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A B S T R A C T

Ride-hailing services, which have become increasingly prevalent in the last decade, provide an efficient travel
mode by matching drivers and travelers via smartphone apps. Ride-hailing services enable millions of non-
traditional taxi drivers to provide travel services, but may also raise safety concerns due to heterogeneity in the
driver population. This study evaluated crash risk factors for ride-hailing drivers, including driving history and
ride-hailing operational characteristics, using a sample of 189,815 drivers. We utilized the Poisson generalized
additive model to accommodate for the potential nonlinear relationship between crash rate and risk factors.
Results showed that crash history, the percentage of long-shift bookings, driving distance, operations during
peak hours, years of being a ride-hailing driver, and passenger rating were significantly associated with crash
risk. Several factors showed nonlinear relationships with crash risk. We adopted the SHapley Additive
exPlanation (SHAP) method to assess and visualize the impact of each risk factor. The results indicated that
passenger average rating, total driving distance, and crash history were the leading contributing factors. The
findings of this study provide critical information for the development of safety countermeasures, driver edu-
cation programs, as well as safety regulations for the ride-hailing industry.

1. Introduction

Ride-hailing services have grown exponentially in the last decade
and have become a major component of the modern travel service in-
dustry. During this time, drivers working for ride-hailing services also
increased substantially and now account for a considerable proportion
of the overall driver population. This increase in riding-hailing traffic
volume and driver population may lead to an increased number of
crashes related to ride-hailing services. However, limited research has
been conducted to understand the safety issues related to ride-hailing,
and there is an urgent need to evaluate the safety of ride-hailing drivers
and to identify the risk factors contributing to automobile crashes in-
volving ride-hailing services.

Ride-hailing services provide peer-to-peer travel arrangements,
which can be either for-profit or nonprofit. A smartphone app-based
online platform connects passengers with ride-hailing drivers. Since
Uber started its ride-hailing service in 2009, the sector has experienced
significant growth in the United States and worldwide. Large companies
like Didi Chuxing can host tens of millions of drivers and serve tens of

billions of trips annually. The increasing importance of ride-hailing
services has inspired research into its impact on traffic congestion, total
vehicle miles traveled (VMT), vehicle ownership, safety, and regulation
policies.

Research shows mixed results with regard to ride-hailing services’
impact on the total VMT as well on traffic crashes. Some studies have
shown that ride-hailing services reduce total VMT, as many trips share
similar origins and destinations, and ride-hailing services can combine
multiple trips into one (Santi et al., 2014; Cici et al., 2014; Alexander
and González, 2015; Alonso-Mora et al., 2017; Agatz et al., 2011).
Conversely, there are also studies indicating an increase in VMT, as a
large percentage of ride-hailing trips would otherwise have been made
by walking, biking, or public transportation (Rayle et al., 2014;
Schaller, 2017; Henao, 2017; Circella et al., 2018). In addition, extra
travel due to passenger pick-up and drop-off, detouring, and cruising
while waiting for ride bookings will also increase the total VMT
(Schaller, 2017; Li et al., 2016). In terms of safety impacts, Barrios et al.
(2018) found a 3% increase in the number of crashes by modeling
crashes as a function of VMT and average driver quality. Dills and
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Mulholland (2018), on the other hand, showed a 17–40% decrease in
fatal crashes for U.S. counties where Uber had operated for four or more
years.

While the majority of the safety research in this area focuses on the
impacts of ride-hailing at the societal level, it is also important to assess
the driving risk among ride-hailing drivers. Unlike traditional profes-
sional taxi drivers, a large portion of ride-hailing drivers perform this
work as a part-time job. They typically have not obtained rigorous
training and screening, as is required by taxi or truck fleets.
Considerable heterogeneity exists among drivers in terms of driving
experience, working preference, and driver behavior, which could lead
to drastic differences in individual crash risk.

Understanding ride-hailing drivers’ safety and contributing risk
factors is especially valuable since ride-hailing companies can use ap-
propriate interventions or educational countermeasures to improve
safety. Several attributes are unique to ride-hailing drivers and may be
used to estimate individual driver risk. For example, ride-hailing op-
eration requires interacting with a smartphone app, which has been
well-established as related to crash risk (Redelmeier and Tibshirani,
1997; Klauer et al., 2014; Dingus et al., 2016; Guo et al., 2017, 2019).
This higher risk associated with driver cellphone use has been estab-
lished both at the individual driver and trip level (Fitch et al., 2013;
Atwood et al., 2018; Farmer et al., 2015). Higher cellphone exposure
among ride-hailing drivers therefore puts them at higher risk compared
to regular drivers.

Certain ride-hailing drivers may choose to work more during peak
hours when the demand is high, while others might choose to work
more during off-peak hours to avoid congestion. As congested traffic
typically imposes higher crash risk, operating during peak hours can be
correlated with crash risk. Ride-hailing services typically offer passen-
gers an option to rate the driver after a trip. The rating represents riders’
satisfaction level, which reflects the driver's working attitude as well as
their driving behavior. Passenger ratings thus could be a predictor for
crash risk.

Driving fatigue is a major contributing factor to crash risk (Stern
et al., 2019; Liu et al., 2019; Liu and Guo, 2019). Professional drivers
are subject to strict regulations. The Hours of Service rules, set forth by
the Federal Motor Carrier Safety Administration puts a limit on how
many hours a commercial truck driver can drive in one working shift
and the minimum number of off-duty breaks between two working
shifts. Studies have shown that Hours of Services rules can help drivers
get more sleep, thus mitigating the effect of fatigue (Hanowski et al.,
2007; Banks, 2007). As a considerable number of ride-hailing drivers
work for extended hours, there is a need to study the prevalence of
driving long-shifts as well as what impact that has on safety.

Generalized linear models (GLMs), especially Poisson and negative
binomial (NB) regression, are often used to assess driver risk and
identify risk factors (Guo and Fang, 2013; Guo et al., 2015; Chen et al.,
2016; Antin et al., 2017; Guo, 2019). Poisson and NB regression models
assume the logarithm of crash rate to be a linear combination of the
covariates, which is often not satisfied in practice. For example, it is
well known that age has a bathtub-shaped relationship with crash risk;
i.e., young and senior drivers have higher crash rates than middle-aged
drivers. Generalized additive models (GAM) can accommodate non-
linearities smoothly using proper basis functions (Hastie and Tibshirani,
1987). While the GAM is a common method is many disciplines, only a
very limited number of traffic safety research studies have adopted
GAM (Friedman et al., 2001; Zhang et al., 2012).

Quantitatively evaluating the impact of a contributing factor is
crucial for risk assessment models. The SHapley Additive exPlanation
(SHAP) method provides a unified approach for interpreting model
outputs. The SHAP value measures the impact of each factor for the
model outputs, for both individual observations and the study popula-
tion. The additive property of SHAP assures that the summation of all
the importance measures and baseline value adds up to the final output
(Lundberg and Lee, 2017). A force-plot based on SHAP output can

provide a visualization of the impact for individual observations
(Lundberg et al., 2018).

The objective of this paper is to evaluate the risk factors associated
with ride-hailing drivers. The data include 189,815 active drivers from
the Didi Chuxing Technology Corporation. A cross-sectional study de-
sign was used to examine risk factors associated with the crash risk in a
6-month period. Extensive data mining was conducted to extract fea-
tures from operational characteristics. A Poisson GAM was used for
model development and SHAP was used for the impact assessment of
potential risk factors.

2. Material and methods

The ride-hailing data from Didi Chuxing are introduced in Section
2.1. The Poisson GAM, which can accommodate the potential nonlinear
relationship, is presented in Section 2.2. We adopted the SHAP method
to assess the contribution of risk factors to the fitted GAM as introduced
in Section 2.3.

2.1. Ride-hailing data

The ride-hailing data were provided by the Didi Chuxing
Technology Corporation. A cross-sectional design was adopted to in-
clude crash and driver information in the second half of the year 2018.
The study population was defined as all active drivers from a major city
in China. The study population was defined as all active drivers from a
major city in China during the study period. The study sample included
189,815 drivers who completed more than 100 bookings during the
second half of 2018. These 189,815 drivers combined drove two billion
vehicle-kilometers during the study period and were involved in 5298
crashes. The average crash rate in our sample was 267.1 crashes per
100 million vehicle kilometers traveled.

The crashes included in the study occurred while the ride-hailing
drivers were on-duty. The crashes could be reported by passengers, the
ride-hailing drivers themselves, or the police. Since the crash reporting
scheme differs from the police-reportable crash standard, the data in-
clude a considerable proportion of less severe crashes compared to ty-
pical police crash databases. This study includes all crashes with se-
verity above the property damage level, including property damage
only, injury, and fatal crashes.

Extensive data mining was conducted to extract ride-hailing op-
erational features that might affect risk, primarily based on booking
information. A booking is considered a completed trip from a passenger
making a request online to the ride-hailing driver dropping off the
passenger(s) at the destination. After a booking was completed, the
passenger would either rate the ride-hailing driver on a five-star scale
based on the service experience, or take no rating action. The booking
length, passenger rating, start and end time, along with many other
characteristics, were recorded in the booking database.

The vast operational characteristics data generated on the ride-
hailing platform provide opportunities to study potential risk factors
and quantify their effect on crash risk. For example, one feature is
whether a driver took bookings during morning or evening peak hours,
which are defined as 7–10 a.m. and 5–8 p.m., respectively. The complex
traffic conditions during peak hours might impose a higher risk for
drivers. Operational characteristics were aggregated from the detailed
bookings database to the driver-level. Seven operational features were
extracted at the driver level, as listed in Table 1.

Past crash history has been shown to be related to future crash risk
and is used extensively in insurance and fleet safety management. A
crash history variable was constructed to represent whether a driver
was involved in crashes during on-duty revenue-generating working
time in the years 2016 and 2017. The crash history for drivers who
started after 2018 are labeled as “unknown” and are treated as a se-
parate category.

A total booking distance variable was constructed to represent the
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total working load and exposure to driving. The total booking distance
is the cumulative revenue-generating driving distance of all the book-
ings a ride-hailing driver took during the study period. The total
booking distance had dual roles in driver risk modeling. (1) The dis-
tance served as an exposure measure; i.e., drivers who drove more
would have more chances to experience crashes due to longer exposure
to at-risk conditions. (2) Drivers who drove different mileages could
have different crash rates due to confounding factors, such as driving
fatigue and driving experience. The analysis considered both aspects of
the total booking distance variable.

Tenure duration can also be associated with crash risk in two ways.
(1) A novice ride-hailing driver might not be familiar with the app
interface and operational protocol, thus demanding a higher cognitive
load, which could impair safe driving ability. (2) Tenure duration could
also be associated with past safety performance; severe safety violations
or crashes will lead to termination of the ride-share driving contract.
Both familiarity with the operation and past safety performance are
related to crash risk. We calculated the tenure history as the number of
years the driver had worked for Didi Chuxing up until December 31,
2018.

Passengers’ star ratings are a comprehensive rating of the quality of
service, which includes driving behavior that could affect safety. The
average passenger rating feature calculates the average star over all the
bookings for which passengers gave a rating (1–5 stars) after a ride.
Drivers who received less than three ratings were counted as missing.
The ratings were missing for about 0.9% of the driver samples during

the second half of 2018 and these drivers were excluded from the
analysis.

Driving over an extended period of time in a working shift could
lead to driver fatigue and affect safety. We extracted a feature “per-
centage of long-shifts” to represent the tendency of a driver to work
long-shifts. One data log point was recorded for every minute a ride-
hailing driver was operating. By aggregating the total data points,
segments of continuous online time were calculated for all trips. In
addition, two consecutive online periods were considered to be one
shift if the offline time between them was less than 7 h. A shift was
considered a long-shift if the cumulative operating time was longer than
12 h. The percentage of long-shifts was calculated among all shifts for
each driver in the study period.

The sheer volume of the log data made it difficult to retrieve
achieved data from the study period. Instead, the online records from
January 1, 2019, to March 31, 2019 were used. As the percentage of
long-shifts is typically associated with a driver's working schedule and
is relatively stable over time, we can assume the data from the first
quarter of 2019 are representative of these driver characteristics. One
issue is that a considerable number of ride-hailing drivers who operated
during the second half of 2018 were missing from 2019, leading to a
large portion of missing data. We adopted a method to deal with these
missing values, as shown in Section 2.2, Eq. (4).

The Poisson and NB models assume a linear relationship between
the risk factor and the logarithm of the crash rate, which is not satisfied
by the data. Fig. 1 shows the relationship between average crash rate
and the percentage of long-shifts, in which bars represent the percen-
tage of drivers who fall into each long-shift category and the line re-
presents the relationship between long-shift percentage and crash rate.
As the figure shows, crash rate follows a pattern of a decreasing trend
before 20–40%, followed by a sharp increase. The pattern of crash rate
can be explained by the fact that inexperienced drivers usually do not
take long-shifts and their crash risk is typically higher. Those who oc-
casionally take long-shifts are more experienced drivers and tend to be
more cautious while driving. Taking too many long-shifts will increases
crash risk. Drivers who mainly take long-shifts are primarily profes-
sional drivers and their crash risk will therefore be lower. As the regular
GLM cannot capture the nonlinear relationship as illustrated, the GAM
is a more appropriate model for driver risk assessment.

2.2. Generalized additive model for count response

A regression model for count response was used to quantify the
relationship between the continuous risk factors and the logarithm of

Table 1
Descriptive statistics of ride-hailing operational characteristics data.

Categorical variable Levels Frequency Percentage

Worked during morning peak
(7:00 a.m–9:00 a.m.)

No 9251 4.9%
Yes 180,564 95.1%

Worked during evening peak
(5:00 p.m.–8:00 p.m.)

No 3366 1.8%
Yes 186,449 98.2%

Crash history (involved in a
crash before?)

No 120,089 63.3%
Yes 611 0.3%
Unknown 69,115 36.4%

Continuous variable Range Mean (std. dev.) Missing pct.

Total booking distance (104 km) 0.02–5.94 1.05 (0.91) 0%
Years being ride-hailing drivers 0.30–4.60 2.28 (1.16) 0%
Average rating 1–5 4.92 (0.11) 0.9%
Percentage of long-shifts 0–1 0.33 (0.29) 38.3%

Fig. 1. The prevalence (bar) and average crash rate (segmented line) for variable ‘percentage of long-shifts’.
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crash occurrence rate. Assume that the number of crashes for driver i,
Yi, follows a Poisson or NB model; i.e.,

Y E Y EPoisson( · ) or NB( · , ),i i i i i i

where Ei is the exposure measured by driving time or mileage; λi is the
expected crash rate for driver i; and γ is the overdispersion parameter
for NB. Both Poisson and NB GAMs assume

= + + + +
= …

f X f X f X
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log( ) ( ) ( ) ( ),
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where Xi1, Xi2, …, Xip are the p covariates for driver i used for risk
assessment. fj(·) can be either a linear or nonlinear function in terms of
the jth covariate, j=1, …, p. When f1(⋅), …, fp(⋅) are all linear func-
tions, a GAM degrades to a regular GLM.

The GAM uses a linear combination of proper basis functions to
model a complex non-linear relationship (Agresti, 2003). Denote
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We adopted the commonly used spline model with cubic basis
functions. The knot selection was determined based on exploratory data
analysis and domain knowledge. For some variables, such as “average
rating,” we also adopted the smoothing spline for the construction of
the basis functions. Note that the smoothing spline does not require
knot selection but needs to specify the degree of freedom.

We also developed a strategy to deal with the missing value issue in
the GAM. An indicator variable, =X( NA)il , was used to represent the
missing value for covariate Xil. The GAM was extended to accommodate
the missing value through the following additive form,
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The coefficients {β0, βjm;j=1, …, p, m=1, …,Mj} can be estimated
using a regular generalized linear regression fitting approach. The es-
timated crash rate for a driver i is
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where = … = …ˆ ˆ j p m M{ , ; 1, , , 1, , }j0 jm are the estimated coefficients.
We used a cubic spline with two knots as an example for illustration.
Suppose the knots used for fj(·) are ξ1 and ξ2, then the following func-
tions constitute the cubic spline basis:
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The Poisson GAM introduced above can account for the nonlinear re-
lationship between the logarithm of crash rate and the value of the risk
factors. In the case that over-dispersion is present for a Poisson GAM, an
NB GAM can be used to avoid the lack of fitting.

2.3. Model explanation using SHAP

Quantitatively assessing the impact of a risk factor to the crash rate
both globally and for an individual driver is an important aspect of a
prediction model. Global assessment of a risk factor refers to the impact
at the driver population level, which provides crucial information for
policy making and safety countermeasure development. At the in-
dividual driver level, the impact assessment can provide insight into
why a driver is at higher risk and provide a tailored safety improvement
plan for a specific driver.

The SHAP method provides a unified approach to explain the out-
puts of an arbitrary prediction model (Lundberg and Lee, 2017). The
SHAP can be applied in a wide variety of models, including blackbox
models, and is not affected by the unit of measurement. For generalized
linear GAM models, the SHAP has an explicit form, as presented in this
section. SHAP assigns each covariate an importance value for a parti-
cular prediction, both for population and for an individual observation.
Denote ϕij as the importance of the jth risk factor to the model output
for individual observation i. In the context of this paper, the model
output is the logarithm of the estimated crash rate ˆlog( )i for driver i.
For linear models, the importance of the jth covariate for observation i
has a simple form of:

=

= … = …
=

X
n

X

i n j p

ˆ ( 1 ),

1, , , 1, , .

j
i

n

ij ij
1

ij

(10)

As GAM is linear in terms of the basis functions, the SHAP
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calculation follows a similar procedure. The importance value ϕij for
GAM is

=
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where …h h{ (·), , (·)}j1 jMj is the set of basis function for the jth covariate
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=

= … = …
=

h X
n

h X

j p m M

( )¯ 1 ( ),

1, , , 1, , .

j
i

n

j

jm
1

jm ij

(12)

The additive property of SHAP guarantees that the summation of
the importance measure along with the baseline value add up to the
final model output, where the baseline value is the average model
output, which is,
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is the baseline value representing the average model output for all
drivers and is a constant.

The SHAP can also be used to quantify the global impact of each risk
factor, in which case the average absolute impact on model output
magnitude is used as the evaluation metric; i.e.,

= …
=

n j p| |/ , 1, , .
i

n

1
ij

(17)

The above global metric measures the impact on the logarithm of es-
timated crash risk over all drivers. This global measurement can be used
to assess and compare the impact among multiple risk factors.

3. Results

We applied the GAM and SHAP modeling framework to the Didi
Chuxing dataset to identify risk factors significantly associated with
ride-hailing drivers’ crash risk. The quantitative impacts of each factor
in drivers’ crash risk, both at the individual driver level and globally,

were evaluated by the SHAP method. Risk factors were ranked by their
global impacts to the study's driver population. The impact of multiple
risk factors to the crash rate of a single driver's risk was demonstrated
using a force-plot, which visualizes both the direction and magnitude of
the effects of the different factors.

3.1. Model estimation results

All the continuous variables were included in GAM using spline
methods. The cubic spline was used for modeling the effects of the
continuous variables “total driving distance,” “years being ride-hailing
drivers,” and “percentage of long-shifts.” The smoothing spline was
adopted for describing the effects of “average rating.” The spline format
and knots were selected so that the fitted effect matched the patterns of
empirical average crash rate. The Poisson models showed no over-dis-
persion presence and no evidence of lack of fitting, and thus were
adopted instead of the negative binomial models.

The estimated model coefficients for categorical variables are shown
in Table 2. The crash rate ratio (CRR) is the exponential of the esti-
mated regression coefficient, representing the ratio between the crash
rate of two levels (e.g., with previous crashes or without). The Wald
95% confidence interval (CI) was used for interval estimation. Drivers
with previous crashes had a significantly higher crash rate than drivers
with a clean crash history (CRR, 1.644; 95% CI: [1.198, 2.255]). Drivers
with an unknown crash history also showed a significantly higher crash
rate compared to crash-free drivers (CRR: 1.175; 95% CI:
[1.082–1.274]).

The business operational characteristics of drivers show consider-
able impacts on crash risk. Drivers who had business transactions
during the morning peak hours (7–10 a.m.) were significantly riskier
than those who did not (CRR, 1.637; 95% CI: [1.274–2.106]). Drivers
who had business transactions during the evening peak hours (5–8
p.m.) also had a significantly higher crash rate than those who did not
(CRR, 1.619; 95% CI: [1.051–2.492]).

Fig. 2 shows the effect of four continuous variables on the logarithm
of the estimated crash rate; i.e., the corresponding fj(·) term in Eq. (1).
The analysis of variance shows that all four continuous variables sig-
nificantly contributed to the crash rate: average rating (F-statistic,
599.41; p-value < 0.001), total booking distance (F-statistic, 50.09; p-
value < 0.001), years being ride-hailing drivers (F-statistic, 32.92; p-
value < 0.001), and percentage of long-shifts (F-statistic, 34.64; p-
value < 0.001).

The average passenger rating showed a strong nonlinear relation-
ship with crash rate. When the average rating was between 4.5 and 5.0
stars, the crash rate decreased rapidly with the increase in star rating.
However, there was essentially no difference in crash rate for drivers
with an average rating between 3 and 4.5. This result implies that
drivers with close to perfect ratings were substantially safer than those
with ratings below 4.5, while there was no obvious difference for dri-
vers with moderate to good ratings. The regular GLM failed to detect
such nonlinear relationships and could lead to incorrect conclusions.

Fig. 2(b) and (c) show that the crash rate decreased with the in-
crease in total booking distance and total years since the driver joined
Didi Chuxing. The relationship monotonically decreased, indicating
strong effects on crash risk. Fig. 2(d) shows the effect of the percentage
of long-shifts on crash rate. The nonlinear curve indicates a complicated

Table 2
Estimated model parameter for categorical variables.

Estimate (CI) CRR (CI) P-value

Involved in crash(es): Y vs. N 0.497 (0.181, 0.813) 1.644 (1.198, 2.255) 0.0020*
Involved in crash(es): unknown vs. N 0.161 (0.079, 0.242) 1.175 (1.082, 1.274) 0.0001*
Morning peak: Y vs. N 0.493 (0.242, 0.745) 1.637 (1.274, 2.106) 0.0001*
Evening peak: Y vs. N 0.482 (0.050, 0.913) 1.619 (1.051, 2.492) 0.0286*
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relationship. The results, in general, indicate that a higher percentage
of long-shifts was associated with higher crash rate. However, the rate
of change was highest when the percentage was between 20% and 70%.
The crash rate change flattened out or even reversed at the lower and
higher ends of the percentage range. This matches the empirical ob-
servation shown in Fig. 1.

3.2. Model explanation based on SHAP

We implemented the SHAP method to relate the impact of each risk
factor to crash risk for both an individual driver and for the study driver
population. The results are based on the estimated Poisson GAM pre-
sented in Section 3.1. The impact for an individual driver is visualized
through a force-plot and the global impact is presented through a bar
chart. The length of the bar on the left of the “output value” indicates
the impact of a factor pushing the risk higher and vice versa. The force-
plot clearly represents the risk of a single driver as well as the impact of
each factor.

Fig. 3 shows the estimated model's force-plot for a randomly se-
lected driver. The force-plot shows the point estimate of the outcome;

i.e., the logarithm of crash rate for an individual driver and the factors
that have a negative and positive effect on the outcome. The “base
value” indicates the average outcome for all drivers and the “output
value” shows the outcome of the specific object, which in this context is
the logarithm of this particular driver's estimated crash rate.

Fig. 3 shows that this particular driver is at higher risk than the
average driver, as the output value is higher than the base value. Being
involved in past crash is the biggest contributor to a higher crash rate. A
lower average star rating and a higher percentage of long-shifts also
makes this driver riskier than average. However, the risk is mitigated by
the relative length of time (years) being a ride-hailing driver and the
higher value of total booking distance.

Fig. 4 shows the ordered average impact of the seven risk factors
used in the driver risk assessment model. The average impact shown in
the x-axis is calculated as the average absolute SHAP value over all the
drivers in the model using Eq. (17). As the figure shows, the average
impact of a factor varies substantially. The passenger average rating has
the largest impact, with a value almost twice as large as the second
largest contributing factor, which is the total booking distance. The
impact of crash history, years being a ride-hailing driver, and percent of

Fig. 2. GAM outputs: log crash rate versus risk factors; (a) average rating; (b) total driving distance; (c) tenure years; (d) percentage of long-shifts.
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long-shifts are about the same. “Morning peak or not” has a larger
impact than “evening peak or not.”

4. Discussion and conclusion

Ride-hailing drivers constitute a unique and fast-growing driver
population. Understanding the risk factors associated with this driver
population is crucial for safety management programs as well as public
policy making and regulation. This study used a large ride-hailing
driver sample with hundreds of thousands of drivers and a large volume
of ride-hailing operational data to quantitatively assess the impacts of
potential risk factors.

In addition to traditional crash risk factors, ride-hailing drivers
operate as semi-professional drivers and their resultant operational
characteristics are shown to be associated with crash risk in this study.
For example, drivers with near perfect passenger ratings are much safer
than those with low ratings; drivers taking morning/evening peak
bookings show significantly higher risk compared to those who do not;
and the total booking distance contributes significantly to the estima-
tion of crash risk. Finally, drivers who drove more had lower crash risk.
These operational characteristics can help fleets develop appropriate
driver safety management strategies.

Note that the current results for percent of long shifts relies on the
assumption that drivers’ long-shift driving behavior remains similar
from one time period to another. In future work, we will attempt to
better align the period of log data with the study period to reduce the
percentage of missing data to better reveal the underlying relationship.

This study expands the state-of-practice Poisson and NB GLM by
using the GAM to incorporate the nonlinear relationships between the
logarithm of crash rate and continuous risk factors. The results reveal
the nonlinear risk profile by the percentage of long-shifts and average
passenger rating. The total booking distance and tenure as a ride-
hailing driver also show a certain level of nonlinear relationship with
crash rate. In general, we recommend the use of GAM in traffic safety
modeling, especially when the linear assumption is questionable based
on exploratory analysis.

The SHAP provides an elegant way to decompose the model output
into the impact of covariates. Traditional regression coefficients-based
interpretation can only reflect the relative importance of a risk factor,
providing provide virtually no information on the contribution to the
model's outcomes. The SHAP focuses on the predictive space and pro-
vides a quantitative assessment of the impact of both overall driver
population as well as individual drivers. The force-plot visualizes the
risk components for each driver and can facilitate risk management for
individual drivers.

It should be noted that the time window for feature “percent of long
shifts” was not aligned with the study period due to challenges in re-
trieving and processing vast amount of achieved ride-hailing data.
Therefore, the results rely on the assumption that drivers’ long-shift
driving behavior remains relative stable over time. In addition, we also
developed a method to impute missing data caused by the mis-align-
ment. Early planning and data preparation can alleviate such challenges
for future studies.

In summary, the big data collected by ride-hailing service compa-
nies provides unprecedented opportunities to evaluate driver risk and
better understand the contributing risk factors for this unique driver
population. The driving risk assessment framework described in this
paper provides a novel modeling perspective and methods to interpret
results. The finding of this study provide crucial information for driver
fleet safety management programs, insurance, driver education pro-
grams, ride-hailing regulations, and public policy making.
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