can address
the aforementioned two-level variable selection problem in a
logistic regression model. In this article, the newly proposed
HNNG method can identify significant groups (representing
functional process variables) as well as local features (repre-
senting wavelet coefficients from the functional process vari-
ables) to predict the binary response. The advantages of the
HNNGmethod lie in several aspects. First, the proposedHNNG
method performs simultaneous variable selection for both sig-
nificant groups and features. Second, the computation issues are
addressed by quadratic approximation of the objective function.
Third, the polycrystalline defect can be predicted in a timely
manner based on the measurements. Specifically, we divide the
measurements into windows with binary quality labels given
by the domain expert. In each time window, wavelet analysis is
adopted for the measurements and the corresponding wavelet
coefficients are treated as predictors in the logistic regression.
Therefore, the model can predict whether the ingot becomes
polycrystalline for each window.

The rest of this article is organized as follows. In Section 2,
the state-of-the-art for CZ process modeling, variable selection,

and wavelet analysis are reviewed. Section 3 illustrates the pro-
posedmethod and the computation algorithm.We demonstrate
the effectiveness of the proposedmethod in prediction and vari-
able selection by using simulations and a case study in Sections 4
and 5, respectively. Finally, conclusions and future research are
discussed in Section 6.

2. State-of-the-art

Engineering models are available for simulation and defect
analysis of CZ processes. Simulation models mainly focused
on predicting the thermal field distribution of the system for
equipment design. Such models are typically based on Partial
Differential Equations (PDEs) that are used to describe the
growth dynamics (Derby and Brown, 1986; Fischer et al., 2005).
Müller (2002) proposed the concept of reverse simulation,
which aimed at controlling a certain kind of defect given the
defect–growth process relationships. In most cases, these simu-
lation models were solved offline using finite element methods.
The performance of simulation models depends on the engi-
neering assumptions, boundary conditions, and accuracy of
the material property characterizations. These models cannot
be used to model the creation of polycrystalline defects with
potential online prediction requirements. Another category of
models focus on microscopic defects; they are typically used
to model the distribution of microscopic defects as a function
of process variables. Voronkov (1982) concluded that the ratio
of the crystal pulling speed to the magnitude of temperature
gradient above the solid–liquid interface determined the for-
mation of point defects. The formation of larger-scale defects,
such as oxidation-induced stacking faults, was also modeled.
Comprehensive reviews of defect modeling have been presented
by Sinno et al. (2000) and Brown et al. (2001). However, these
models focused on microscopic defects, and there were limited
engineering-driven models that could be used to quantitatively
predict the polycrystalline defects.

Researchers have attempted to model the CZ processes by
using statistics, optimization, and data mining methods. For
instance, time series analysis for the dynamic properties of stria-
tions in the ingot has been explored (Miyano and Shintani, 1993;
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Shintani et al., 1995). Back-propagation, regularization, and per-
ceptron neural networks have been used to analyze the creation
of ingot striation patterns. In addition, a genetic algorithm, cou-
pledwith a PDE to describe thermal effects, was used to optimize
the configuration of the heat shield on aCZ furnace (Fühner and
Jung, 2004). As another example, Avci and Yamacli (2010) used
an artificial neural network to modify a PDE that was used to
describe the defect concentration. This method yielded a highly
accurate prediction for the defect concentration.

To model a binary quality variable using functional pro-
cess variables, one can formulate this problem as a classifi-
cation problem. Data mining methods—for instance, linear
discriminant analysis, support vector machines, classification
and regression tree, and random forests—can be applied. See
Hastie et al. (2009) for details. A functional logistic regres-
sion model can also be used to link the binary response and
functional predictors (Ratcliffe et al., 2002). In this article, we
adopt the latter approach. To improve the performance of the
model as well as its interpretability, different kinds of vari-
able selection methods have been proposed in the literature.
These methods include subset and stepwise regression (Miller,
2002), Akaike information criterion (Akaike, 1974), Bayesian
information criterion (BIC; Schwarz (1978)), Lasso (Tibshirani,
1996), NNG (Breiman, 1995), smoothly clipped absolute devia-
tion (Fan and Li, 2001), and elastic net (Zou and Hastie, 2005).
However, the penalization methods introduced above may not
perform well for variable selection with a group structure. To
address this problem, Yuan and Lin (2006) proposed the Group
Lasso approach. Zhao et al. (2009) proposed the use of flex-
ible composite absolute penalties. Meier et al. (2008) studied
the group variable selection for logistic regression via Group
Lasso (GrpLasso). Although thesemethods usually have a better
performance than traditional methods, they can only select the
group as a whole and cannot select features within the group,
as stated by Huang et al. (2009), Zhou and Zhu (2010), and
Paynabar et al. (2015).

To deal with the hierarchical variable selection problem,
Huang et al. (2009) proposed the Group Bridge (GrpBridge)
approach. However, the GrpBridge penalty is not always dif-
ferentiable and tends to be inconsistent for feature selection
(Huang et al., 2012). Zhou and Zhu (2010) proposed the Hierar-
chical Lasso (HLasso) approach, which penalizes the coefficients
using two levels of L1 penalty. Paynabar et al. (2015) claimed
that this method may fall into a local optimum. They proposed
a hierarchical NNG for group variable selection in linear regres-
sion: first identify the important groups and then the important
features within the selected groups in two separate steps. They
demonstrated that their hierarchical NNG performed well in
prediction and variable selection for linear regressionmodels. In
this article, we explore hierarchical variable selection for a logis-
tic regression via HNNG. The advantage of HNNG is that it can
simultaneously select important groups and features in one step.
It should be noted that the hierarchical NNGmethod proposed
by Paynabar et al. (2015) focused on linear regression models,
whereas we focus on logistic regression models.

In this study, wavelet analysis is used to transform a func-
tional variable into a group of wavelet features. Wavelet analysis
is a multi-resolution analysis tool that can provide both local-
ized time and frequency information (Mallat, 1989). We use

Figure . Overview of the proposed method.

wavelet analysis so that the features from local time and fre-
quency can represent the subtle changes in process variables,
which might lead to polycrystalline defects. Wavelet analysis
has been widely adopted in engineering applications for quality
improvement. For instance, Jin and Shi (1999) applied wavelet
analysis for data compression of the force signal in a stamping
process. Subsequently, Jin and Shi (2001) used the wavelet
analysis approach to diagnose faults in the stamping process.
Other applications include nano-machining (Ganesan et al.,
2004), a forging process (Zhou and Jin, 2005), structural health
monitoring (Bukkapatnam et al., 2005), antenna (Jeong et al.,
2006), a rolling process (Li et al., 2007), and an engine assembly
process (Paynabar and Jin, 2011).

3. The proposedmethod

3.1. Overview of the proposedmethod

An overview of the proposed method is shown in Fig. 2. The
potentially important process variables are selected for themod-
eling study based on the Proportional-Integral-Derivative (PID)
control loops of the CZ process.Wavelet analysis is then adopted
for each process variable. Then we use HNNG-based logistic
regression to predict the binary response based on groups of
wavelet coefficients. Finally, our proposed method is compared
with other benchmark methods.

3.2. Data structure

Assuming thatwe have p functional process variables to bemod-
eled, the number of dilations in thewavelet analysis is set to bem.
After wavelet decomposition, we havem levels of detailed coef-
ficients and one level of coarse coefficients. The original process
variable is formulated in the structure shown in Table 1, where
p1, p2, … , pm and pc are the number of wavelet coefficients in
each level. We denote Pj = ∑m

i=1 pi + pc to be the number of
features in the jth process variable and P = ∑p

j=1 Pj to be the
total number of features for p process variables. For each sam-
ple, there are P predictors with the structure shown in Table 1
and one binary response yi. In total, there are n samples for
modeling.
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Table . Data structure after wavelet decomposition.

Detail level  Detail level  … Detail levelm Coarse level

x1,1 x2,1 . . . xp1,1
x1,2 x2,2 . . . xp2,2

… x1,m x2,m . . . xpm,m x1,c x2,c . . . xpc,c

3.3. HNNG-based logistic regressionmodel

The logistic regression model has the form illustrated in
Equation (1):

logit
(
E

[
yi|xi

]) = log
p (xi)

1 − p (xi)
= xiTβ, i = 1, . . . , n,

(1)

where yi is the binary response for the ith sample, with
yi = 0 indicating a conforming growth sample and yi = 1
indicating a polycrystalline growth sample; p(xi) is the
probability that the ith sample is polycrystalline (i.e.,
yi = 1); xi = (xT1,i, xT2,i, . . . , xTp,i)

T = (x1,1,i, x2,1,i, . . . , xP1,1,i,
x1,2,i, x2,2,i, . . . , xP2,2,i, . . . , x1,p,i, x2,p,i, . . . , xPp,p,i)T is the
predictor vector for the ith sample, where xk, j,i is the kth
feature in the jth group for the ith sample. In the above nota-
tions, there are p groups of process variables and Pj features
in each process variable. β = (β

(1)
1 , β

(1)
2 , . . . , β

(1)
P1 , β1

(2),

β
(2)
2 , . . . , β

(2)
P2 , . . . , β

(p)
1 , β

(p)
2 , . . . , β

(p)
Pp )T is model coefficient

vector with β
( j)
k the coefficient for the kth feature in the jth

group.
As discussed above, the NNG can be used to enforce

a parsimonious model. It reparameterizes the model coef-
ficient vector β = θ · β̃, where θ = (θ

(1)
1 , θ

(1)
2 . . . , θ

(1)
P1 , θ

(2)
1 ,

θ
(2)
2 . . . , θ

(2)
P2 , . . . , θ

(p)
1 , θ

(p)

2 . . ., θ
(p)
Pp )T is the shrinkage vector

(with each element nonnegative) to encourage variable selec-
tion, and θ

( j)
k is the shrinkage factor for the kth feature in the

jth group; the “·” stands for element-wise multiplication; and β̃

is an initial estimate of the model coefficients, which can be esti-
mated by maximum likelihood estimation. If θ

( j)
k = 1, the cor-

responding coefficient β
( j)
k is estimated as the initial estimate.

When θ
( j)
k = 0, the corresponding coefficient shrinks to zero,

and the predictor is not selected in the model. To perform vari-
able selection with the hierarchical group structure shown in
Table 1, some adjustments have to be made to the approach.
Specifically, we design two levels of constraints and minimize
the negative log-likelihood through the following optimization
problem:

min L (β) = −log
{∏n

i=1

[
p(xi)yi

(
1 − p (xi)

)1−yi
]}

,

subject to : β
( j)
k = θ

( j)
k β̃

( j)
k , θ

( j)
k ≥ 0, ∀ j, k,

Pj∑
k=1

θ
( j)
k ≤ γ j, 0 ≤ γ j ≤ Pj,

p∑
j=1

γ j ≤ M, 0 ≤ M ≤ P, (2)

where γ j is the shrinkage factor for the jth group and γ =
(γ1, γ2, . . . , γp)

T is the shrinkage vector for different groups.
The optimization problem determines the optimal θ and γ to
minimize the objective function. In this optimization problem,

we have several constraints. β
( j)
k = θ

( j)
k β̃

( j)
k , θ

( j)
k ≥ 0, ∀ j, k

are the constraints for NNG to encourage general variable selec-
tion. The first level of constraints

∑Pj
k=1 θ

( j)
k ≤ γ j, 0 ≤ γ j ≤ Pj

controls the number of features selected within the group. The
upper limit of γ j is set to be Pj, which is the number of coeffi-
cients in each group. The second level of constraints

∑p
j=1 γ j ≤

M, 0 ≤ M ≤ P controls the number of groups selected. The
upper limit ofM is set to be P, which is the total number of coef-
ficients. These upper limits are recommended to be used if no
prior knowledge on variable importance is available. The intu-
ition behind these selections is to allow the least squares estima-
tion of the model coefficients in the feasible region (i.e., when
θ

( j)
k = 1 for all k and j). If the group level shrinkage γ j becomes
zero, then all feature coefficients in the jth group will be zero,
which indicates that the jth process variable is not significant
and vice versa. If the feature level shrinkage θ

( j)
k becomes zero,

then the kth feature in the jth group will not be significant and
vice versa. Here M is a tuning parameter that can be selected
based on the BIC, the validation data set, or Cross Validation
(CV; Hastie et al. (2009)).

To facilitate fast computation for Equation (2), we adopt
a similar approach to that of Deng and Jin (2015) and use a
second-order Taylor expansion at the current estimate of β to
approximate the objective function and update this approxima-
tion iteratively. After Taylor expansion, the objective function
has a quadratic form as shown in Equation (3):

min L (β) = 1/2
(
Ỹ − Xβ

)T
W

(
Ỹ − Xβ

)
, (3)

where W = diag(p(x1)(1 − p(x1)), . . . , p(xn)(1 − p(xn))) is
an n × n diagonal matrix and Ỹ = X β̃ +W−1(Y − p), X =
(x1, . . . , xn)T ,Y = (y1, . . . , yn)T , p = (p(x1), . . . , p(xn))T .
This quadratic programming guarantees a global optimum and
a brief derivation is provided in the Appendix. In this way, our
method can simultaneously select the significant groups and
features with all computational issues having been addressed.
The optimal solution to minimize Equation (3) can be obtained
by following Algorithm 1.

Algorithm 1.

Step 1. Compute the initial estimate β̃, choose the range of tun-
ing parameterM, and set the initial values for θ and γ .

Step 2. Solve for the β with the objective functions defined
in Equation (3) and denote the current β as β j at the jth
iteration.

Step 3. Check the convergence. The problem converges if ||θ j −
θ j−1|| < δ. If not, update β̃=β j and go back to Step 2. δ is a
predetermined threshold; e.g., δ = 10−3. �

Some practical suggestions for the initial value selection in
Algorithm 1 are provided as follows. First, the initial estimates
should not contain many zero terms. In our problem, the ridge
regression coefficients are used as initial estimates. Such initial
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Figure . Illustration of the simulation procedure.

estimates are also recommended by Yuan and Lin (2006) and
Makalic and Schmidt (2011). Second, the tuning parameter M
varies from a small value (e.g., 0.1) to the total number of coef-
ficients under study. Third, due to the quadratic approximation
in Equation (2), the optimizationwill reach the global optimum.
The initial values of θ and γ will not affect the optimal solutions.
The initial values of θ and γ in this work are both set to one.

4. Simulations

To evaluate the prediction and variable selection performance of
the proposedmethod, we conducted simulations under different
scenarios. For each scenario, the simulation procedure followed
the steps listed in Fig. 3.

In the simulation, the response yi followed the binominal
distribution

yi =
{
1 w.p. p (xi)
0 w.p. 1 − p (xi)

, (4)

where p(xi) = exiTβ/(1 + exiTβ) and “w.p.” stands for “with
probability.” The predictors followed a multivariate normal dis-
tribution with mean vector μ = (0, 0, … , 0) and covariance
matrix

� =

⎡
⎢⎢⎢⎣

ρ11 τ12 . . . τ1p

τ12 ρ22 . . . τ2p

. . . . . . . . . . . .

τ1p τ2p . . . ρpp

⎤
⎥⎥⎥⎦ ,

which were used to represent the wavelet coefficients of func-
tional process variables. ρii is the covariance matrix within a
group and τ i j is the covariancematrix among groups. The num-
ber of groups was set to be four and the number of features in
each group was set to be five. In total, we had 20 predictors. To
evaluate the performance of the proposed method, we tested its
performance by varying sample size, correlation structure, and
sparsity of predictors.

Specifically, we denoted the sample sizes for training data
sets, validation data sets, and testing data sets as ntr, nva, and nte;
we chose ntr to be 20, 100, 200 and set nva = ntr and nte = 2ntr.

These training, validation, and testing data sets were generated
from the same model as shown in Equation (4). The covariance
matrix of predictors within and among groups was set to be

ρ =

⎡
⎢⎢⎢⎣
1 ρ|i− j| . . . ρ|i− j|
ρ|i− j| 1 . . . ρ|i− j|

. . . . . . . . . . . .

ρ|i− j| ρ|i− j| . . . 1

⎤
⎥⎥⎥⎦

and τ =

⎡
⎢⎢⎣

τ τ |i− j|+1 . . . τ |i− j|+1

τ |i− j|+1 τ . . . τ |i− j|+1

. . . . . . . . . . . .

τ |i− j|+1 τ |i− j|+1 . . . τ

⎤
⎥⎥⎦ ,

respectively, where i and j are the row and column indices of the
matrix ρ and τ. Two levels of correlation were selected for ρ and
τ , and there were four combinations for the correlation struc-
ture. Specifically, the within-group correlation coefficient ρ was
set to be zero or 0.6, and between-group correlation coefficient
τ was set to be zero or 0.3. The sparsity (denoted as S) repre-
sents the proportion of significant predictors in the underlying
model, and it was set to be 10% or 40%. The coefficient for a sig-
nificant predictor β

( j)
k was taken to follow the normal distribu-

tion N(μ j, 0.1) and μ j = 1, 1.3, 1.6, 1.9, respectively, for the
four groups of coefficients. In summary, there were three levels
of sample size, four combinations of covariance structure, and
two levels of sparsity. In total, 24 scenarios of simulation settings
were evaluated.

We compared our proposedmethodwith Logistic Regression
(LR), Lasso, Ridge, NNG, GrpLasso, and HLasso methods for
the binary response prediction. We used the training data set to
obtain the regression models and used the validation data set
for the tuning parameter selection. The model with the selected
tuning parameter was used to compare variable selections. We
used a threshold to determinewhether the coefficientwas signif-
icant or not. If the magnitude (absolute value) of the coefficient
was larger than the threshold, then the corresponding predictor
was considered to be significant. Specifically, the threshold was
set to be 10−6. Then we compared the misclassification errors
of the testing data set (called “testing error”) for the proposed



792 H. SUN ET AL.

Figure . (a) Average testing errors over  replications under ntr = , S = ., ρ = 0.6, τ = 0; (b) Average testing errors over  replications under ntr = , S = .
ρ = 0.6, τ = 0; (c) Average overall variable selection errors over  replications under ntr = , S= ., ρ = 0.6, τ = 0; (d) Average overall variable selection errors over
 replications under ntr = , S= ., ρ = 0.6, τ = 0.

model and all benchmark models. The above modeling process
was repeated 50 times for each scenario. Figure 4 shows some
simulation results (testing errors and overall variable selection
errors) when the training sample size was 100 and ρ = 0.6,
τ = 0. More detailed simulation results (such as testing errors,
Type I variable selection errors, Type II variable selection errors,
and overall variable selection errors) as well as their definitions
are described in the online Supplemental Material A. In Fig. 4,
the bars represent the average errors over 50 simulation repli-
cates under the same setting. The horizontal axis represents the
benchmark methods and the proposed HNNG methods. Test-
ing error is the error for the testing data. The overall variable
selection error was calculated as the percentage of total incor-
rectly selected variables in the final estimated model among all
predictors.

The simulation results are summarized as follows. When
the sample size is small, GrpLasso has the best prediction
performance, but HNNG is comparable, especially when the
sparsity is small. When the sample size becomes larger, the
performance of HNNG is among the best. For variable selec-
tion performance, Lasso, NNG, and HLasso perform well in
variable selection when the sample size is small, but HNNG is
comparable. When the sample size becomes larger, GrpLasso
can identify the important features, but the corresponding Type
II error (i.e., percentage of insignificant variables being selected

in the final estimated model) is large, since it selects all features
in a significant group. HLasso performs well when the sparsity
is large. HNNG has comparable Type I variable selection error
(i.e., percentage of significant variables not being selected in
the final estimated model) and performs best for the Type II
variable selection error under most settings. The overall vari-
able selection performance of HNNG is among the best. The
proposed method also has good variable selection performance
for moderate sample size when the underlying model is sparse.

In summary, our proposed method outperforms the bench-
mark methods in terms of prediction performance when the
sample size is large or the underlying model is sparse. The pro-
posed method can also eliminate insignificant predictors and
outperforms the benchmark methods in terms of variable selec-
tion under the above situations. This is mainly because the
HNNG can capture the hierarchical variable structure and can
be easily formulated as linear constraints in the optimization
problem.

5. Case study

We further used the proposed method to analyze real data
from a CZ process for single-crystal growth. Fourteen ingots
(nine conforming ingots and five polycrystalline ingots) grown
from the same furnace were used in the modeling study. We



IIE TRANSACTIONS 793

Figure . Selected standardized process variables in a CZ process (a) a conforming batch and (b) a batch containing polycrystalline defects.

selected four key process variables based on the built-in PID
control algorithms used in the process: (i) heater power, which
is the power supplied to the furnace to change the tempera-
ture gradient in the furnace; (ii) SP value, which is the tem-
perature measurement performed by a thermocouple near the
heater; (iii) pull speed, which is the pulling speed of the crys-
tal; and (iv) furnace pressure, which is the pressure measure-
ment in the furnace. These process variables need to be jointly
controlled. For instance, if the thermal gradient at the inter-
face is too large, the residual stress in the ingot will be large
and the defect density will increase (Voronkov, 1982; Sinno
et al., 2000). On the other hand, if the thermal gradient is
too small, the silicon melt will solidify at a slow rate and
the corresponding growth speed will be slow. In addition, the
larger the thermal gradient, the larger the ingot diameter tends
to be, whereas a higher pulling speed leads to smaller ingot
diameter. As a result, the thermal gradient and pulling speed
should be jointly adjusted in order to obtain a target ingot
diameter.

Figure 5 shows a few standardized process variables of a
conforming batch and a polycrystalline batch. Each point in the
figure represents the average of measurement over an hour. The
sampling rate of the process variables is one measurement per
minute. Notice that the growth time of the polycrystalline batch
is shorter than that of the conforming batch, because the pro-
cess has to be stopped once polycrystalline defects are observed
(the polycrystalline defects were recorded by an operator at
around the 11th hour in this example). From Fig. 5, it is clear
that the key process variables are functional variables, and it is
hard to directly distinguish between the polycrystalline batch
and the conforming batch using these averaged measurements.
Thus, it is necessary to look into the detailed features of the

measurements and predict the occurrence of the polycrystalline
defects in a timely manner.

The selected process variables were standardized and then
truncated into 15-minute windows. For each ingot, we selected
the window of the first 15-minute data points as the first sam-
ple and labeled the window based on the quality of the ingot for
that period of time. Then we selected the window of the next
15 minutes of data points as the second sample and labeled it.
Thus, we partitioned the whole data set into windows. After
the truncation, these windows were regarded as separate sam-
ples modeled by Equation (1). In this case, we can predict if the
ingot becomes polycrystalline every 15 minutes. This is a signif-
icant improvement over the current practice, where polycrys-
talline defects are detected by visual inspections performed by
experienced operators. For each window, we performed wavelet
analysis for each process variable with Daubechies 4 (db4)
wavelet basis (Jensen and La Cour-Harbo, 2001). The number of
dilations was selected to be four, which is the maximum num-
ber of dilations allowed in a 15-minute window. Interested read-
ers can refer to Ganesan et al. (2004) for information on how to
select the number of dilations. As a result, we processed the raw
data and turned it into 108 features as predictors and 435 sam-
ples for use in the modeling study.

To evaluate the prediction performance, we used a leave-
one-out CV approach. In iterations, we used the data of all
15-minute windows from 13 out of 14 ingots to estimate the
model and perform variable selection. Then we evaluated the
classification error based on the data of all 15-minute windows
of the ingot that were not used in the training of the model (i.e.,
the left-out ingot). The average classification error of these left-
out ingots is called the “CV Error” and it was used to evaluate
the prediction performance of the model. In the evaluation, the

Table . CV error in the case study.

LR Lasso Ridge NNG GrpLasso HLasso HNNG

Overall classification error . . . . . . 0.0632
Type I classification error . . . . . . 0.0323
Type II classification error . . . . . 0.2281 .

Models with the smallest overall, Type I and Type II classification errors are highlighted in bold.
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Table . Variable selection results in the case study.

LR Lasso Ridge NNG GrpLasso HLasso HNNG

Average
number of
groups
selected

      

Average
number of
features
selected

 . . . .  .

predicted binary response was compared with the real quality
response labeled by a domain expert. The tuning parameter M
was selected using the BIC.

The overall classification error, Type I classification error,
and Type II classification error are summarized in Table 2.
The overall classification error was defined as the percentage of
total misclassified samples. The Type I classification error was
defined as the percentage of conforming samples classified as
polycrystalline samples, and the Type II classification error was
defined as the percentage of polycrystalline samples classified as
conforming samples. The cut-off probability for the logistic
regression prediction was selected to be 0.5. The Receiver Oper-
ating Characteristic Curve and corresponding Area under the
Curve values over different cut-off probabilities are investigated
(Bradley, 1997); see details in online Supplemental Material B.
The selection of the cut-off probability influences the errors, and
other cut-off probabilities can be selected based on one’s needs.
In Table 2, the model with the best prediction performance is
highlighted in bold. We conclude that the proposed method has
the smallest overall classification error and Type I classification
error. In summary, our proposed method can successfully iden-
tify polycrystalline defects while maintaining the smallest over-
all error.Note thatHNNGhas a larger Type II classification error
than HLasso and is comparable to Lasso, NNG, and GrpLasso.
One possible reason is that the sample sizes of the two classes
are unbalanced. Specifically, the number of conforming sam-
ples is 378, and the number of nonconforming samples is 57.
The variable selection results are summarized in Table 3. The
proposed method selects a moderate number of groups while
it has the smallest number of features selected. The coefficients
selected by HNNG come from the coarse levels of heater power
and SP value, which implies that the changes in thermal field
are responsible for polycrystalline defects in the production pro-
cess considered in the case study. The detailed information of
the selected local features is available in online Supplemental
Material C.

6. Conclusions and future research

A crystal growth process is the first step in the semiconductor
manufacturing industry; however, the crystal can suffer from
polycrystalline defects. In current practice, a large number of
polycrystalline ingots are discarded, and a lot of energy and time
is wasted in the rework stage.

With abundant observational data now being available, we
proposed a logistic regression model with HNNG-based vari-
able selection to extract important features from functional pro-
cess variables. The method encourages variable selection in a

hierarchical group structure for a binary response, where each
group represents a functional process variable and each predic-
tor in the group is a wavelet coefficient reflecting local time and
frequency information. The model performance was compared
with benchmark methods, such as Lasso, NNG, GrpLasso, and
HLasso, when sample size, correlation structure, and sparsity of
predictors were varied. The proposed method was shown to be
better than benchmarkmethods in terms of prediction and vari-
able selection, when the sample size was large or the underlying
model was sparse. The proposed method also performed well
for a real data set from a crystal growth process.

In future research, weighted logistic regression can be tried to
attack the problem of unbalanced classes. The proposedmethod
will be generalized to multinomial responses. The relationships
between successive samples and the observational data from
other crystal growth phases can be used in themodeling of poly-
crystalline defects. One idea to predict the binary response using
process data from previous samples is to form a historical func-
tional regression model, in which the temporal relationship is
embedded in the model structure (Malfait and Ramsay, 2003).
The selected feature can also be used for processmonitoring and
automatic process control.
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Appendix

The approximation of Equation (2) by quadratic programming
with second-order Taylor expansion is briefly summarized here;
see Deng and Jin (2015) for details. The log-likelihood function
can be written as

L (β) =
n∑

i=1

(
yilog p (xi) + (

1 − yi
)
log

(
1 − p (xi)

))

=
n∑

i=1

(
yilog

p (xi)
1 − p (xi)

+ log
(
1 − p (xi)

))

=
n∑

i=1

(
yixiβ + log

(
1 − p (xi)

))

=
n∑

i=1

(
yixiβ − log

(
1 + exiβ

))
.

The first- and second-order derivatives of the log-likelihood
function are

∂L (β)

∂β
=

∑n

i=1

(
yixi − exiβ

1 + exiβ
xi

)

=
∑n

i=1

(
yi − p (xi;β)

)
xi = XT (

y − p
)
,

∂2L ( β)

∂β∂βT = −
∑n

i=1

(
xixiT p (xi;β)

(
1 − p (xi;β)

)) = −XTWX,

where X is an n × p matrix, y and p are n × 1 vec-
tors, and W = diag(p(x1;β)(1 − p(x1;β)), . . . , p(xn;β)

(1 − p(xn;β))) is an n × n diagonal matrix.
The second-order Taylor expansion at the initial estimator β̃

is

L (β) = L
(

β̃
)

+
(
β − β̃

)T
XT (

y − p
)

−1
2

(
β − β̃

)T
XTWX

(
β − β̃

)

= C1 − 1
2
βTXTWXβ + βTXTW

(
X β̃ +W−1 (

y − p
))

= C2 − 1
2
(
ỹ − Xβ

)TW (
ỹ − Xβ

)
,

where ỹ = X β̃ +W−1(y − p) is a constant.
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