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Abstract: We introduce a new class of designs, marginally coupled designs, for com-

puter experiments with both qualitative and quantitative variables. These designs

maintain an economic run size with attractive space-filling properties. The design

points for quantitative factors form a Latin hypercube design. In addition, for each

level of any qualitative factor of a marginally coupled design, the corresponding de-

sign points for quantitative factors form a small Latin hypercube design. Existence

of the proposed designs is studied. Constructions are provided for various types of

designs with qualitative factors.
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1. Introduction

Computer experiments refer to the study of real systems using complex sim-

ulation models. They have been widely used as alternatives to physical experi-

ments. Their computational expense often prohibits the naive approach of run-

ning the experiment over a dense grid of input configurations. Efficient design is

especially important in this context.

Latin hypercube designs (McKay, Beckman, and Conover (1979); Santner,

Williams, and Notz (2003); Fang, Li, and Sudjianto (2010)) are widely used in

computer experiments. Their popularity is due to the feature that, when pro-

jected onto any one dimension, the equally spaced design points ensure that each

of the factors has all portions of its range represented. Different variants of Latin

hypercube designs have been developed, including orthogonal Latin hypercube

designs (Owen (1994); Ye (1998); Steinberg and Lin (2006); Bingham, Sitter,

and Tang (2009); Lin, Mukerjee, and Tang (2009); Pang, Liu, and Lin (2009);

Sun, Liu, and Lin (2009); Lin et al. (2010)), maximin Latin hypercube designs

(Morris and Mitchell (1995); Joseph and Hung (2008); Moon, Dean, and Sant-

ner (2011)), nested Latin hypercube designs (Qian (2009); He and Qian (2011)),

sliced Latin hypercube designs (Qian and Wu (2009); Qian (2012)), among many

others. These designs are primarily used for computer experiments with only
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quantitative factors. However, in many problems, qualitative factors occur fre-
quently and play important roles in the studies (Qian, Wu, and Wu (2008); Han
et al. (2009); Hung, Joseph, and Melkote (2009)). And, in some applications,
a large number or proportion of factors are qualitative. The objective here is
to construct a new class of designs, marginally coupled designs, for computer
experiments involving both quantitative and qualitative factors.

Throughout, let D = (D1, D2) be a design with q qualitative factors and
p quantitative factors, where D1 and D2 are sub-designs for qualitative and
quantitative factors, respectively. A design D is called a marginally coupled
design if D2 is a Latin hypercube design and the rows in D2 corresponding to
each level of any factor in D1 form a small Latin hypercube design. In this work,
we focus on D1 being an orthogonal array (Hedayat, Sloane, and Stufken (1999)).

For constructing designs of computer experiments with quantitative and
qualitative factors, Qian (2012) suggests using sliced Latin hypercube designs
for D2, where the design points in each slice of D2 correspond to one level com-
bination of the qualitative factors. Here run size increases dramatically with the
number of qualitative factors while our designs can accommodate a large number
of qualitative factors with an economical run size. As well, they have the follow-
ing attractive space-filling properties: (1) for each level of any qualitative factor,
the corresponding design points of quantitative factors achieve maximum unifor-
mity in any one-dimensional projection, and (2) the design points of quantitative
factors possess maximum uniformity in any one-dimensional projection.

The remainder of the paper is organized as follows. Section 2 presents no-
tation, definitions, and an example of marginally coupled designs. Section 3
provides some existence results for the proposed designs. Several construction
methods for such designs are given in Section 4. Section 5 concludes the paper
with a discussion.

2. Notation, Definitions and an Example

An orthogonal array A of strength t, denoted by OA(n, s1 · · · sq, t), is an n×q
matrix of which the ith column has si levels 0, . . . , si − 1 and, for every n × t
submatrix of A, all possible level combinations appear equally often (Hedayat,
Sloane, and Stufken (1999)). If not all si’s are equal, an orthogonal array is
mixed. We use OA(n, sq11 · · · sqkk , t) to represent an orthogonal array in which the
first q1 columns have s1 levels, the next q2 columns have s2 levels, and so on. An
OA(n, sq11 · · · sqkk , 2) is said to be (α1 × α2 × · · · × αk)-resolvable if, for 1 ≤ j ≤ k,
its rows can be partitioned into n/(αjsj) subarrays A1, . . . , An/(αjsj) of αjsj rows
each such that each of A1, . . . , An/(αjsj) is an OA(αjsj , s

q1
1 · · · sqkk , 1). Note that

αjsj ’s are identical for all j’s. If all sj ’s are equal and α1 = · · · = αk = α then
an (α1 × α2 × · · · × αk)-resolvable orthogonal array reduces to an α-resolvable
orthogonal array. If α = 1, the orthogonal array is called completely resolvable.
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(a) (b)

Figure 1. Scatter plots of x1 versus x2 in Example 1, where rows of D2

corresponding to levels 0,1,2 of zi are marked by ×, ◦, and +: (a) the levels
of z1; (b) the levels of z2.

A Latin hypercube of n runs for p factors is represented by an n× p matrix

of which each column is a random permutation of n equally-spaced levels. For

convenience, we take the n levels to be −(n−1)/2,−(n−3)/2, . . . , (n−3)/2, (n−
1)/2. In Qian (2012), a Latin hypercube L of n = rm runs is called a sliced Latin

hypercube of r slices if L can be expressed as L = (LT

1 , . . . , L
T

r )
T where m levels

in each column of Li have exactly one level from each of the m equally-spaced

intervals {[−n/2 + (j − 1)r,−n/2 + jr] : 1 ≤ j ≤ m}. Given an n × p Latin

hypercube L = (lij), a Latin hypercube design X = (xij) is generated via

xij =
lij + (n− 1)/2 + uij

n
, 1 ≤ i ≤ n, 1 ≤ j ≤ p, (2.1)

where uij ’s are independent random numbers from [0, 1). We say L is a Latin hy-

percube corresponding to X. A D2 in a marginally coupled design D = (D1, D2)

is a sliced Latin hypercube design with respect to each column of D1.

Example 1. Design D = (D1, D2) in Table 1 is a marginally coupled design of

nine runs for two quantitative variables (x1, x2) and two qualitative factors (z1,

z2) each at three levels. Figure 1 displays the scatter plots of x1 versus x2. Rows

of D2 corresponding to levels 0,1,2 of z1 or z2 are represented by ×, ◦, and +.

Projected onto x1 or x2, three points represented by × or ◦ or + are located in

each of three intervals [0,1/3), [1/3,2/3), [2/3,1).

3. Existence of Marginally Coupled Designs

This section provides some results on the existence of marginally coupled

designs. For a given n×q design D1, we say a marginally coupled design exists if
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Table 1. A marginally coupled design D = (D1, D2).

D1 D2

0 0 0.311 0.301
0 1 0.415 0.975
0 2 0.878 0.363
1 0 0.481 0.630
1 1 0.752 0.220
1 2 0.212 0.689
2 0 0.950 0.786
2 1 0.078 0.463
2 2 0.601 0.100

there exists an n×p design D2 with p > 0 such that D = (D1, D2) is a marginally

coupled design.

Proposition 1. Given D1 = OA(n, sq, 2), a marginally coupled design exists if

and only if D1 is a completely resolvable orthogonal array.

Proof. We first show if D1 is a completely resolvable orthogonal array, a

marginally coupled design exists. A completely resolvable orthogonal array can

be expressed as D1 = (AT
1 , . . . , A

T
m)T such that each Ai is an OA(s, sq, 1) for

1 ≤ i ≤ m = n/s. Let d = (dj) be the column vector of length n with

dj = (j − 1 + uj)/n where uj ’s are independent numbers from [0, 1), 1 ≤ j ≤ n.

Now construct an n × p design D2 as follows. Write d = (bT1 , . . . , b
T
m)T where

bi is the {(i − 1)s + 1, . . . , is}th entries of d, 1 ≤ i ≤ m = n/s. Obtain each

column of D2 by randomly permuting the bi’s of d and/or randomly permuting

the entries in one or more of bi’s. Then (D1, D2) forms a marginally coupled

design by definition. Now suppose that D2 has p columns with the jth column

denoted by D
(j)
2 . Then for each D

(j)
2 , 1 ≤ j ≤ p, and for 0 ≤ i ≤ m− 1, the rows

of D1 corresponding to the s elements of D
(j)
2 in the interval [i/m, (i + 1)/m)

must form an OA(s, sq, 1). Otherwise, there would be a level, say k, in a column

w of D1 such that the entries in D
(j)
2 corresponding to the level k contain more

than one element from [i/m, (i + 1)/m). Then, for the column w of D1, D2 is

not a sliced Latin hypercube design. This completes the proof.

Proposition 2. Given D1 = OA(n, sq11 sq22 , 2) with s1 = α2s2, a marginally cou-

pled design exists if and only if D1 is a (1× α2)-resolvable orthogonal array that

can be expressed as  A11 A12
...

...

Am1 Am2

 (3.1)
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such that (Ai1, Ai2) is an OA(s1, s
q1
1 sq22 , 1), where m = n/s1, and for 1 ≤ i ≤ m,

the Ai2 is completely resolvable.

Proof. We first show that, for a D1 in the proposition, a marginally coupled

design exists. Let d = (dj) be the column vector of length n with dj = (j −
1 + uj)/n, where uj ’s are independent numbers from [0, 1), 1 ≤ j ≤ n. Now

construct an n × p design D2 as follows. Write d = (bT1 , . . . , b
T
m)T where bi is

the {(i − 1)s + 1, . . . , is}th entries of d, 1 ≤ i ≤ m = n/s. Set each column of

D2 to a column obtained by randomly permuting the bi’s of d and/or randomly

permuting the entries in one or more of bi’s. Then (D1, D2) forms a marginally

coupled design by definition. Now we show that (a) the first q1 columns in D1

are a completely resolvable orthogonal array, and (b) the rows of each Ai2 in

(3.1) can be partitioned into α2 subarrays B1, . . . , Bα2 of s2 rows each such that

each of B1, . . . , Bα2 is an OA(s2, s
q2
2 , 1). Part (a) uses the arguments in the proof

of Proposition 1 with q = q1 and s = s1. We turn to part (b). Suppose D2 has

p columns with the jth column denoted by D
(j)
2 . Then for each D

(j)
2 , 1 ≤ j ≤ p,

and 0 ≤ i ≤ m − 1, the rows of D1 corresponding to the s1 elements of D
(j)
2

in the interval [i/m, (i + 1)/m) must be Ah1 for an h in {1, . . . ,m}. For the

given i and h, and for g = 0, . . . , α2 − 1, the rows of Ah2 corresponding to the

s2 elements of D
(j)
2 in the interval [i/m + g/(mα2), i/m + (g + 1)/(mα2)) must

form an OA(s2, s
q2
2 , 1). Otherwise, there would be a level, say k, in a column w of

(AT
12, . . . , A

T
m2)

T such that the entries in D
(j)
2 corresponding to the level k contain

more than one element from [i/m+g/(mα2), i/m+(g+1)/(mα2)). Thus, for the

column w in (AT
12, . . . , A

T
m2)

T , D2 is not a sliced Latin hypercube design. This

completes the proof.

A lemma of Suen (1989) shows that the maximum number of columns in

an n/(sr)-resolvable s-level orthogonal array of n runs is (n − r)/(s − 1). For

a completely resolvable s-level orthogonal array, we have r = n/s, and thus the

maximum number of columns in a completely resolvable s-level orthogonal array

is n/s.

Lemma 1. If a resolvable OA(n, sq, 2) can be partitioned into r OA(n/r, sq, 1)’s,

then q ≤ (n− r)/(s− 1).

Corollary 1. Let q∗ be the maximum value of q such that a marginally coupled

design D = (D1, D2) with D1 = OA(n, sq, 2) exists. We have q∗ ≤ n/s.

Corollary 2 provides a result on the maximum number of columns in a two-

level orthogonal array of n runs where n is a multiple of 4 for which a marginally

coupled design exists.
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Corollary 2. Let q∗ be the maximum value of q such that a marginally coupled

design D = (D1, D2) with D1 = OA(4λ, 2q, 2) exists, where λ is an integer such

that a Hadamard matrix of order 2λ exists. We have q∗ = 2λ.

Proof. By Proposition 1, D1 = OA(4λ, 2q, 2) is completely resolvable. Such

D1’s are fold-over designs. When the two levels are represented by 1 and -1, a

fold-over design can be represented by (AT ,−AT )T for some matrix A. Let A

be a Hadamard matrix of order 2λ (Hedayat, Sloane, and Stufken (1999)). Then

the maximum number of columns in a fold-over orthogonal array of 4λ runs is

2λ. This completes the proof.

4. Construction of Marginally Coupled Designs

We develop several procedures for constructing marginally coupled designs

D = (D1, D2) when D1’s are s-level orthogonal arrays of s2 and λs2 runs, mixed

orthogonal arrays, and two-level orthogonal arrays, respectively.

4.1. Construction for D1 being s-level orthogonal arrays of s2 runs

Suppose an OA(s2, sk, 2), say A, is available and D1 for qualitative factors is

obtained by randomly taking q columns from A. Let A\D1 be the complement of

D1 within A. Construction 1 below is based on the idea in Tang (1993), originally

proposed for constructing orthogonal array-based Latin hypercubes.

Construction 1. Obtain a design, B, by randomly taking p columns from A\D1,

where q+p ≤ k. For each column of B, replace the s positions having level i−1 by

a random permutation of {(i−1)s+1}−(s2+1)/2, . . . , {(i−1)s+s}−(s2+1)/2,

for 1 ≤ i ≤ s. Denote the resulting design by L and obtain a Latin hypercube

design D2 based on L via (2.1).

Proposition 3. Let D1 = OA(s2, sq, 2). Design D = (D1, D2) is a marginally

coupled design, where D2 is obtained by Construction 1.

Proposition 3 can be readily verified by noting the two-dimensional projec-

tion property of an orthogonal array.

Example 2. Taking s in Construction 1 to be 3, 4, 5, 7, 8, 9, we have OA(9, 34, 2),

OA(16, 45, 2), OA(25, 56, 2), OA(49, 78, 2), OA(64, 89, 2) and OA(81, 910, 2), which

provide designs of computer experiments of s2 runs for q qualitative variables

and p quantitative variables, where p+ q ≤ s+ 1.

4.2. Constructions for D1 being s-level orthogonal arrays of λs2 runs

This section introduces a method for constructing marginally coupled de-

signs with D1 being s-level orthogonal arrays of n = λs2 runs. The approach,
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Table 2. The s, λ and k such that an OA(λs2, sk(λs), 2) exists and k ̸= λs,
s ≥ 3, λs2 ≤ 100.

s 3 3 5 4 4 3
λ 5 7 3 5 6 11
k 9 11 7 8 16 11

Construction 2 below, uses mixed orthogonal arrays OA(λs2, sk(λs), 2). Suppose

an OA(λs2, sk(λs), 2), denoted by A, is available and D1 for qualitative factors is

obtained by randomly taking q columns from the first k columns of A, where λ

is a positive integer and q ≤ k.

Construction 2. Denote the last column of A by a. For 1 ≤ j ≤ p, let

πj be a random permutation of {0, . . . , λs − 1} and πj(i) be the ith entry of

πj . Replace the s positions having level πj(i) in a by a random permutation of

{(i − 1)s + 1} − (λs2 + 1)/2, . . . , {(i − 1)s + s} − (λs2 + 1)/2, for 1 ≤ i ≤ λs.

Denote the resulting design by L and obtain a Latin hypercube design D2 based

on L via (2.1).

Proposition 4. Let D1 = OA(λs2, sq, 2). Design D = (D1, D2) with D2 in

Construction 2 is a marginally coupled design.

Analogous to Proposition 3, Proposition 4 is the consequence of the two-

dimensional projection property of an orthogonal array. The website Sloane

(2014) lists OA(λs2, sk(λs), 2) with λs2 ≤ 100. For these orthogonal arrays, we

have k = λs for s being a prime or prime power except for the cases in Table 2

and the cases having (s = 2, odd λ, k = 2).

4.3. Construction for D1 being mixed orthogonal arrays

Mixed orthogonal arrays were constructed via small mixed orthogonal arrays

and difference schemes in Wang andWu (1991), Hedayat, Pu, and Stufken (1992),

and Dey and Midha (1996), among others. A general formulation is provided in

Theorem 9.15 in Hedayat, Sloane, and Stufken (1999). A slightly different version

of this formulation is stated in Lemma 2.

Lemma 2. Let B = (B1 · · ·Bv) be an OA(n, sk11 · · · skvv , 2), where Bj is the or-

thogonal array for kj factors with sj levels. If, for some u, there are difference

schemes D(u, cj , sj) (of strength 2), denoted by D(j), for 1 ≤ j ≤ v, then the

design

A =
(
D(1)⊙B1, · · · , D(v)⊙Bv

)
, (4.1)

is an OA(nu, sk1c11 · · · skvcvv , 2), where X ⊙Y = (xij ∗Y ) stands for the Kronecker

product of a u× c matrix X = (xij) and an n× k matrix Y = (yrs) with xij ∗ Y
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being the matrix with entries xij ∗ yrs and the binary operation ∗ representing

addition.

Let M be the Latin hypercube corresponding to D2 in a marginally coupled

design D = (D1, D2). For convenience we call M a marginally sliced Latin

hypercube for D1. The following method is proposed to construct marginally

coupled designs when D1 = A in (4.1).

Construction 3. Let C = (cij) be a u × f matrix with cij = ±1, H be

a u × (pf) Latin hypercube, and M be a marginally sliced Latin hypercube

for the B = OA(n, sk11 · · · skvv , 2) in Lemma 2. Obtain an (nu) × (pf) matrix

L = C ⊗M + nH ⊗ 1n, where ⊗ represents the Kronecker product and 1n is a

column of all 1’s, and further obtain a Latin hypercube design D2 based on L

via (2.1).

Construction 3 provides a way to construct marginally coupled designs for

mixed orthogonal arrays of the form (4.1). A precise result is given in Propo-

sition 5. Lemmas 3 and 4 are used to show Proposition 5. The proof of each

lemma is straightforward and thus is omitted.

Lemma 3. If M is a marginally sliced Latin hypercube for an OA(n, sk11 · · · skvv , 2),

so is −M .

Lemma 4. If M is a marginally sliced Latin hypercube for the B = (B1, · · · , Bv)

in Lemma 2, M is a marginally sliced Latin hypercube for (a1⊙B1, · · · , av ⊙Bv)

for all ai ∈ {0, . . . , si − 1} and 1 ≤ i ≤ v.

Proposition 5. Let D1 be A in (4.1). Design D = (D1, D2) with D2 in Con-

struction 3 is a marginally coupled design.

Proof. To prove Proposition 5, we need to show that L in Construction 3 is a

marginally sliced Latin hypercube for A in (4.1). First, L is a Latin hypercube by

verifying that each column of L has levels −(nu− 1)/2, . . . , (nu− 1)/2. Second,

we show that for each column of L, the entries corresponding to a level in any

column of A with si levels have exactly one value from each of the nu/si intervals

Φi = [{−nu

2
+ (j − 1)si,−

nu

2
+ jsi} : 1 ≤ j ≤ nu

si
]. (4.2)

Without loss of generality, consider the first column l1 of L. Here l1 = c1⊗m1+

nh1⊗1n, where c1, m1 and h1 are the first column of C, M , and H, respectively.

Now consider any column a of A and suppose a = d⊙ b where d is a column from

D(i) in (4.1) and b is a column from Bi in (4.1). Let c1j and dj be the jth entry of

c1 and d, respectively. By Lemmas 3 and 4, for the column c1j ⊗m1, the entries

corresponding to a level in dj ⊙ b with si levels have exactly one value from each
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of the n/si intervals ϕi = [{−n/2 + (j − 1)si,−n/2 + jsi} : 1 ≤ j ≤ n/si]. Let

ω = {−(u− 1)/2,−(u− 3)/2, . . . , (u− 3)/2, (u− 1)/2}. Then for l1, the entries

corresponding to a level in a with si levels have exactly one value from each of

the intervals {nωjϕi : 1 ≤ j ≤ u}, (4.3)

where nωjϕi represents the intervals whose lower bounds and upper bounds are

obtained by multiplying the lower bound and upper bound of each interval in ϕi

by nωj . It is straightforward to verify that the intervals in (4.3) are identical to

Φi in (4.2) and thus we complete the proof.

Example 3. Consider a design A = OA(32, 2842, 2) constructed as in Lemma 2

using

B =



0 0 0

1 1 0

0 0 1

1 1 1

0 1 2

1 0 2

0 1 3

1 0 3


, D(1) =


0 0 0 0

0 1 0 1

0 0 1 1

0 1 1 0

 , and D(2) =


0 0

0 1

0 2

0 3

 .

A marginally sliced Latin hypercube for B is

M =
1

2



−5 1 −7 −1 3

3 −3 7 7 −3

1 −1 5 5 −1

−7 3 −5 −3 1

−1 5 −1 −5 5

7 −7 1 1 −7

5 −5 3 3 −5

−3 7 −3 −7 7


. By choosing C =


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 ,

and any 4 × 20 Latin hypercube H, the proposed procedure provides a 32 × 20

marginally sliced Latin hypercube for D1 = A.

4.4. Construction for D1 being unreplicated or replicated s-level

orthogonal arrays

We introduce a construction for marginally coupled designs of n runs when

the D1’s are unreplicated or replicated s-level orthogonal arrays and the D2’s

have s slices with respect to each column of D1, where n is a multiple of s2. The

advantage here over Construction 1 is that Construction 1 works for p ≤ s+1−q
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while this method works for any value of p. The gain from Construction 1 is

that columns in D2 have two-dimensional stratification. This method is different

from those in Section 4.2 in that D1’s provided by the latter are not replicated.

Let W1, . . . ,Wq be mutually orthogonal Latin squares (Hedayat, Sloane, and

Stufken (1999)) of order s with symbols 0, . . . , s − 1. Two Latin squares are

called orthogonal if when one Latin square is superimposed upon the other, every

ordered pair of variables occurs exactly once in the resulting square. If we wish

to have p columns in D2, the following procedure is proposed.

I. For 1 ≤ i ≤ q, let Wi(j, k) be the (j, k)th entry of Wi. For 1 ≤ r ≤ s,

let (ζ(r−1)s+1, . . . , ζrs) be the (j, k)’s such that W1(j, k) = r − 1, and let

ζ = (ζ1, . . . , ζs2). Obtain an s2 × q orthogonal array H by letting its (t, i)th

entry be Wi(ζt). If n/s
2 is greater than 1, for each row of H, add n/s2 − 1

replications of that row and denote the resulting design by D1. Otherwise,

let D1 = H.

II. For 1 ≤ i, j ≤ s, take ξij = {(t − 1)s2 + (i − 1)s + j − (n + 1)/2 : 1 ≤
t ≤ n/s2}. Obtain an n × p array L whose kth column is constructed

as follows. Let α = (α1, . . . , αs) and β = (β1, . . . , βs) be two indepen-

dent random permutations of {1, . . . , s}, and ξ̃αiβj
be a random permu-

tation of the elements in ξαiβj
. For 1 ≤ k ≤ p, the kth column of L

is obtained by stacking ξ̃αiβj
’s row by row where αiβj ’s are in the order

α1β1, . . . , αsβ1, α1β2, . . . , αsβ2, . . . , α1βs, . . . , αsβs. Obtain D2 based on L

via (2.1).

Proposition 6. Let q be the integer such that there exist q mutually orthogonal

Latin squares of order s. For the D1 and D2 constructed above, we have that

(i) design D1 is an unreplicated OA(s2, sq, 2) when n = s2 or a replicated OA(s2,

sq, 2) of λ replicates when n = λs2 for an integer λ > 1, and

(ii) D = (D1, D2) is a marginally coupled design.

We sketch a proof. Part (i) of Proposition 6 follows from the definition

of mutually orthogonal Latin squares. For part (ii), note that for 1 ≤ j ≤ s,

ξ1j , . . . , ξsj forms a slice of a Latin hypercube of n runs and s slices. Part (ii)

follows because, for each column of L, the row entries corresponding to each level

in each column of D1 are ξ1j , . . . , ξsj for certain j.

Example 4. Take n = 16, s = 4, and p = 9. There are three mutually orthogonal

Latin squares. A marginally coupled design given by the above procedure for D1

being an unreplicated OA(16, 43, 2) is given in Table 3. We took p = 9 in this

example but the approach works for any value of p.
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Table 3. Designs D1 and D2 in Example 4.

D1 D2

0 0 0 0.684 0.422 0.854 0.940 0.483 0.822 0.123 0.379 0.035
0 3 2 0.913 0.682 0.316 0.226 0.698 0.624 0.851 0.671 0.274
0 1 3 0.384 0.914 0.602 0.710 0.224 0.371 0.576 0.876 0.768
0 2 1 0.164 0.125 0.109 0.466 0.977 0.099 0.363 0.161 0.527
1 1 1 0.617 0.349 0.906 0.903 0.397 0.807 0.149 0.316 0.113
1 2 3 0.831 0.620 0.433 0.183 0.687 0.519 0.910 0.608 0.341
1 0 2 0.327 0.824 0.658 0.641 0.136 0.310 0.670 0.823 0.851
1 3 0 0.083 0.079 0.158 0.425 0.892 0.019 0.418 0.116 0.573
2 2 2 0.550 0.481 0.990 0.796 0.290 0.889 0.026 0.310 0.167
2 1 0 0.784 0.701 0.470 0.006 0.503 0.663 0.796 0.503 0.399
2 3 1 0.307 0.962 0.700 0.556 0.041 0.403 0.557 0.793 0.896
2 0 3 0.004 0.191 0.189 0.270 0.765 0.166 0.267 0.032 0.646
3 3 3 0.703 0.294 0.767 0.863 0.322 0.997 0.210 0.454 0.238
3 0 1 0.999 0.539 0.304 0.101 0.620 0.741 0.997 0.699 0.465
3 2 0 0.445 0.791 0.556 0.616 0.104 0.473 0.705 0.996 0.976
3 1 2 0.196 0.040 0.035 0.325 0.854 0.244 0.473 0.204 0.713

4.5. Construction for D1 being two-level orthogonal arrays

This section presents a method for constructing marginally coupled designs

for D1 being two-level orthogonal arrays. It extends the method in Lin et al.

(2010) that introduced a general approach for constructing designs for computer

experiments. For convenience, we use −1, 1 to represent two levels in an orthog-

onal array. Let A = (aij) be an n1 × m1 matrix with aij = ±1, B = (bij) be

an n2 × m2 Latin hypercube, C = (cij) be an n1 × m1 Latin hypercube, and

H = (hij) be an n2 ×m2 matrix with hij = ±1. Lin et al. (2010) consider the

design

L = A⊗B + n2C ⊗H. (4.4)

Lemma 5 from Lin et al. (2010) provides the conditions for L in (4.4) to be a

Latin hypercube.

Lemma 5. Design L in (4.4) is a Latin hypercube if at least one of (a) and (b)

is true:

(a) A and C satisfy that for any i, if p and p′ are such that cpi = −cp′i, then

api = ap′i;

(b) B and H satisfy that for any j, if q and q′ are such that bqj = −bq′j, then

hqj = hq′j.

Proposition 7. Suppose that D0 = (E,F ) is a marginally coupled design and

B is the corresponding Latin hypercube of F , where E is an n2 × q0 array and



1578 XINWEI DENG, YING HUNG AND C. DEVON LIN

F is an n2 ×m2 array. Suppose that A, B, C and H are chosen to satisfy the

conditions of Lemma 5. If D1 = A ⊗ E and D2 is the Latin hypercube design

based on L in (4.4) via (2.1), then D = (D1, D2) is a marginally coupled design,

where D1 is an (n1n2)× (q0m1) array and D2 is an (n1n2)× (m1m2) array.

Proof. Because D0 = (E,F ) is a marginally coupled design, for each column of

E, B forms a sliced Latin hypercube of two slices. Let ωk1 = {i : eik = 1} and

ωk2 = {i : eik = −1}, where eik is the (i, k)th element of E, 1 ≤ k ≤ q0. Then for

1 ≤ j ≤ m2, both {⌈[bij +(n2+1)/2]/2⌉ : i ∈ ωk1} and {⌈[−bij +(n2+1)/2]/2⌉ :
i ∈ ωk1} are a permutation of {1, . . . , n2/2}, where ⌈x⌉ is the smallest integer not

less than x. Similarly, both {⌈[bij +(n2 +1)/2]/2⌉ : i ∈ ωk2} and {⌈[−bij +(n2 +

1)/2]/2⌉ : i ∈ ωk2} are a permutation of {1, . . . , n2/2}. It is easy to verify that

for 1 ≤ j′ ≤ m1 and 1 ≤ j ≤ m2, {⌈(ai′j′bij + n2ci′j′hij + (n1n2 + 1)/2)/2⌉ : i ∈
ωk1, 1 ≤ i′ ≤ n1} is a permutation of {[ci′j′ + (n1 + 1)/2− 1]n2/2 + 1, . . . , [ci′j′ +

(n1 + 1)/2]n2/2}. Let aj′ and cj′ be the j′th column of A and C, respectively.

Because cj′ is a permutation of {−(n1−1)/2, . . . , (n1−1)/2}, {⌈[aj′bij+n2cj′hij+

(n1n2+1)1n1/2]/2⌉ : i ∈ ωk1} is a permutation of {1, . . . , (n1n2+1)/2} where 1n1

is a column of n1 1’s. Likewise, {⌈[aj′bij+n2cj′hij+(n1n2+1)1n1/2]/2⌉ : i ∈ ωk2}
is a permutation of {1, . . . , (n1n2 +1)/2}. Thus for each column of D1 = A⊗E,

L forms a sliced Latin hypercube of two slices. This completes the proof.

Analogous to Theorem 1 in Lin et al. (2010), an orthogonal D2 in Proposi-

tion 7 can be obtained by taking (1) A, B, C and H orthogonal, (2) ATC = 0

or BTH = 0, and (3) the uij ’s in (2.1) are a constant between 0 and 1.

Example 5. Let

A =


1 1

1 −1

1 1

1 −1

 , B =
1

2


−3 −1 1 3

3 1 −3 −1

−1 −3 3 1

1 3 −1 −3

 ,

C =
1

2


1 −3

3 1

−1 3

−3 −1

 , and H =


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 .

Design B is a marginally sliced Latin hypercube for

E =


1 1

−1 1

−1 −1

1 −1

 .
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By Proposition 7, design D = (D1, D2) with D1 = A⊗ E and D2 based on L in

(4.4) via (2.1) is a marginally coupled design. If instead we choose both B and

H to be orthogonal and let uij in (2.1) be a constant between 0 and 1, then the

resulting D2 is orthogonal.

Proposition 7 provides a way to construct marginally coupled designs when

D1 is a fold-over orthogonal array of 2k runs and 2k−1 columns. To explain

this, let D(k) = (D
(k)
1 , D

(k)
2 ) be such a marginally coupled design for a given k.

For k = 2, the design with D
(2)
1 and D

(2)
2 being E and B in Example 5 is a

marginally coupled design. For k ≥ 3, the design with D
(k)
1 = A ⊗ D

(k−1)
1 and

D
(k)
2 = A⊗D

(k−1)
2 +2k−1C⊗H, where A = ((1, 1)T , (1,−1)T ), C is a 2×2 Latin

hypercube, and H is a matrix of all 1’s of the same size as D
(k−1)
2 , is a marginally

coupled design. The design D
(k)
1 is a fold-over orthogonal array of 2k runs and

2k−1 factors.

5. Conclusions and Discussion

We introduce marginally coupled designs to accommodate a large number

of qualitative factors in computer experiments with both qualitative and quan-

titative factors. Construction methods are given for various types of designs for

qualitative factors. The existence of such designs is studied when design D1

for qualitative factors are s-level orthogonal arrays and OA(n, sq11 (λs1)
q2 , 2). Al-

though completely solving the existence issue for general orthogonal arrays is

likely to be quite nontrivial, it would be possible to obtain some useful general

results. We do not dwell on this here. An important future research direction

is the extension of marginally coupled designs with certain optimal criteria. For

example, the proposed designs are space-filling in one-dimension, but there is no

guarantee that the designs are space-filling in higher dimensions. Additional cri-

teria such as orthogonality or maximin distance (Johnson, Moore, and Ylvisaker

(1990); Yang et al. (2013); Huang, Yang, and Liu (2014); Ba, Brenneman, and

Myers (2014)) can be used to further enhance space-filling properties. Another

direction is to extend marginally coupled designs to allow the design for quanti-

tative factors to possess space-filling property with respect to any two columns of

the design for qualitative factors. One possibility is that, for each level combina-

tion of any two columns of the design for qualitative factors, the corresponding

design points for quantitative factors form a Latin hypercube design.
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