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ABSTRACT
Enhancing AI assurance in tuning configurations and hyper-parameters of AI algorithms is an important
problem in many applications. This work provides an experimental design method to address this chal-
lenging problem. The key idea of the method is to conduct an efficient experimental design to detect
and quantify the effects of hyper-parameters on the performance of AI algorithms. Specifically, the method
proposes a multi-layer sliced design to enable quantifying the effects of slice factors and design factors to
account for hyper-parameters having different effects under different configurations of the AI algorithm.
Moreover, this method develops an effective analysis procedure to estimate the effects of these factors
and test their significance. The performance of the proposed design and analysis methods is successfully
illustrated by simulation studies and real-world AI applications.
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1. Introduction

In the modern design of experiment applications, including
online experiments and hyper-parameter tuning for AI algo-
rithms, several factors of particular interest often exist in com-
parison with other design factors. For example, (Sadeghi, Chien,
and Arora 2020) considered an experiment on how to construct
online designs of website layouts across multiple platforms such
as laptops, cellphones, and iPads. In their work, the factor of
“platform” is identified as a slice factor and other factors related
to the website layout are considered as design factors. We note
that the slice factors differ from design factors in the sense
that the experimenters are interested in estimating the effects of
design factors under different levels of the slice factor. The work
of Sadeghi, Chien, and Arora (2020) mainly considers a sliced
design with a single slice factor. However, many applications
have multiple slice factors of interest. For example, a retail com-
pany would like to conduct online experiments of web advertise-
ments across different user devices (e.g., desktops, cellphones)
and apps (e.g., Facebook and Instagram). Such experiments will
involve two slice factors: user devices and social-media apps.
It is important to evaluate the impact of advertisements under
every combination of the slice factors. Another example is that
AI assurance faces the challenge of exploring the effects of
hyper-parameters on model performance. Oftentimes, the effect
of hyper-parameters on the model performance can be differ-
ent across different models and optimization methods in the
AI algorithm. From this viewpoint, we consider the modeling
choices and optimization methods used in the AI algorithm can
be considered as two slice factors, and other hyper-parameters
in the neural network of the AI algorithm as design factors.

CONTACT Xinwei Deng xdeng@vt.edu Department of Statistics, Virginia Tech, Blacksburg, VA 24061.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/TECH.

In the area of AI assurance (Batarseh, Freeman, and Huang
2021; Batarseh and Freeman 2022; Batarseh, Chandrasekaran,
and Freeman 2023), it is important to investigate the effects of
hyper-parameters on the model performance of AI algorithms
under different configurations (e.g., different level combina-
tions of model choice and optimization method). Investigat-
ing the effects of hyper-parameters on the AI algorithm has
attracted considerable interest (Snoek, Larochelle, and Adams
2012; Bergstra and Bengio 2012; Bardenet et al. 2013; Li et al.
2020a, 2020b). To design an appropriate experiment to evaluate
the performance of the AI algorithm, a suitable design is needed
to make the effects of hyper-parameters estimable under each
configuration, which is closely related to the concept of the sliced
design strategy (Sadeghi, Chien, and Arora 2020).

In this work, we propose a multi-layer sliced design (MLSD) to
deal with multiple slice factors, with application to the investiga-
tion of the effect of hyper-parameters on the AI algorithm under
different configurations. In this application, the factors involving
configurations are considered slice factors. Multiple slice factors
can have different importance or a hierarchical structure. Specif-
ically, we consider the MLSD with each factor at two levels and
propose the ordered word-length pattern for finding the ordered
minimum aberration design for MLSD. Our proposed criterion
is flexible in dealing with both equal importance and ordered
importance of the slice factors. Moreover, we also develop a
novel analysis method to obtain a parsimonious model by lever-
aging the sparsity principle (Box, Hunter, and Hunter 1978; Wu
and Hamada 2021) in the design of experiments (Yuan, Joseph,
and Lin 2007; Seeger, Steinke, and Tsuda 2007; Dougherty et al.
2015). We further enable the hypothesis testing of significant
effects among a variety of main effects, two-factor interaction
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effects. The proposed MLSD has a stronger estimation capability
for slice factors, and it can estimate the corresponding factorial
effects accurately. Recent work on sliced experimental design
(Sadeghi, Chien, and Arora 2020) considered multiple sub-
model estimations for each platform. In contrast, our proposed
analysis method can estimate these effects simultaneously by
adopting the induced Lasso technique (Cilluffo et al. 2020). The
proposed MLSD framework has practical applications beyond
the investigation of hyper-parameters in AI algorithms. It can
also be used in other aspects of AI assurance, such as investigat-
ing the robustness of AI algorithms.

The remainder of the article is organized as follows: In Sec-
tion 2, we briefly review the factorial design and its use in AI-
related applications. Section 3 details the proposed multi-layer
sliced design. In Section 4, we focus on the analysis method for
estimation of the effects of interest based on MLSD. Section 5
conducts simulations to examine the performance of the pro-
posed design and analysis method. Section 6 presents a practical
application of our method in AI assurance. Finally, we conclude
the article with some discussions in Section 7.

2. Literature Review

Hyper-parameter tuning for AI algorithms is important(Mantovani
et al. 2016; Lee, Park, and Sim 2018; Probst, Wright, and
Boulesteix 2019) but often costly in practice (Hutter, Kotthoff,
and Vanschoren 2019). Traditionally, this is mainly a manual
process heavily relying on the experience of investigators. For
simple settings with one or two hyper-parameters involved
(e.g., bandwidth parameter selection for kernel learning)
in the AI algorithm, straightforward exhaustive approaches
such as grid search usually work well (Bergstra et al. 2011).
However, this simple approach quickly becomes impractical
when there are a large number of hyper-parameters, where
Monte Carlo approaches including random search (Bergstra
and Bengio 2012) and the one-factor-at-time procedure are
often used. Such methods are unfortunately ineffective for
high-dimensional hyper-parameters or can miss the interaction
between different hyper-parameters. Methods such as genetic
algorithm (GA) (Lessmann, Stahlbock, and Crone 2005) and
particle swarm optimization (PSO) (Lorenzo et al. 2017) are
also used as heuristics to prioritize the settings of hyper-
parameters. Recently, Bayesian optimization has gained great
attention by its effectiveness, especially in complex models
such as deep neural networks (Eggensperger et al. 2013;
Feurer, Springenberg, and Hutter 2015; Klein et al. 2017)
and knowledge transfer (Yogatama and Mann 2014; Joy et al.
2016). Many existing Bayesian optimization techniques face
a common challenge. The acquisition criterion is often non-
convex and potentially non-differentiable, making it difficult
for standard local numerical optimization methods to find the
optimal solution reliably. Recent work has explored Delaunay
triangulation to address this challenge (Gramacy, Sauer, and
Wycoff 2022).

When emphasizing the main effects and two-factor inter-
action effects, one can exploit fractional factorial designs (Box
and Hunter 1961; Gunst and Mason 2009; Wu and Hamada
2021) to use a small number of experimental trials (i.e., a level
combination of factors) to adequately estimate the effects up to

the second order. We use ideas from the design of experiments
literature, the hyper-parameter tuning can be investigated from
a new and different angle. By considering the hyper-parameters
with possible discrete values, the factorial design can be applied
to estimate the effects of different hyper-parameters (Cheng
2016; Kittitharayada et al. 2021). Due to limitations on resources,
the fractional factorial design aims at economically investigating
the cause-and-effect relationships (Box and Hunter 1961; Gunst
and Mason 2009). It allows for more efficient use of resources
by reducing the number of experiments. To find optimal frac-
tional factorial designs, a widely used criterion is the maximum
resolution criterion (Box and Hunter 1961) and the minimum
aberration criterion (Box and Hunter 1961; Fries and Hunter
1980; Tang and Wu 1996), both of which are based on using the
word-length pattern (Fries and Hunter 1980; Cheng, Steinberg,
and Sun 1999; Wu and Hamada 2021).

In the direction of using fractional factorial designs for
novel applications, Sadeghi, Chien, and Arora (2020) proposed
the sliced design for the multi-platform online experiments.
Their research focused on identifying the optimal sliced design
through the sliced minimum aberration criterion, and they
developed linear models to estimate all effects. Chang (2022)
provides theoretical support for the sliced minimum aberration
design from the view of Bayesian analysis. However, the sliced
design is not readily applicable to scenarios with multiple slicing
factors. Additionally, their methodology requires separate
modeling and estimation processes for different platforms.

The sliced design approach proposed by Sadeghi, Chien,
and Arora (2020), which treats factors differently, has connec-
tions with other existing methodologies in the literature. For
instance, in a split-plot design (Jones and Nachtsheim 2009;
Wu and Hamada 2021), the whole plot factors are assigned to
main plots, and subplot factors are applied within these subplots
(Fisher 1970). Similarly, robust parameter designs explore inter-
actions between control factors and noise factors (i.e., uncon-
trollable variables) (Taguchi 1987). The branching and nested
design (Phadke 1995; Hung, Joseph, and Melkote 2009) includes
branching and nested factors and the nested factors differ for the
levels of branching factors.

3. Multi-Layer Sliced Design

This section details the proposed multi-layer sliced design
(MLSD). In the MLSD, we consider two classes of factors, slice
(platform) factors, and design factors, as shown in Table 1. We
denote the slice factors as Si, i = 1, . . ., m, where each Si has
li levels. The design factors are Xj, j = 1, . . ., k, where each Xj
has hj levels. Different levels of combinations of design factors
are to be conducted to understand the effects of design factors
on the response (i.e., experiment outputs). The slice factors are
often of great importance to be considered as platform effects,
that is, the experimenter expects that the effect of design factors
can vary according to the different settings of slice factors. It is

Table 1. Factors in the multi-layer sliced design.

Slice factors Design factors

S1 … Sm X1 … Xk
Number of levels l1 … lm h1 … hk
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important to distinguish the roles of the slice factors and design
factors in both design criterion and data analysis. Additionally,
considering multiple slice factors allows for the incorporation of
more complex statistical models that can address both the main
effects of each individual factor and their interaction effects,
thereby enhancing the flexibility and depth of the analysis.

For example, for a two-layer sliced design in a webpage layout
application, online platforms can be regarded as slice factors.
The S1 can be electronic devices such as cell phones and laptops
for web browsing. And S2 is the social apps such as Instagram
or Facebook used by customers. Different advertisement designs
under the ith level of S1 and jth level of S2 can be constructed
as Dij for the design factors X1, . . . , Xk. The Dij can be a full
factorial design or a fractional factorial design, while all level
combinations of the slice factors will be considered. Using such a
multi-layer sliced design, the experimenter can investigate how
the slice factors and design factors affect customer shopping
behaviors.

For ease of presentation, we will start with our proposed
method under the two-layer sliced design with m = 2. The
presented definition, properties, and analysis methods can be
extended to multi-layer sliced design with m ≥ 3.

Definition 1 (Two-layer sliced Design). Consider two slice
factors S1 with l1 levels and S2 with l2 levels and k design
factors X1, X2, . . ., Xk. The whole design for slice factors
and design factors, denoted as D, consists of subdesigns,
D11, . . ., D1,l2 , . . ., Dl1,1, . . ., Dl1,l2 associated with each level
combination of slice factors.

Figure 1 presents the design set D of the experiment in Def-
inition 1. When one considers both the slice factor and design
factor with two levels, a full factorial two-layer sliced design D
can be denoted as 222k. To reduce the run size, especially in a sit-
uation with a large number of design factors, we would consider
the Dij to be the fractional factorial design. Consequently, the
whole MLSD design D will also be a fractional factorial design.
To enable the investigation of how the design factors affect the
response under different level combinations of the slice factors,
a suitable two-layer sliced design should have the following two
characteristics:

(i) The subdesigns Dij, i = 1, . . ., l1; j = 1, . . ., l2 should
attain a preferable estimation for the effects of design factors. The
selected subdesigns should have enough estimation capabilities for
the main effects of the design factors.

(ii) The whole design D for slice factors and design factors can
estimate the effects of slice factors and the two-way interaction
effects between slice factors and design factors.

To formalize these properties, we categorize the factorial
effects into two distinct sets based on their relevance to the slice
and design factors. Let EI be the set of all factorial effects with

words that exclude slice factor S1 and S2 (e.g., A, AB, ABC),
and ES be the set of all factorial effects with words that include
the slice factor S1 or S2 (e.g., AS1, ABS2, ABCS1S2). The design
properties (i) and (ii) translate to the following goals for EI and
ES:

Property (i): The subdesigns Dij should ensure that the main
effects in EI can be estimated.

Property (ii): The whole design D should allow the estimation
of the main effects, the two-factor interactions in ES.

To construct the MLSD design with the above properties, we
need to differentiate the importance of different effects. With-
out loss of generality, a factorial effect can be expressed as a
word consisting of slice factors (e.g., S1, S2) and design factors
(e.g., A, B, C, . . .). Furthermore, we consider the importance of
slice factors in two situations: (i) one of the slice factors is
more important than the other slice factor (e.g., S1 � S2 or
S2 � S1); and (ii) two slice factors have equal importance
(S1

�= S2). When S1 � S2, we denote S1 to be the primary
slice factor and S2 to be the secondary slice factor. Specifically,
we propose the following hierarchy principle for the MLSD
design.

Principle 1 (Effect hierarchy for MLSD design). The ordering
of importance for effects is determined by the following
rules:

(i) For the union of EI and ES, lower-order effects are more
important than higher-order effects.

(ii) For EI , effects of the same order are equally important.
(iii) For ES, effects with the primary slice factor are more impor-

tant than the ones with a secondary slice factor of the same
order. If slice factors are the same important, effects of the
same order are equally important.

(iv) Any effect in the set ES is more important than an effect in
EI with the same order.

The hierarchy principle serves as a guideline to construct
MLSD designs that balance the importance of estimating effects
in ES and EI . Next, we will establish some criteria to compare
different MLSD designs given the number of slice factors and
design factors. To facilitate our discussion, we will consider all
slice factors and design factors at two levels. Following Defini-
tion 1 with both S1 and S2 having two levels, we consider the
fractional factorial design for the whole MLSD design D as 22 ·
2k−p. Here p represents that the run size of D is a 2−pth fractional
of the full factorial design of slice factors and design factors. For
simplicity, we will demonstrate the MLSD design at two levels
for both slice factors and design factors as a 22+(k−p) design.
In a fractional factorial design, the defining relation is essen-
tial for constructing word-length patterns (Cheng 2016; Wu
and Hamada 2021). These patterns allow statisticians to assess

Figure 1. An illustration of a two-layer sliced design in Definition 1.
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the capability of a design to distinguish between the effects of
various factors and their interactions. In addition, word-length
patterns serve as a measure of a design’s resolution, effectively
indicating the extent of confounding among factors. Similarly,
it is essential to establish criteria that guide the selection of
designs for MLSD. To compare different 22+(k−p) MLSD designs,
we introduce the concept of sliced defining relations for the two
slice factors. In the MLSD, slice factors are of important interest,
thus their defining relation takes priority over other defining
relations. For the design with one slice factor, the sliced defining
relation of design is composed of the slice factor S and the group
of its aliasing effects. It is formed by multiplying the defining
relation of design by the slice factor S (i.e., S = ABCS is obtained
from I = ABC) (Sadeghi, Chien, and Arora 2020). We note
that S is aliased with the effects ABCS. The word ABC is called
the generator of the design and it has length 3. In the two-layer
situation, we will have the sliced defining relation for each slice
factor. For example, we will have two sliced defining relations
S1 = ABCS1 and S2 = ABCS2 for a two-layer sliced design.
Correspondingly, there are separate word-length patterns for
different slice factors. Next, we will define the sliced word-length
pattern.

Definition 2 (Sliced word-length pattern). The sliced defining
relations of D are the aliasing relations involving slice factors
Si, i = 1, 2. The sliced word-length pattern is

SW = {SW1, SW2},

where SWi represents the set of word-length counts for the sliced
relation of slice factor Si. Specifically,

SWi =
{
(3BSi ,3), . . . , ((k + 2)BSi ,k+2)

}
,

where BSi,j denotes the number of effects with length j for the
sliced relation of Si, and k is the number of design factors.

The number of sliced defining relations equals the number of
slice factors. The sliced defining relations can be derived from
multiplying the defining contrast subgroup of D by the slice fac-
tors. For illustration, consider a 22+3−1 MLSD. Assume that the
whole design D is a 25−1 fractional factorial design that consists
of four subdesigns, each of which is a 23−1 fractional factorial
design for design factors. We now consider three strategies to
construct an MLSD design. d(1): I = ABC; d(2): I = ABCS1S2;
d(3): I = ABCS2. For d(1), the sliced defining relations are
S1 = ABCS1 and S2 = ABCS2. The sliced word-length pattern
is SW = {(30, 41, 50), (30, 41, 50)}. For d(2), the sliced defining
relations are S1 = ABCS2 and S2 = ABCS1. The sliced word-
length pattern is SW = {(30, 41, 50), (30, 41, 50)}. For d(3), the
sliced defining relations are S1 = ABCS1S2 and S2 = ABC. The
sliced word-length pattern is SW = {(30, 40, 51), (31, 40, 50)}.

Since the slice factors S1 and S2 can be of different impor-
tance, we can order the two sliced relations and define the
ordered sliced word-length pattern as follows.

Definition 3. With the ordered slice factors, the ordered sliced
word-length pattern can be defined as follows.

(a) When slice factor S1 and S2 are equally important (i.e., S1
�=

S2), then the ordered sliced word-length pattern grouping

is defined by the combination of the sliced word-length
patterns for each factor:

SW =
2∏

i=1
SWi = SW1 × SW2,

where SWi = {(j + 2)BSi ,j+2 : j = 1, 2, . . . , k} for each
slice factor Si. Note here that the product operation on the
sliced word-length patterns can be extended to any number
of layers, not just the two-layer case presented here.

(b) When one slice factor Si is more important than another Si′
(i.e., S1 � S2 or S2 � S1), then the ordered sliced word-
length pattern grouping is ordered by importance:

SW = {SWi︸︷︷︸
Part 1

, SWi′︸︷︷︸
Part 2

}.

When the slice factors are equally important, the sliced word-
length pattern only has one part. For other situations, it will
contain several parts, and the number of parts is determined
by the number of slice factors. With the defined ordered sliced
word-length pattern, we can continue to compare two design
strategies d(2) with I = ABCS1S2 and d(3) with I = ABCS2
in the 22+3−1 MLSD. If S1 � S2, the ordered sliced word-
length pattern for d(2) is {(30, 41, 50), (30, 41, 50)} and that for
d(3) is {(30, 40, 51), (31, 40, 50)}. When S1

�= S2, the word-length
pattern of d(2) is SW = {(30, 42, 50)} and the word-length pattern
of d(3) is SW = {(31, 40, 51)}.

Next, we develop proper criteria to compare the MLSD. The
maximum resolution (Box and Hunter 1961) and minimum
aberration (Fries and Hunter 1980) are two popular criteria for
selecting the optimal design. We now extend resolution and
aberration to accommodate ordered slice factors and propose
the ordered sliced resolution as follows:

Criterion 1 (Ordered Sliced Resolution). The ordered sliced res-
olution of a 22+(k−p) complete design D is defined to be the
smallest j such that BSi,j ≥ 1 or BS1,j + BS2,j ≥ 1 in Part 1 based
on Definition 3.

According to the sliced hierarchy principle, a suitable design
is to maximize the ordered resolution. The design with a large
resolution can ensure the capability to estimate important slice
factors and their interaction with design factors. Here, we use
sliced defining relation and sliced word pattern to find a sliced
minimum aberration design. The objective is to minimize the
aliasing of slice factors with higher-order effects, thereby pre-
serving their estimability.

Criterion 2 (Ordered Sliced Minimum Aberration). Suppose that
two 22+(k−p) MLSD d̈ and d̃ are to be compared. Let r be
the smallest integer such that

∑
Si Bsi,r(d̈) �= ∑

Si Bsi,r(d̃), Si
are all the primary slice factors. Design d̈ is said to have less
sliced aberration if

∑
Si Bsi,r(d̈) <

∑
Si Bsi,r(d̃). If there is no

design with less sliced aberration than d̈, then d̈ is called a sliced
minimum aberration design.

To construct a sliced minimum aberration design, the
length of effects in sliced defining relation plays a key role.
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Next, we will establish a property to determine the num-
ber of effects containing the secondary slice factor in the
defining relation (i.e., defining contract subgroup) for the
case of S1 � S2. The secondary slice factor S2 can help
extend the length of the words in the primary sliced defining
relation.

Theorem 1. If S1 � S2, then for a 22+(k−p) MLSD D, the
largest number of effects in defining relation that can contain
the secondary slice factor (S2) is 2p−1.

Based on the above theorem, the number of effects containing
the secondary slice factor in the defining relation can be deter-
mined. It will help identify the minimum aberration design.
For a concrete example, consider an MLSD 22+6−2 with slice
factors S1, S2 and design factors A, B, C, D, E, F. The minimum
aberration scheme of fractional factorial design 26−2 for design
factors A, B, C, D, E, F is I = ABCD = CDEF = ABEF.
If S1 � S2, the best defining relation is I = ABCDS2 =
CDEFS2 = ABEF. We can find the defining relation that con-
tains a secondary slice factor is 22−1 = 2. By Theorem 1, there
is no other defining relation that can increase the number of
effects containing the secondary slice factor. This means that the
primary sliced defining relation can get the minimum aberration
design.

Although we present the above results under the two-layer
sliced design, the definition, criterion, and properties for the
multi-layer sliced design can be extended and generalized. Sim-
ilarly, multiple slice factors S1, . . . , Sm can be ordered, such as
S1 ≺ S2 ≺ · · · ≺ Sm, S1

�= S2
�= · · · �= Sm, S1 � S2 � · · · � Sm,

and S1 � · · · � Si
�= . . .

�= Sj � · · · � Sm. Next, we will discuss
several properties of the multi-layer sliced design.

Proposition 1. In the multi-layer sliced design 2m2(k−p) with one
or two primary slice factors, the corresponding sliced minimum
aberration design can be obtained by not including the primary
slice factors in the defining relation.

The statement in Proposition 1 aligns with Theorem 1. In a
two-layer sliced design, as described in Theorem 1, the objective
of achieving sliced minimum aberration is to incorporate a
larger number of secondary slice factors in the defining relation.
This approach aids in obtaining a suitable primary sliced defin-
ing relation. Moreover, Proposition 1 offers valuable guidance
for the exploration of sliced minimum aberration designs in
general. The following remarks serve as useful guidance for
finding a sliced minimum aberration design.

Remark 1. In the multi-layer sliced fractional factorial design
2m2k−p, there exists a sliced word-length pattern by (3BS,3 , . . .,
(k + 2)BS,k+2) for each slice factor. The design and its properties
are determined by the grouping of the ordered sliced word-
length pattern set {(3BS1,3 , . . ., (k + 2)BS1,k+2), (3BSm ,3 , . . ., (k +
2)BSm ,k+2)}.

The estimation capability of the design is determined by
the grouping of the ordered sliced word-length pattern. In
the MLSD with m > 1, the order of the importance of
the slice factors affects how to determine the sliced word-

length pattern and search for the sliced minimum aberration
design.

Remark 2. In the multi-layer sliced fractional factorial design
2m2k−p(m > 2, m > p) with slice factors of the same impor-
tance, the sliced minimum aberration design can be obtained
from the defining relation of design 2m−p and design 2k−p with
minimum aberration.

As an illustration, consider a 2525−2 MLSD with slice factors
S1, . . ., S5 and design factors A, B, C, D, E. A minimum aberra-
tion design for slice factors is I = S1S2S4S5 = S1S2S3 =
S3S4S5. In this case, the aliasing effects in the defining relation
can be arranged in a sequence from long to short. Similarly, a
minimum aberration design for design factors is I = ABC =
CDE = ABDE. However, in this defining relation, the sequence
of aliasing effects should be ordered from short to long. Com-
bining these two defining relations, we can obtain the optimal
defining relation for the MLSD as follows: I = S1S2S4S5ABC =
S1S2S3CDE = S3S4S5ABDE.

Remark 3. In the multi-layer sliced fractional factorial design
2m2k−p, if slice factors are of the same importance, the sliced
minimum aberration design corresponds to the design with
sliced defining relations where all words contain slice factors.

Consider a 2226−2 MLSD. We will examine two design strate-
gies, denoted as d(1) and d(2). For d(1), the defining relation
is given by I = ABCD = CDEF = ABEF, and the sliced
defining relations are S1 = ABCDS1 = CDEFS1 = ABEFS1
and S2 = ABCDS2 = CDEFS2 = ABEFS2. The corresponding
sliced word-length pattern is (40, 56, 60). On the other hand,
for d(2), the defining relation is I = ABCDS2 = CDEFS2 =
ABEF, and the sliced defining relations are S1 = ABCDS1S2 =
CDEFS1S2 = ABEF and S2 = ABCD = CDEF = ABEFS2. The
sliced word-length pattern associated with d(2) is (43, 51, 62).
Considering the scenario where S1 � S2, we have demonstrated
that d(2) represents the sliced minimum aberration design. How-
ever, as S1

�= S2, it becomes evident that d(2) is not the sliced
minimum aberration design since there exists a design d(1) with
a smaller aberration. In d(2), we observe that there are sev-
eral words in the sliced defining relation that lack slice factors.
Additionally, we can establish that d(1) is a minimum sliced
aberration design where all words in its sliced defining relation
contain slice factors.

4. The Estimation Method

In this section, we introduce an estimation procedure aimed at
identifying significant effects. To streamline the model estima-
tions and avoid the complexity of multiple sub-models, we pro-
pose the use of conditional effects. This approach is supported
by several studies that have explored conditional effects with
minimum aberration (Mukerjee, Wu, and Chang 2017; Chang
2023). In the multi-layer sliced design, we assume that the slice
factors S1, . . . , Sm, and design factors X1, . . . , Xm all have two
levels, coded as “−1” and “1” (Wu and Hamada 2021).

Let xi, for i = 1, . . . , k, and sj, for j = 1, . . . , m, be the
corresponding values of Xi and Sj, respectively. The conditional
value of Xi given S1 = s∗1, . . . , Sm = s∗m can be defined as follows:
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Xi|S1=s∗1 ,...,Sm=s∗m =
{

xi if si = s∗i for i = 1, . . . , m,
0 otherwise.

Due to the limited experimental run size, we will focus on
the estimable main effects and two-factor interaction effects by
considering a linear model as follows:

y = β0 +
k∑

i=1

1∑
s1=0

. . .

1∑
sm=0

βXis1...sm(Xi|S1 = s1, . . ., Sm = sm)

+
m∑

i=1
βSi Si +

m∑
i=1

m∑
j=1

i!=j

βSiSj SiSj +
k∑

i=1

m∑
j=1

βXiSj XiSj + ε,

where β = (β0, . . ., βXis1...,sl , . . ., βS1 , . . ., βSiSj , . . ., βXiSj , . . .) are
the coefficients of the linear model and ε is the error term with
ε ∼ N(0, σ 2). The set of coefficients can be simply written as
β = (β0, β1, . . ., βq), where q is total number of coefficients.
The total number of conducted experiments is n. The vector of
response can be denoted as y and the corresponding regression
matrix can be written as X. In this situation where n < q, one
possible method for analysis and inference is Lenth’s method
(Lenth 1989). However, it may not yield accurate parameter
estimates for our setting. Some assumptions underlying Lenth’s
method—such as equal variance among factorial effects and a
regular design structure-may not be valid for our experimental
designs. According to the sparsity principle in experimental
design (Wu and Hamada 2021), it is assumed that only a small of
factorial effects will significantly influence the outcome. There-
fore, we consider estimating the parameters using the Lasso
method (Tibshirani 1996) by minimizing the penalized least
squares as

L(β) = 1
2
||y − Xβ||22 + λ||β||1, (1)

where ||β||1 is the l1 norm of β and λ ≥ 0 is a tuning parameter.
Here we adopt the AIC for the choice of tuning parameter λ

(Shao 1997). Due to the non-smoothness of the l1 norm, the
objective function in (1) is not differentiable at zero with respect
to β , which makes it difficult to obtain the derivative of the
parameter β at all points. Thus one cannot directly apply the
sandwich formula to obtain the variance of β̂ for inference. The
work of Cilluffo et al. (2020) incorporates the idea from the
induced smoothing (Brown and Wang 2005) to allow estimation
and inference on the model coefficients in the Lasso regression.
Specifically, the estimating equation from the first “pseudo”
derivative of L(β) is

l(β) = −XT(y − Xβ) + λ{21(β > 0) − 1q},

where 1 is the indicator function, that is, 1(a > b) = 1 if a > b,
and 0 otherwise. Then we can use l(β) to get the estimate β̂

and characterize the distribution �−1/2(β̂ − β) ∼ f (z), where
� = (σij)q×q = cov(β̂) is the covariance matrix of β̂ . Here, we
define f (z) = ∏q

j=1 fj(zj), where each zj is a standard normal
random variable and fj(·) denotes its probability density func-
tion. The Lasso method can result in some estimated coefficients
being exactly zero. To model this sparsity, we approximate the
marginal density fj(z) using a two-component mixture fj(z) ≈

Table 2. The design points for different experiments.

d(1) d(2) BLHD

S1 S2 A B C S1 S2 A B C S1 S2 A B C

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 0 1 1 0 0 0 0 1 1 0 0 0 1 1
0 0 1 0 1 0 0 1 0 1 0 0 0 0 1
0 0 0 1 1 0 0 1 1 0 1 1 1 1 0
1 0 0 0 0 1 0 0 0 1 0 1 1 0 0
1 0 1 1 0 1 0 0 1 0 0 1 1 1 1
1 0 1 0 1 1 0 1 0 0 1 0 1 0 0
1 0 0 1 1 1 0 1 1 1 1 0 1 1 1
0 1 0 0 0 0 1 0 0 1 0 1 0 0 0
0 1 1 1 0 0 1 0 1 0 1 0 0 1 0
0 1 1 0 1 0 1 1 0 0 1 1 0 1 1
0 1 0 1 1 0 1 1 1 1 1 0 0 0 0
1 1 0 0 0 1 1 0 0 0 0 1 0 1 0
1 1 1 1 0 1 1 0 1 1 0 0 1 1 0
1 1 1 0 1 1 1 1 0 1 0 0 1 0 1
1 1 0 1 1 1 1 1 1 0 1 1 1 0 1

cjφ(z)+(1−cj)φε̃(z), where φ(z) is the standard normal density
and φε̃(z) is the density of a normal distribution with zero mean
and small variance (e.g., ε̃ = 10−6).

The key of the induced smoothing is adding a scaled pertur-
bation of parameters to form the new estimating equation as

l̃(β) = Ez[l(β + �
1
2 z)]

=
∫

l(β + �
1
2 z)f (z)dz

= −XT(y − Xβ) + λη(β , z; c),

where the q-dimensional penalty vector η(β , z; c) has the ele-
ments ηj = cj{2	(βj/

√
σjj) − 1} + (1 − cj){2	ε̃(βj/

√
σjj) −

1}. Here 	 and 	ε̃ are the corresponding cumulative density
function of standard normal distribution. Since the l̃(β) is a
smooth function, we can use the sandwich formula to compute
the estimation covariance as

�̂ = l̃
′
(β̂)−1V l̃

′
(β̂)−1.

Here V = cov(l̃(β)) ∝ XTX. Consequently, we can obtain
the approximate distribution of β̂ and perform the statistical
hypothesis testing on β . For example of the hypothesis testing
H0 : βj = 0, the Wald statistic under H0 is

Wj = β̂j√
var(β̂j)

d→ N(0, 1).

In the following simulation and application studies, we will use
the Wald statistic to test the significance of the coefficients for
models. For implementation, we adopt the islasso R package for
the induced smoothing approach to estimate the effect size and
determine statistical significance (Cilluffo et al. 2020). Insignifi-
cant effects will be shrunk to zero.

5. Simulation

This section presents the results of several simulation studies
that demonstrate the accuracy and robustness of the MLSD
model. We extensively tested our model under two-layer and
three-layer sliced designs under different noise levels.
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Figure 2. Comparison of simulation results across 100 replications: proposed designs (d(1) and d(2)) versus BLHD for accurate and precise estimation of key coefficients.

5.1. Two-Layer Sliced Design

We first consider a two-layer sliced design 22+3−1. Assume that
the slice factor S1 and S2 are of the same importance. Based
on the sliced minimum aberration, we can obtain two best
design schemes d(1): I = ABC and d(2): I = ABCS1S2. The
ordered sliced word-length pattern grouping for d(1) and d(2)

are SWd(1) = {(30, 42, 50)} and SWd(2) = {(30, 42, 50)}. It means
that these two designs both have the ordered sliced resolution
of IV. Based on the factorial strategies, the above two designs
are obtained with 16 observations. (Hung, Joseph, and Melkote
2009) introduces the concepts of branching and nested factors
to describe situations where certain factors only exist within the
levels of other factors. These are referred to as nested factors,
with the factor containing other factors being called a branching
factor. In MLSD, the effects of design factors vary across the
levels of the slice factors, exhibiting a dynamic relationship
similar to that of nested variables. The design factors in MLSD
allow their effects to vary across all levels of the slice factors.
Therefore, one can consider the slice factors as branching factors
and the design factors as nested factors. The unique aspect here
is that all levels of the nested factor can exist under the branching
factor. An optimal branching Latin hypercube design (BLHD) is
generated by maximizing the minimum inter-site distance. This
optimal BLHD is used as the benchmark for comparison. The
design points for the three designs are presented in Table 2. Here,
0 and 1 represent two levels of factors.

Given a design matrix, we consider the underlying model for
the response as follows.

y = β0 +
1∑

i=0

1∑
j=0

βAij(A|S1 = i, S2 = j)

+
1∑

i=0

1∑
j=0

βBij(B|S1 = i, S2 = j)

+
1∑

i=0

1∑
j=0

βCij(C|S1 = i, S2 = j)

+
2∑

i=1
βSi Si + βS1S2 S1S2 +

2∑
i=1

βASi ASi

+
2∑

i=1
βBSi BSi +

2∑
i=1

βCSi CSi + ε, (2)

where ε is the error term following N(0, σ 2). Here, take
β0 = 5, βA00 = 3, βB01 = 4, βC10 = 10, βS1 = 10, βS2 =
−3, βCS1 = 5, βS1S2 = 5, the other coefficients as 0. Two
scenarios of the error terms are considered: ε ∼ N(0, 1) and
ε ∼ N(0, 0.5). When the responses are generated, the proposed
analysis method in Section 4 is used to analyze the data.

Figure 2 presents the results of analyses conducted across
different experiments with 100 replications. The performance
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of d(1) and d(2) surpasses that of BLHD in terms of accuracy
and precision for the coefficients of S1 and S2. The means of
the estimated coefficients for the proposed designs are closer to
the true values, and the corresponding boxplots are noticeably
narrower. For other coefficients, the three designs exhibit com-
parable performance, with the exception of βCS1 . It is observed
that the competitor’s estimates for βCS1 deviate more from the
truth compared to those from the proposed MLSD method.
Overall, significant coefficients can be accurately estimated, as
demonstrated by the coverage of the true values within the
boxplots. It is interesting to note that the estimation capabilities
of significant slice factor effects are more accurate than design
factors, as indicated by their small variance in supplementary
Table S1. In addition, the proposed method also works bet-
ter when the noise level is small. One can also obtain more
accurate estimations for slice factors under low noise levels.
In supplementary Table S1, the insignificant coefficients can
be accurately evaluated under small noise conditions. How-
ever, under large noise conditions, there is a risk of incorrectly
identifying insignificant factors. For example, the true value
of βA01 is 0, but the mean estimated by the BLHD method is
small, albeit nonzero. This issue is also present in the other two
methods. Nonetheless, although the estimated values are not
exactly zero, they are very small. Moreover, we calculate the
signal-to-noise ratios (SNR) using formula var(Xβ̂)/var(Y) to
access the meaningful information captured in the data. In both
levels of noise, the SNR is approximately 95%, indicating 95%
of the variability in the data can be attributed to the true signal,
while the remaining 5% is due to noise. It suggests that the results
of the analysis are likely to be reliable with findings supported by
the data.

5.2. Three-Layer Sliced Design

This section examines the performance of the proposed
methods under the three-layer situations. Consider a three-
layer sliced design 23+3−1 with two design schemes d(1):
I = ABC and d(2): I = ABCS1S2S3. The ordered sliced
word-length pattern grouping for d(1) and d(2) are SWd(1) =
{(30, 43, 50)} and SWd(2) = {(30, 40, 53)}, respectively. Note
that d(1) is ordered sliced resolution IV and d(2) is ordered
sliced resolution V. Thus, according to the sliced minimum
aberration criterion, the design d(1) is better than the design
d(2). For comparison, we also take an optimal BLHD gen-
erated by maximizing the minimum inter-site distance as a
benchmark.

Based on the constructed design, we consider the following
model to generate response y as

y = β0 +
1∑

i=0

1∑
j=0

1∑
k=0

βAijk(A|S1 = i, S2 = j, S3 = k)

+
1∑

i=0

1∑
j=0

1∑
k=0

βBijk(B|S1 = i, S2 = j, S3 = k)

+
1∑

i=0

1∑
j=0

1∑
k=0

βCijk(C|S1 = i, S2 = j, S3 = k)

+
3∑

i=1
βSi Si +

3∑
i=1

3∑
j=1

i �=j

βSiSj SiSj

+
3∑

i=1
βASi ASi +

3∑
i=1

βBSi BSi +
3∑

i=1
βCSi CSi + ε,

where ε is the error term following N(0, σ 2). Here, we take β0 =
5, βA000 = 3, βA011 = 2, βB010 = 4, βB001 = 2, βC100 = 10,
βC101 = 3, βS1 = 10, βS2 = −3, βS3 = 5, βCS1 = 5, βS1S2 = 5
and the other coefficients are 0’s. We also consider two scenarios
of the noise levels as ε ∼ N(0, 1) and ε ∼ N(0, 0.5).

Figure 3 displays the simulation outcomes based on 100 repli-
cations. This figure demonstrates that the two MLSDs accurately
estimate the true parameters, as evidenced by the coverage of
the true values by all boxplots. Regarding the BLHD, some
simulations suggest that βA011 and βB001 are statistically insignifi-
cant. Although BLHD effectively estimates the slice factors with
reasonable accuracy and precision, it exhibits lessrecision and
accuracy compared to MLSDs. This is indicated by the means
of deviating more from the red line and broader boxplots. This
discrepancy is attributed to the BLHD’s design, which is more
suited for factors with continuous values. When applied to a
discrete design, the optimization algorithms face challenges in
achieving a global optimum due to the presence of ties, leading
to inefficiencies in the algorithm thus, there is no guarantee that
the BLHD identified is the optimal one. Supplementary Table S2
indicates the use of d(2) provides slightly better estimates for slice
factors than the use of d(1). That is the estimates of βS1, βS2, βS3
of d(2) move the mean slightly closer to true values of parameters
than that of d(1). Overall, we can find the performance of BLHD
is less competitive to MLSD when the layers of design are grow-
ing. For d(2), we calculate that the SNR is around 98%, which is
much better than that of two two-layer slice designs. Here, we
conduct more designs to explore the variability of responses.

6. Case Study

In this section, we use the proposed MLSD to improve AI
assurance (Batarseh, Freeman, and Huang 2021; Batarseh and
Freeman 2022; Batarseh, Chandrasekaran, and Freeman 2023).
In AI assurance, it is important to understand the hyperparam-
eter effects in different models and optimization strategies when
training a deep learning model. The combinatorial complexity of
hyper-parameters is a common challenge for machine learning
practitioners and researchers since it often requires significant
computational resources to find a good combination of hyper-
parameters for a specific task. Several studies have focused on
hyperparameter tuning to enhance the performance of deep
neural networks (Pannakkong et al. 2022; Liao et al. 2022).
Moreover, a good combination of hyper-parameters can be dif-
ferent for deep learning methods under different models and
optimization strategies.

For investigating the effects of hyper-parameters in the
deep learning model, practitioners typically rely on their own
experience to determine the values of each parameter. They
might change one element at a time while keeping the others
constant, similar to a one-factor-at-a-time analysis (Wu and
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Figure 3. Simulation results for three-layer platform designs: comparative performance of MLSDs and BLHD across 100 replications.

Figure 4. Examples of MNIST Dataset.

Hamada 2021). Based on their results and intuition, they then
make a decision about the optimal combination of settings.
Such a procedure cannot identify the best combinations of
hyper-parameters. Alternatively, practitioners could implement
all possible combinations to find the best one, but such an
exhaustive search requires costly computational resources.
Using the proposed MLSD and analysis method, one can provide
a statistical tool to facilitate a more efficient exploration of
the hyper-parameter, model, and optimization space for AI
assurance.

Specifically, we consider the classification deep learning algo-
rithm for a popular dataset named MNIST (Deng 2012), which
is composed of handwritten digits formatted as 28 × 28 pixel
monochrome images. Figure 4 illustrates some image exam-
ples. The objective of the deep learning algorithm is to accu-
rately classify the images and achieve good prediction accuracy.
There are several key factors, including model architecture, opti-
mization strategies, batch sizes, and epoch and learning rates,

for consideration in the deep learning algorithm. For model
architecture, two popular models used in image classification
problems are the Convolutional Neural Network (CNN) and
Multi-layer Perceptron (MLP). In general, CNN is the preferred
choice for image classification tasks over MLP due to its ability to
capture spatial hierarchies and local patterns in images, leading
to better performance. However, MLP typically requires fewer
computational resources compared to CNN. If computational
resources are limited, an MLP might be a more feasible choice.
In addition, MLP is generally simpler and faster to train than
CNN, especially for small datasets or simple image classification
tasks where the spatial hierarchies are not as critical. There-
fore, when the performance of MLP is comparable to that of
CNN without significant sacrifices in accuracy, MLP becomes
an attractive option. Optimizers are the tools we use to estimate
the parameters by minimizing a loss function. Some well-known
optimizers are adaptive gradients, such as AdamW (Loshchilov
and Hutter 2017) and Adagrad (Lydia and Francis 2019). The



10 Q. GUO, X. DENG, AND P. CHIEN

learning rate can control how much model weights should be
updated. As deep learning algorithms often require significant
computational resources, it may not be feasible to optimize a
model using all available data at once. As a result, the data are
split into smaller subsets or batches, and the model estimation
is iterated over each batch. Thus, the number of data points in
each batch is known as the batch size, and the number of times
the algorithm runs on the entire training dataset is known as the
number of epochs.

To investigate the effects of the above key factors in the deep
learning algorithm, we cast this parameter selection problem
as a two-layer sliced design. The model and optimizer can be
considered as the slice factors, which are crucial components in
deep learning. The remaining factors, including the number of
epochs, batch size, and learning rate, can be considered design

Table 3. Five factors and their levels.

Slice factors Design factors

Model (S1) Optimizer (S2) Epoch (A) Batch size (B) Learning rate (C)
Level 0 MLP AdamW 20 32 10−3

Level 1 CNN Adagrad 50 64 10−4

factors. While some design factors are continuous, users of deep
learning algorithms typically choose discrete levels, for example,
32, 64, or 128 for the batch size. By using the proposed 22+(3−1)

two-layer sliced design, we can effectively investigate the effects
of these factors on the performance of the deep learning algo-
rithm. Table 3 lists the factors and their respective levels in this
study.

In this two-layer sliced design, we consider two optimal
designs with 16 runs as described in Table 2 of Section 5.1. For
each design, we take the prediction accuracy as our response.
The corresponding results for d(1), d(2), and the BLHD are
reported in Table 4.

In the Figure 5, we present the main effects for slice factors
S1 and S2, as well as the design factor C within a subdesign. For
slice factor S1, the main effects on D1 and D2 are similar and
both positive. However, in BLHD, S1 exhibits slightly negative
main effects. Factors S2 and C11 exhibit similar effects across all
three designs. Figure 6 illustrates interactions across the three
designs, all of which display similar patterns. According to these
two figures, we observed BLHD shows a different effect for S1.

After collecting all the responses (y), we conduct parame-
ter estimations and summarize the significant parameters for
all strategies in Table 5. All other parameters not reported in

Table 4. The classification accuracy (%) for each design strategy in comparison.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D1 95.36 94.81 93.15 91.23 98.54 98.34 98.44 96.72 88.05 89.42 78.28 69.56 94.25 95.92 77.97 62.45
D2 94.96 90.42 92.99 94.76 74.6 88.51 89.52 74.24 97.23 98.24 98.79 97.98 94.25 66.78 78.58 95.31
BLHD 66.83 90.73 91.68 95.46 89.42 75.45 98.69 97.78 88.86 98.14 63.36 98.44 88.51 94.96 92.94 78.53

Figure 5. Main effects for S1, S2 and C11 across different designs.

Figure 6. Interaction effect between S1 and S2 across different designs.
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Table 5. Parameters estimates in two-layer sliced design.

β0 βA01 βA11 βB01 βB11 βC00 βC01 βC11 βS1 βS2 βS1S2

D1 88.90 2.48 4.26 −1.80 −3.43 −1.41 −7.37 −12.40 1.41 −6.90 −0.75
D2 89.19 0 2.87 0 −2.27 −1.24 −6.95 −10.7 1.61 −6.39 −0.61
BLHD 88.59 0 6.02 0 −1.09 0 −6.19 −9.38 0.80 −6.94 −1.66

the table are zero across all three designs. Table 5 compares
results for different designs. The coefficients estimation of I,
βS1 , βS2 , βS1S2 , βC00 , and βC01 in d(1) and d(2) are very close.
The minor differences observed between the estimates from d(1)

and d(2) can be attributed to random noise. Specifically, two
primary sources contribute to this noise. The first is run-to-
run variability inherent in training CNNs, influenced by factors
such as random initialization of weights, the ordering of mini-
batches during stochastic gradient descent, and adaptive learn-
ing rates. The second source of noise arises from the selection
of tuning parameter λ, introducing additional variability into
the model estimation process and affecting the accuracy of the
coefficient estimates. As a result, there is a slight estimation gap
between d(1) and d(2). Among all the coefficients, the signs of
each detected effect in the two optimal strategies are consistent.
However, for the BLHD, the magnitude of S1 and S1S2 are
different from the coefficients of d(1) and d(2). Moreover, the
BLHD design fails to identify the effects of βC00 , indicating a
potential limitation in its detection capability.

Based on the result for d(1), the average accuracy of the
deep learning algorithm is 88.90%. The estimate of βS1 is 1.41,
which means that changing the model from MLP to CNN can
improve the accuracy by 1.41%. This is consistent with the
general observation that CNN works better in computer vision
tasks than MLP. In terms of βS2 , we can infer that the optimizer
AdamW performs better than the Adagrad and it can enhance
the accuracy by 6.9%. The estimate of βS1S2 shows that the model
and optimizer interact with each other and the interaction harms
the prediction accuracy. The estimate of βA00 presents improving
epochs from 20 to 50 can increase 2.48% accuracy when we use
the MLP model and AdamW optimizer.

The estimate of βA11 implies that improving epochs from 20
to 50 increases 4.26% accuracy when we use the CNN model
and Adagrad optimizer. Overall, the main effect of epoch (i.e.,
design factor A) in every slice factor plays a positive impact
on accuracy. This is because the model does not converge at
20 epochs and it needs more epochs to improve the model’s
performance. The effects of batch size (i.e., design factor B)
always hurt the prediction. This can be explained by using a
larger batch size means fewer model updates in each model
epoch. In addition, the significant effect of the learning rate (i.e.,
design factor C) shows that prediction accuracy can benefit from
the bigger learning rate since it can accelerate the model learning
process. The results of d(2) can be interpreted similarly.

From the analysis, one can obtain several insightful observa-
tions, guiding the selection of factors for model performance.
Notably, the first slice factor indicates a positive sign, suggesting
that CNN models outperform MLP models in the classification
of handwritten digital images, enhancing accuracy by approx-
imately 1.5%. If computational resources are limited and some
decrease in accuracy is acceptable, MLP models may be consid-
ered a viable alternative. Moreover, the choice of optimization

strategy plays a crucial role in performance, with the AdamW
optimizer boosting accuracy by about 6.5%, as demonstrated
by the second slice factor. Based on the insights from the slice
factors, coupled with considerations such as budget and com-
putation time, researchers can make informed decisions regard-
ing the most suitable model and optimization method. Fur-
thermore, under specific combinations of slice factors, experi-
menters can identify optimal hyperparameter settings. In a short
summary, the proposed approach is useful to facilitate simul-
taneous model selection, optimization strategies choosing, and
hyperparameter tuning within a single fractional experimental
design, enabling efficient and effective exploration of model
configurations.

7. Discussion

We proposed a multi-layer sliced design to quantify the effects
of slice factors and design factors to account for design factors
with different effects under different level combinations of slice
factors. We also developed a criterion for finding the minimum
aberration design in this new situation. Moreover, we developed
an effective analysis method to estimate the effects of these
factors and test their significance. It enhances the reduction of
estimation bias through the combination of sub-model estima-
tions. The application of the proposed design to AI assurance
is particularly important in practice as it can effectively detect
the effects of hyper-parameters affecting the performance of AI
algorithms.

The proposed method can also be adapted for online
experiments and other AI applications. In online experiments,
slice factors can be different mediums where an experiment is
conducted, and they can significantly influence the results of
the study. For example, these factors can include device types
such as laptops and cellphones, web browsers such as Google
Chrome and Safari, and e-commerce platforms like Amazon
and eBay. The importance of a slice factor can vary depending
on the context and objectives of the study. Here is a scenario
where one slice factor is more important than another. Consider
conducting a study to understand online shopping behavior,
with a focus on comparing user interactions and purchase
decisions on laptops versus cellphones. In this experiment, it
involves two slice factors: device types (cellphone and laptop)
and web browsers (Google Chrome and Firefox). The device
type can be more important than the web browser for several
reasons. First, users might use cellphones for quick purchases or
while on the go whereas desktop shopping might be associated
with more extensive research and comparison. Understanding
these differences is crucial for the study’s objectives. Second,
cellphones might offer features like push notifications and per-
sonalized recommendations that can increase user engagement
and conversion rates. Analyzing the differences in shopping
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behavior between laptops and cellphones can provide valuable
insights for e-commerce businesses. Notably, one should
be careful when making assumptions about the importance
sequence of slice factors. Inappropriate assumptions might
introduce estimation bias and impact the estimation efficiency.
In practice, to mitigate such risks, one should conduct a pilot
study to assess the relative importance of factors when possible.
It is also good to check with practitioners to set reasonable
assumptions based on their experience. In the future, it would
be interesting to take into account slice factors of varying
importance and apply the proposed MLSD to online shopping
experiments.

The proposed estimation method can estimate the effects of
interest simultaneously. An interesting finding is that in the case
of only one slice factor, the conditional value X1 given S1 can be
viewed from the angle of conditional main effects (Mak and Wu
2019). Note that there is a close connection between interaction
effects and conditional main effects. It is important to remark
that we only consider the conditional main effects on the slice
factors, which differs from the conventional conditional main
effect model. In addition, it is important to clarify the differences
between the slice factor and the blocking factor in experimental
design. While the design strategy for constructing these two
types of designs may have some similarities, their underlying
mechanisms are distinct. In the case of the blocking factor, it
is essential to control for the variation it introduces. While for
the slice factor, it is crucial to accurately detect its effect, which
is often the primary focus. Additionally, when constructing the
design, priority should be given to accurate estimation of the
slice factor’s effect.

We would like to remark that exploring the potential of exper-
imental design in modern applications is a promising direction
and is gaining increasing attention. Some recent works have
shown that experimental design can help improve the perfor-
mance of AI. Lim et al. (2020) employed experimental design
to enhance the efficiency of AI-driven optimization for complex
disease treatments using a minimal number of experiments.
Lian et al. (2021, 2022) explored the design of experiments to
improve the robustness and assurance of AI algorithms. On the
other hand, other researchers study using AI to improve the
experimental design. Kleinegesse and Gutmann (2020, 2021)
and Guo et al. (2022) used contrastive variational mutual infor-
mation estimators to better find the optimal design. Ren et al.
(2021) considered the smart device to collect the most informa-
tive data by optimizing the knowledge graph of the customer.
Our study presents useful results demonstrating that the applica-
tion of statistical experimental design can enhance AI research.
In the future, one can consider conducting experiments with
the Amazon Mechanical Turk platform to gather data for a
multi-layer sliced design and analysis. Additionally, we iden-
tify several directions for future exploration. First, it would be
valuable to examine sliced design under nonnormal response
scenarios, extending to both design construction and analysis
methodologies. Second, researchers could consider linking the
slice aberration criterion to estimation capability with statistical
foundation and using alternative design criteria that incorporate
prior information about design factors to construct experimen-
tal designs, such as the I-WLP criterion (Li, Mee, and Zhou
2019). Third, it is interesting to explore the minimum aberration

design under the constructed estimation model (Mukerjee, Wu,
and Chang 2017; Chang 2023).

Supplementary Materials

The mlsd_supplementary.pdf contains proofs of Theorem 1 and Proposi-
tion 1, and additional simulation results. The code.zip provides all the code
for reproducing the simulations (Section 5) and case study (Section 6).
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