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A B S T R A C T   

Accurate prediction of driving risk is challenging due to the rarity of crashes and individual driver heterogeneity. 
One promising direction of tackling this challenge is to take advantage of telematics data, increasingly available 
from connected vehicle technology, to obtain dense risk predictors. In this work, we propose a decision-adjusted 
framework to develop optimal driver risk prediction models using telematics-based driving behavior informa-
tion. We apply the proposed framework to identify the optimal threshold values for elevated longitudinal ac-
celeration (ACC), deceleration (DEC), lateral acceleration (LAT), and other model parameters for predicting 
driver risk. The Second Strategic Highway Research Program (SHRP 2) naturalistic driving data were used with 
the decision rule of identifying the top 1% to 20% of the riskiest drivers. The results show that the decision- 
adjusted model improves prediction precision by 6.3% to 26.1% compared to a baseline model using non- 
telematics predictors. The proposed model is superior to models based on a receiver operating characteristic 
curve criterion, with 5.3% and 31.8% improvement in prediction precision. The results confirm that the optimal 
thresholds for ACC, DEC and LAT are sensitive to the decision rules, especially when predicting a small per-
centage of high-risk drivers. This study demonstrates the value of kinematic driving behavior in crash risk 
prediction and the necessity for a systematic approach for extracting prediction features. The proposed method 
can benefit broad applications, including fleet safety management, use-based insurance, driver behavior inter-
vention, as well as connected-vehicle safety technology development.   

1. Introduction 

Predicting crash risk and identifying high-risk drivers are critical for 
developing appropriate safety countermeasures, driver education pro-
grams, and use-based insurance systems. Predicting driver-level risk is 
challenging due to the numerous factors contributing to individual crash 
risk coupled with the rarity of crash events and the substantial hetero-
geneity among drivers. The rapid advancements in in-vehicle data 
instrumentation and connected vehicle technology will make high- 
frequency driving data collection almost ubiquitously available and 
cost-effective. This high-frequency, high-resolution telematics driving 
information provides a unique opportunity to improve the state-of-the- 
practice driver risk prediction models. However, the sheer size of the 
telematics data and considerable data noise also bring technical chal-
lenges for predictive feature engineering and model development. Thus, 
there is a need for a comprehensive driver risk prediction framework to 

effectively use the kinematic driving data. 
The crash risk of individual drivers varies substantially (Guo et al., 

2013; Ulleberg, 2001; Habtemichael and de Picado-Santos, 2013). The 
majority of drivers are relatively safe, while a small percentage of 
drivers contribute to a disproportionate volume of the total crashes. Guo 
and Fang (2013) found that 6% of drivers account for 65% of crashes 
and near-crashes. Based on a simulation study, Habtemichael and de 
Picado-Santos (2013) showed that limiting the risk behavior of 4% to 
12% of high-risk drivers would reduce crashes by 9% to 27% in different 
traffic conditions. Predicting and identifying this small portion of 
high-risk drivers can provide important information for developing 
targeted safety countermeasures to improve transportation safety. 

The quality and quantity of predictors are critical for the perfor-
mance of risk models. Traditional predictive features include driver 
demographics, personality factors, crash/citation/violation history, and 
observable risky driving behavior (Cantor et al., 2010; Ouimet et al., 
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2014; Soccolich et al., 2011; Habtemichael and de Picado-Santos, 2013; 
Wu et al., 2014). One limitation of these predictors is the limited reso-
lution. For example, classification based on age and gender will lead to 
large cohorts of drivers, which makes it impossible to distinguish the 
small percentage of high-risk drivers within a age-gender cohort. Per-
sonality measures, such as the NEO-Five personality test, require drivers 
to take a questionnaire survey. The scalability of personality surveys is 
limited due to user consent issues and high survey costs. Information on 
past crash history has been shown to be a good crash indicator but 
suffers from a rarity of crashes and the regression-to-the-mean effect; i. 
e., a unit with a high number of crashes in the past, when observed in a 
future period, tends to have a lower number of crashes (AASHTO, 2010). 
Observable risky driving behavior, such as distraction, also indicates 
driver risk, but the identification procedure can be challenging (Sagberg 
et al., 2015; Sun et al., 2017; Yin et al., 2017). 

The surging prevalence of connected vehicle technology, smart-
phone apps, and third-party in-situ telematics data collection devices 
provides a novel sources of risk predictors (Guo and Fang, 2013; Bagdadi 
and Várhelyi, 2011)?. Telematics data can include a variety of content, 
such as vehicle kinematics information, vehicle operation information, 
driver behavior information, as well as driving environment and traffic 
information. Abnormal kinematic events, e.g., large deceleration or 
swerving, could be caused by hazardous traffic conditions or aggressive 
driving behavior, including, for instance, hard braking, harsh accelera-
tion, and sharp turning. Other risk factors, such as emotional states of 
drivers can also lead to abnormal kinematics signatures (Roidl et al., 
2014). 

It is broadly suggested in the literature that kinematic signatures are 
useful for crash risk prediction. High G-force events, i.e., when accel-
eration or passed a given thresholds is one of the most commonly used 
measure for predicting driver risk and identifying crashes Hankey et al. 
(2016), Bagdadi and Várhelyi (2013). The Teenage Naturalistic Driving 
Study consists a thorough evaluation of novice teenage drivers’ high 
G-force events and demonstrated that its prediction power for crashes 
and near-crashes. (Simons-Morton et al., 2009, 2012, 2013). The asso-
ciation between rear-end crash rates and hard deceleration are 
confirmed using different data sources Kim et al. (2016), Palat et al. 
(2019), Zhu et al. (2017) also showed that rapid acceleration and 
deceleration are associated with increased risk with consideration for 
contextual factors. Beside high G-force event, longitudinal jerk, i.e., 
derivative of acceleration, especially large negative jerks have the po-
tential to detect aggressive driving behaviors and predict crash risk 
(Feng et al., 2017; Bagdadi and Várhelyi, 2011; Bagdadi, 2013). Other 
kinematic measures such mean and volatility are also used in risk pre-
diction (af Wåhlberg, 2006; Wang et al., 2015). Studies also demon-
strated by setting the acceleration limit for buses can reduce the risk of 
crash injuries (Karekla et al., 2020). 

Limited research has been conducted to systematically address how 
to properly use such information to maximize driver risk prediction 
performance. For example, there is no standard on what defines a risky 
kinematic signature. A common approach is to use triggers when 
deceleration surpasses a preset acceleration threshold (i.e., high G-force 
events). The threshold values used in the literature are not consistent 
and were usually selected based on researchers’ subjective judgement. 
For example, Simons-Morton et al. (2012) defined “elevated gravita-
tional event” as when acceleration exceeds 0.35g, deceleration exceeds 
0.45g, or lateral acceleration exceeds 0.05g. Klauer et al. (2009) 
explored the prevalence of events when acceleration or deceleration 
exceeds 0.30g among driver groups with different crash and near-crash 
rates. Limited research attempts to define an optimal threshold for the 
high G-force events. 

Large-scale naturalistic driving studies (NDSs), such as the Second 
Strategic Highway Research Program (SHRP 2) NDS, provide opportu-
nities to fully investigate optimal thresholds that provide the most 
prediction power for identifying high risk drivers. One commonly used 
approach to measure the performance of prediction models is based on 

the area under the curve (AUC) of the receiver operating characteristic 
(ROC) curve (Simons-Morton et al., 2012; Guo and Fang, 2013). How-
ever, AUC and other general model selection methods do not necessarily 
provide the optimal solution for a specific objective, such as identifying 
the top 1% of riskiest drivers. The AUC criterion is with respect to the 
entire spectrum of possible decision settings (resulting true positive rate 
and false positive rate range from zero to one). Subsequently, the model 
with the largest AUC is not necessarily optimal for a specific objective, 
such as the one noted above of identifying a small percentage of the 
riskiest drivers. A specific objective is often best served by a dedicated 
prediction model that is optimized with respect to the objective rather 
than by generic criteria. 

In this paper, we propose a decision-adjusted modeling framework 
and develop an optimal driver risk prediction model based on driving 
telematics data from the SHRP 2 NDS. The optimal kinematic thresholds 
were identified by specific decision rule rather than subjective selection. 
Under this framework, model estimation will be conducted to optimize a 
decision-based model evaluation criterion. This framework is applied to 
develop the optimal driver risk prediction models under different deci-
sion rules. We also focus on incorporating a broader set of fused tele-
matics data in the risk prediction models, in which the parameters to be 
adjusted are the thresholds of kinematic signatures, such as elevated 
longitudinal and lateral acceleration. The proposed model is compared 
with a traditional driver-characteristics-based model as well as a model 
optimized using the generic AUC criterion. 

The remainder of the paper is organized as follows. Section 2 details 
the proposed decision-adjusted predictive modeling framework. Section 
3 introduces SHRP 2 NDS data, followed by a formal definition and a full 
exploration of kinematic signatures using different threshold values. 
Section 4 quantifies the model improvement by comparing our proposed 
model to a model using traditional features and a model selected by 
AUC. We conclude this work with discussion in Section 5. 

2. Decision-adjusted modeling framework 

Traditional statistical model selection methods are based on certain 
statistical criteria, such as the likelihood ratio test or the ROC curve. The 
resultant model may not be optimal for a specific decision goal. This 
study focuses on overcoming this limitation by proposing a decision- 
adjusted modeling framework that directly formulates the study’s spe-
cific goal through a decision-based objective function in the model se-
lection/optimization process. The model selection/optimization process 
involves model form determination, variable selection, and parameter 
tuning. The model form depends on the response variable type. For bi-
nary response data, potential models include logistic regression, deci-
sion tree, neural network, etc. Variable selection determines which 
covariates should be included. The parameter tuning refers to the 
hyperparameter tuning for the selected model form and to the critical 
value adjustment in building certain predictor variables. For example, in 
predicting driver risk using kinematic signatures, the critical value 
adjustment is with respect to the threshold values for defining a kine-
matic signature that will maximize the prediction power for a pre- 
specific percentage of high risk drivers. 

2.1. Decision-adjusted driver risk prediction 

The objective of risk prediction models could vary substantially ac-
cording to specific application, which leads to varying decision criteria. 
For example, for fleet safety management, it is common that only a 
certain number of drivers can be coached or provided with advanced 
active safety systems due to limited resources. The specific study goal in 
this context will be to identify a targeted number of the riskiest drivers 
for receiving these safety enhancing approaches/technologies, which 
will allow fleets to maximize improvements with the limited resources. 
The decision-adjusted framework will provide better support for the 
specific objective than models based on generic criteria. 

H. Mao et al.                                                                                                                                                                                                                                    



Accident Analysis and Prevention 156 (2021) 106088

3

The structure of the proposed decision-adjusted modeling is illus-
trated in Fig. 1. The prediction model ℳ can come from a variety of 
models, such as logistic regression, gradient boosting tree, support 
vector machine, or neural network. Data X is the matrix of predictors; Y 
is the observed response variable; e.g., an indicator variable of whether 
driver i experienced crashes or not. The δ is the parameter that defines 
the predictive feature R; Z is the predicted value, which depends on the 
decision parameter τ. η is the objective function to be optimized, typi-
cally a distance measure between predicted and observed response (Z 
and Y). The optimization is achieved by adjusting tuning parameters σ 
and the predictive model ℳ. 

The decision-adjusted framework is a flexible modeling approach 
that can accommodate a wide variety of decision rules and tuning pa-
rameters. We apply this framework to predict a preset percentage of 
highest risk drivers and determine the optimal threshold values for high 
G-force events. Specifically, let Yi be an indicator variable of whether 
driver i was involved in any crashes, i = 1,2,…,n, 

Yi =

1, driveriinvolvedinatleastonecrash,
0, driverinotinvolvedinanycrashes;

Xi is a vector of traditional explanatory variables, such as age, gender, 
and other characteristics. 

The kinematic driving information is incorporated in the driver risk 
prediction model in the form of high G-force event rates. The high G- 
force events are derived from kinematic signatures when acceleration 
(ACC), deceleration (DEC), or lateral acceleration (LAT) exceed certain 
thresholds. Determining the optimal threshold values for kinematic 
variables is a crucial component of the model selection/optimization 
process. Ri(δ) is a vector of high G-force event rates, which depends on 
threshold value δ = (δACC,δDEC,δLAT). That is, 

Ri(δ) = (RAi(δACC),RDi(δDEC),RLi(δLAT)).

With binary response, the model ℳ (e.g., logistic regression) pre-
dicts the probability of a driver i being involved in a crash, Pr(Yi = 1), 
with X and kinematic metrics R(δ). The predicted label for this driver is 
as follows: 

Zi = Zi(X,R(δ),ℳ, τ) =
1, ifP̂r (Yi = 1) > τ,

0, ifP̂r(Yi = 1) ≤ τ,

where τ is a cutoff value usually determined by the specific study 
objective. For example, in the application of providing safety improve-
ment education for a targeted number of the highest risk drivers, τ will 
be selected such that the number of drivers with label Z = 1 satisfies the 
requirement of the decision of interest. 

With the above setup, the decision-adjusted modeling approach can 
be described as an optimization problem. 

max (ormin)
δ,ℳ

η(Z(X,R(δ),ℳ, τ),Y), (1)  

where η(⋅) is the decision-adjusted objective function, which is a func-
tion of Z = (Z1,Z2,⋯,Zn) and Y = (Y1,Y2,…,Yn). If the specific goal is to 
identify the top 10% of riskiest drivers, the objective function would be 
to maximize the prediction precision, the percentage of correct identi-
fication among those 10% drivers with the predicted label Z = 1. That is, 

max η(Z,Y) = Z′Y
1′ Z

=

∑n
i=1Yi⋅Zi

∑n
i=1Zi

,

such that 

1′ Z =
∑n

i=1
Zi = 10%⋅n.

Similarly, for the example of identifying at least 50% of the drivers who 
would have crashes, the decision-adjusted objective function is 

min η(Z,Y) = 1′ Z =
∑n

i=1
Zi,

such that 

Z′ Y
1′ Y

=

∑n
i=1Yi⋅Zi

∑n
i=1Yi

≥ 50%.

As to the last example of minimizing the average cost of running a 
driver education program, the objective becomes minimizing the ex-
pected average cost, which can be expressed as 

min η(Z,Y) = 1
n
[Y ′

(1 − Z)⋅C(− |+) + Z′

(1 − Y)⋅C(+|− )]

where C(− |+) is the cost of applying safety countermeasures to a driver 
who would have no crashes, and C(+|− ) is the cost of crashes for a driver 
who is labeled as low-risk. There would be no cost for correctly identi-
fied drivers (i.e., Zi = Yi). 

Optimizing the above driver risk prediction model will provide not 
only the maximum predictive power according to the modeling objec-
tive but also the optimal high G-force threshold. 

3. Application 

We applied the proposed method to the SHRP 2 NDS data, with the 
primary objective of identifying a targeted percentage of “high-risk” 
drivers. The corresponding decision-adjusted objective function is to 
maximize the prediction precision – i.e., the percentage of correctly 
identified high-risk drivers. Model performance was evaluated under the 
study objective of identifying a certain percentage of the riskiest drivers, 
and we elaborated the prediction precision and the optimal threshold 
values of high G-force event rates for the target percentage of high-risk 
drivers from 1% to 20%. 

3.1. The SHRP 2 NDS data 

The SHRP 2 NDS was a large-scale observational study with more 
than 3500 drivers from six data collection sites in Florida, Indiana, North 
Carolina, New York, Pennsylvania, and Washington. The study collected 
a wide range of information for drivers under natural driving conditions. 
A data acquisition system, including radar, multiple cameras, three 
dimensional accelerometers, and other equipment, was installed in each 
participant’s vehicle (Campbell, 2012). The driving data were collected 
continuously from ignition-on to ignition-off. The data were collected 
asynchronously; for example, videos at 10 Hz, GPS at 1 Hz, and accel-
eration at 10 Hz. The SHRP 2 NDS provides a great opportunity to 
address questions about driver performance and behaviour as well as 
traffic safety (Dingus et al., 2016; Guo, 2019; Guo et al., 2017). 

The crashes were identified thorough a comprehensive process. The 
kinematic time series data were screened through an automated algo-
rithm. The driving segments that were potentially crashes were manu-
ally examined via the videos to confirm whether a crash had actually 
occurred (Hankey et al., 2016). This study includes 1149 crashes of 
severity Levels 1–3, where level 1 are the most severe crashes involving 
airbag deployment or potential injury, and level 3 are minor crashes in Fig. 1. The structure of decision-adjusted risk prediction model.  
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which the vehicle made physical contact with another object or departed 
the road. 

The prediction models include 3440 drivers, among whom 810 
(23.5%) experienced at least one crash during the study period. The 
study also collected demographic and personality information, such as 
age, gender, and sleep habits, at the beginning of the study. Table 1 
shows the descriptive statistics for the traditional predictors used in our 
study. Personality factors come from survey data. For example, the 
driving knowledge survey is a questionnaire compiled from a number of 
Department of Motor Vehicle (DMV) driving knowledge tests, and the 
score represents the number of questions answered correctly (out of 19). 
The clock drawing assessment is used as a screening tool to help identify 
possible signs of dementia or other neurological disorders. Mileage 
history, number of violations/crashes, insurance status, and specific 
driving behavior are self-reported. The number of violations/crashes 
refers to the past 3 years, and the participants reported their specific 
driving behavior history for the past 12 months. 

The longitudinal and lateral acceleration are measured by the gravity 
of Earth g; (1g = 9.8m/s2). Let ax and ay denote the longitudinal (x-axis) 
acceleration and lateral (y-axis) acceleration while driving. Positive ax 
indicates acceleration and negative indicates deceleration. Positive and 
negative ay mean lateral acceleration to the left and right. A high ACC G- 
force event occurred if ax > δACC; a high DEC G-force event occurred if 
ax < − δDEC; and a high LAT G-force event occurred if |ay| > δLAT. The 
corresponding event rates per driving hour for driver i, RAi,RDi,RLi, are 
calculated as 

RAi(δACC) =
1
Ti

∑

driver i
1(ax > δACC);

RDi(δDEC) =
1
Ti

∑

driver i
1(ax < − δDEC);

RLi(δLAT) =
1
Ti

∑

driver i
1(|ay| > δLAT),

where 
∑

driver i1(⋅) represents the number of high G-force events and Ti is 
the total driving time for driver i. For an actual hard brake or other 
maneuver, there is typically a sequence of multiple data points beyond 
the threshold value. To identify the number of events rather than the 
number of data points, a moving average filter was applied to the raw 
data and several criteria were used to cluster data points from a potential 
high G-force event into one event, including criteria that the data points 
should be close to each other temporally and the smoothed data should 
be a local maximum pattern. 

The high G-force events were identified from a total of 1,161,112 
driving hours with a minimum threshold of 0.3g to ensure the majority 
of evasive maneuvers were included. Fig. 2 shows the number of ACC, 
DEC, and LAT G-force events by different thresholds. The number of 
high G-force events varies substantially with respect to different 
thresholds, from millions at 0.3g to a few thousand at 0.65g. 

Setting the thresholds too low or too high could result in non- 
informative explanatory variables in the driver risk prediction model. 
The G-force events based on low thresholds are likely to be dominated 
by normal driving behaviors, such as stopping before traffic signals, and 
may mask true risky behaviors. On the other hand, if the thresholds are 
set too high, high G-force events themselves become rare and provide 
little information about crash risk. Fig. 3 shows the Spearman’s rank- 
order correlation for the occurrence of a crash and three types of high 
G-force event rates under different threshold values. All three kinematic 
event types show a clear pattern of initial increase followed by decrease 
in terms of correlation with crashes, which is consistent with the above 
postulation. There should be an optimal threshold value to best repre-
sent the risk behavior. The proposed decision-adjusted driver risk pre-
diction framework provides an ideal solution for this optimization 
problem. 

Table 1 
Description of traditional predictors.  

Covariates Descriptive statistics 

Demographic features  
Gender F: 1796(52.21%); M: 1644(47.79%) 
Age group 16–19: 534(15.52%); 20–24: 741(21.54%); 25–29: 280 

(8.14%); 30–34: 164(4.77%); 35–39: 129(3.75%); 40–44: 
117(3.4%); 45–49: 149(4.33%); 50–54: 165(4.8%); 
55–59: 144(4.19%); 60–64: 149(4.33%); 65–69: 209 
(6.08%); 70–74: 173(5.03%); 75–79: 262(7.62%); 80–84: 
155(4.51%); 85–89: 59(1.72%); 90–94: 8(0.23%); 95–99: 
2(0.06%) 

Marital status Single: 1514(44.01%); Married: 1384(40.23%); Divorced: 
199(5.78%); Widow(er): 205(5.96%); Unmarried 
partners: 111(3.23%); NA: 27(0.78%) 

Education level Some high school: 272(7.91%); High school diploma or G. 
E.D.: 321(9.33%); Some education beyond high school but 
no degree: 980(28.49%); College degree: 913(26.54%); 
Some graduate or professional school, but no advanced 
degree (e.g., J.D.S., M.S. or Ph.D.): 352(10.23%); 
Advanced degree (e.g., J.D.S., M.S. or Ph.D.): 584 
(16.98%); NA: 18(0.52%) 

Income level Under $29K: 576(16.74%); $30K to $40K: 396(11.51%); 
$40K to $50K: 321(9.33%); $50K to $70K: 572(16.63%); 
$70K to $100K: 611(17.76%);$100K to $150K: 502 
(14.59%); $150K +: 245(7.12%); NA: 217(6.31%) 

Work status Not working outside the home: 1237(35.96%); Part-time: 
945(27.47%); Full-time: 1214(35.29%); NA: 44(1.28%) 

Having children or 
not 

No: 2423(70.44%); Yes: 681(19.8%); NA: 336(9.77%) 

Sleep duration Sufficient: 1730(50.29%); Slightly insufficient: 1130 
(32.85%); Markedly insufficient: 212(6.16%); Very 
insufficient or did not sleep at all: 17(0.49%); NA: 351 
(10.2%) 

Data collection site FL: 768(22.33%); IN: 275(7.99%); NC: 558(16.22%); NY: 
772(22.44%); PA: 263(7.65%); WA: 804(23.37%)  

Personality factors  
Driving knowledge 
score 

mean: 15.1; std. dev: 2.0; NA: 351(10.2%) 

Clock drawing score mean: 2.1; std. dev: 1.0; NA: 259(7.53%) 
Barkley’s ADHD 
Score 

mean: 3.2; std. dev: 2.2; NA: 234(6.8%) 

Sensation seeking 
score 

mean: 14.6; std. dev: 6.9; NA: 242(7.03%)  

Driving behavior  
Driving hours in the 
study 

mean: 337.7; std. dev: 243.9 

Mileage last year 
(mile) 

mean: 12117.1; std. dev: 9530.8; NA: 251(7.3%) 

Annual mileage 10K–15K miles: 1078(31.34%); 15K–20K miles: 458 
(13.31%); 20K–25K miles: 219(6.37%); 25K–30K miles: 
121(3.52%); 5K–10K miles: 901(26.19%); less than 5K 
miles: 412(11.98%); more than 30K miles: 194(5.64%); 
NA: 57(1.66%) 

Driving experience 
(years) 

mean: 25.6; std. dev: 22.5; NA: 23(0.67%) 

Number of 
violations 

0: 2452(71.28%); 1: 664(19.3%); 2 or More: 305(8.87%); 
NA: 19(0.55%) 

Number of crashes 0: 2548(74.07%); 1: 667(19.39%); 2 or More: 197(5.73%); 
NA: 28(0.81%) 

Number of crashes at 
fault 

0: 458(13.31%); 1: 343(9.97%); 1 or More: 50(1.45%); 
NA: 2589(75.26%) 

Insurance status No: 47(1.37%); Yes: 3342(97.15%); NA: 51(1.48%) 
Run red lights past 
12 mo 

Never: 2062(59.94%); Rarely: 1030(29.94%); Sometimes: 
84(2.44%); Often: 7(0.2%); NA: 257(7.47%) 

Drive sleepy past 12 
mo 

Never: 1479(42.99%); Rarely: 1409(40.96%); Sometimes: 
279(8.11%); Often: 15(0.44%); NA: 258(7.5%) 

Impatiently pass on 
right 

Never: 824(23.95%); Hardly Ever: 1022(29.71%); 
Occasionally: 1045(30.38%); Quite Often: 194(5.64%); 
Frequently: 74(2.15%); Nearly All the Time: 21(0.61%); 
NA: 260(7.56%) 

Brake aggressively Never: 1926(55.99%); Hardly Ever: 1114(32.38%); 
Occasionally: 109(3.17%); Quite Often: 5(0.15%); NA: 
286(8.31%) 

Involved in racing 

(continued on next page) 
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3.2. Decision-adjusted driver risk prediction through regularized logistic 
regression 

A variety of models, such as generalized linear, gradient boosting 
tree, and neural network, can be applied to driver risk prediction. In this 
study, we adopt a regularized logistic regression, the elastic net model, 
for model development and performance evaluation (Zou and Hastie, 
2005; Friedman et al., 2010). This class of models controls model 
complexity through L1 and L2 penalties for regression coefficients. It 
addresses the multicolinality issue and can automatically select signifi-
cant factors with proper model setup. Specifically, the risk for driver i 
with predictors Xi and kinematic metrics Ri(δ) is formulated as 

Pr(Yi = 1|Xi,Ri(δ)) =
exp((Xi,Ri(δ))T β)

1 + exp((Xi,Ri(δ))T β)
, (2)  

where β is the vector of regression coefficient. The model fitting is 
accomplished by maximizing a penalized log-likelihood function 

ℓ(β) − λ[(1 − α)1
2
||β||22 + α||β||1], (3)  

where ℓ(β) is the log-likelihood function; and λ[(1 − α)1
2||β||

2
2 + α||β||1] is 

the regularization part with ||⋅||2 being the L2 norm and ||⋅||1 being the L1 

norm. The two hyperparameters, 0 ≤ α ≤ 1 and λ ≥ 0, regularize the 
complexity of the logistic regression model. The LASSO regression and 
ridge regression are two special cases of elastic net models when α = 1 
and α = 0 respectively. 

The decision-adjusted approach optimizes the following objective 
functions with respect to the threshold values δ as well as hyper-
parameters λ and α. For ROC-based model optimization, the η is the AUC 
of the ROC curve. For identifying a given percentage of the highest risk 
drivers, the η is the predictive precision, which measures the percentage 
of correct identification among drivers who were labeled as high-risk; 
Z′ Y
1′ Z

=

∑n
i=1

Yi⋅Zi∑n
i=1

Zi
, where Z is the prediction and Y is the observed true 

classification. Higher prediction precision indicates better prediction 
performance. 

max
δ,λ,α

η(Z(X,R(δ), β̂(λ, α), τ),Y). (4) 

The traditional driver risk prediction model without telematics var-
iables can be considered as a limiting case of the decision-adjusted 
model. As the threshold values δACC, δDEC, δLAT approach infinity, all G- 
force event counts will converge to zero—Ri(δ) = 0, i = 1,2,…,n—and 
the event rates become non-informative. The decision-adjusted driver 
risk prediction model degenerates to traditional models. 

We compared three prediction models: ℳ0, ℳ1, and ℳ2.  

• ℳ0: traditional driver risk prediction without high G-force events  
• ℳ1: driver risk prediction with high G-force event rates, optimized 

by AUC  
• ℳ2: decision-adjusted driver risk prediction for preset portion of 

highest risk drivers 

The predictors and modeling strategy for the three models are listed 

Table 1 (continued ) 

Covariates Descriptive statistics 

Never: 2963(86.21%); Often: 6(0.17%); Rarely: 167 
(4.86%); Sometimes: 28(0.81%); NA: 273(7.94%) 

Racing frequency Frequently: 3(0.09%); Hardly Ever: 214(6.22%); Nearly 
All the Time: 1(0.03%); Never: 2904(84.42%); 
Occasionally: 41(1.19%); Quite Often: 0(0%); NA: 277 
(8.05%) 

Nod off while 
driving 

No: 2570(74.71%); Yes: 503(14.62%); NA: 367(10.67%) 

Nod off frequency 1–2 times per month: 41(1.19%); 1–2 times per week: 9 
(0.26%); 3–4 times per week: 2(0.06%); Nearly every day: 
1(0.03%); Never: 10(0.29%); Rarely: 426(12.38%); NA: 
2951(85.78%)  

Fig. 2. Number of high G-force events (ACC, DEC, LAT) versus thresholds.  

Fig. 3. Spearman’s rank-order correlation between high G-force event rates 
and crash occurrence at the driver level. 

Table 2 
Description of three comparison methods.   

Predictors Modeling Strategy Optimization Criterion 

ℳ0  Traditional predictorsa Elastic net None 
ℳ1  Traditional covariatesa + Elastic net AUC of ROC curve  

ACC, DEC, and LAT rates   
ℳ2  Traditional covariatesa + Elastic net Predictive Precision of  

ACC, DEC, and LAT rates  high risky drivers  

a The traditional covariates are listed in Table 1. 
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in Table 2. The difference between ℳ0 and ℳ1 is that ℳ1 also includes 
the occurrence rates of ACC, DEC, and LAT as predictors, along with 
other traditional covariates listed in Table 1. ℳ1 selects the threshold 
values for ACC, DEC, and LAT by maximizing the AUC of the prediction 
model. Its α is set to be 1 (lasso), and its λ is chosen to minimize the 10- 
fold cross-validation error (λ = 0.0074). ℳ2 uses the same set of pre-
dictors as ℳ1. ℳ1 and ℳ2 differ in their modeling strategies. ℳ2 tunes 
its threshold values and model hyperparameters to optimize the specific 
study objective compared to the AUC by ℳ1. 

We conducted a fine grid search of the parameter space to optimize 
ℳ1 and ℳ2. The candidate threshold values for δACC, δDEC, δLAT range 
from 0.30 g to 0.70 g, by 0.02 g in equal steps. For the hyperparameters, 
log(λ) ranges from − 8.5 to − 2.5, by 0.4 in equal space, and α ranges 
from 0 to 1, by 0.2 in equal steps. The coefficients for Model ℳ1 are 
listed in Table 3, ordered by the magnitude. All predictors are stan-
dardized so the magnitude can be used to compare the relative impacts 
of risk factor. Coefficients for non-listed variables are shrunk to zero, and 
therefore the variables listed in the table are those with significant im-
pacts on crash risk. The optimization process shows an optimal 
threshold for DEC rate of δDEC = 0.46g, a LAT rate of δLAT = 0.50g, and 
39 other variables. R package ‘glmnet’ is used for the implementation of 
the elastic net (Friedman et al., 2009). 

3.3. Prediction performance comparison 

The performance of models are evaluated by the prediction precision 
as discussed in Eq. (4). Fig. 4 shows the relative improvement of pre-
diction precision for ℳ1 and ℳ2 compared to ℳ0 when the targeted 
percentage of high-risk drivers is between 1% and 20%. Table 4 lists the 
corresponding number of true positives and prediction precision for the 
three models. The relative improvement of prediction precision for ℳ
compared to ℳ0 is defined as precision(ℳ)− precision(ℳ0)

precision(ℳ0)
. 

The proposed method ℳ2 performs the best among the three alter-
native models. The decision-adjusted model improves the prediction 
precision by 6.3% to 26.1% compared to the baseline model ℳ0. It is 
also superior to ℳ1 by 5.3% to 31.8%. The improvement is more 
prominent when the objective is to identify a small percentage of the 
riskiest drivers (e.g., < 5%). ℳ1 is better than ℳ0 when the target 
percentage of high-risk drivers is greater than 4%. The benefit can be 
credited to the inclusion of high G-force event rates. The results confirm 
that using kinematic information can improve individual driver risk 
prediction, and the improvement is more significant when a decision- 
adjusted modeling approach is applied. When the target percentage is 
small (< 4%), the prediction performance of ℳ1 is worse than ℳ0. This 
is because the model tuned for overall performance sacrifices the 
boundary cases. This illustrates the necessity of decision-adjusted 
modeling if the boundary cases are of main interest. Furthermore, the 
substantial improvement of ℳ2 indicates that the decision-adjusted 
modeling is more powerful for highly imbalanced data scenarios—e.g., 
predicting a small percentage of high-risk drivers. 

3.4. Optimal thresholds for high G-force events 

The threshold values for ACC, DEC, and LAT have a substantial in-
fluence on the association between high G-force event rates and crash 
occurrence. Both ℳ1 and ℳ2 invovle optimization, with no threshold 
needed for the traditional predictor only model (ℳ0). 

Model ℳ1 incorporates high G-force event rates and chooses the 
threshold values of high G-force event rates by maximizing the AUC of 
the ROC curve. The optimal threshold values for predicting high risk 
drivers are: 

δ = (δACC, δDEC, δLAT) = (0.30g, 0.46g, 0.50g).

The profiles of the AUC values by threshold settings are shown in Fig. 5. 

Table 3 
The non-zero coefficients for model ℳ1.  

Variable Coefficient 

DEC rate when δDEC = 0.46g  2.18 
Driving hours in the study 2.17 
LAT rate when δLAT = 0.50g  0.74 
Nod off while driving frequency. 1–2 times per week 0.48 
Driving knowledge survey score − 0.37  
Racing frequency. Nearly all the time 0.36 
Education level. NA − 0.35  
Nod off while driving frequency. Nearly every day 0.33 
ACC rate when δACC = 0.30g  0.32 
Age group. 80–84 0.27 
Number of violations. 2 or more 0.26 
Education level. Some high school 0.24 
Sensation seeking scale survey score 0.22 
Number of crashes at fault. 1 or more 0.19 
Run red lights or not. NA − 0.18  
Drive sleepy or not. Often 0.12 
Age group. 45–49 − 0.08  
Education level. Some graduate or professional school, but no 

advanced degree 
− 0.08  

Marital status. Single 0.08 
Insurance status.Yes − 0.08  
Barkley’s ADHD Score 0.07 
Brake aggressively. Occasionally 0.06 
Work status. NA − 0.06  
Annual mileage. less than 5K miles 0.06 
Nod off while driving frequency. 1–2 times per month − 0.05  
Annual mileage. 15K–20K miles − 0.05  
Having children at home or not. Yes − 0.05  
Age group.40–44 − 0.05  
Work status. Part-time 0.05 
Mileage last year − 0.04  
Education level. Some education beyond high school but no degree 0.04 
Impatiently pass on the right. Never 0.04 
Number of crashes at fault. NA − 0.03  
Data collection site. WA − 0.03  
Data collection site. PA − 0.03  
Racing frequency. Rarely 0.03 
Nod off while driving frequency. Rarely 0.03 
Income level.Under $29,000 0.02 
Education level. College degree − 0.02  
Drive sleepy or not. Rarely 0.02 
Run red lights or not. Rarely 0.01 
Data collection site. NC − 0.01   

Fig. 4. Relative improvement of prediction precision of the three models.  
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The green area corresponds to a relatively small AUC value and the red 
to white area is for a relatively large AUC value. The two black dots on 
the heat map represent the optimal threshold setting (0.30g, 0.46g,
0.50g), which generates a driver risk prediction model with an AUC 
value of 0.752. The color heterogeneity along the x-axis on the left heat 
map indicates that the resulting AUC value is sensitive to the selection of 
δDEC. On the right heat map, the major colors are yellow and red, which 
implies that given δDEC = 0.46g, the driver risk prediction models are 
robust for ACC and LAT thresholds. For comparison, the AUC of the 
traditional driver risk prediction model, ℳ0, is 0.742. 

For the decision-adjusted model ℳ2, the selected optimal thresholds 
vary according to the different decision rules under consideration. For 
example, when 20% is the target percentage of high-risk drivers, the 
optimal threshold setting is 

δ = (0.62g, 0.48g, 0.60g), log(λ) = − 6.9, α = 0.6.

Under such a setting, ℳ2 can correctly identify 367 high-risk drivers out 
of the 688. When the preset target percentage is 10%, ℳ2 performs the 
best at a different parameter combination: 

δ = (0.64g, 0.70g, 0.30g), log(λ) = − 8.1, α = 0.0.

Fig. 6 shows the point-and-whisker-plot for δACC, δDEC, and δLAT in the 

“top three” optimal settings when the target percentage of high-risk 
driver ranges from 1% to 20%. The connected points represent the 
mean of the “top three” optimal settings, and the length of the half 
whiskers represents their one standard deviation. Take the target per-
centage of 20% as an example: the optimal model can identify 367 high- 
risk drivers correctly (Table 4), and we plot the mean and (+/− ) one 
standard deviation for the settings that can correctly identify 367, 366, 
and 365 high-risk drivers. The “top three” optimal settings are consid-
ered to ensure the robustness of the presented settings. The optimal 
thresholds for δACC, δDEC, and δLAT are calculated and presented 
separately. 

The pattern differs for the three types of high G-force events. The 
means the “top three” optimal δACCs are about the same for different 
decision rules, and their whiskers are relatively long compared to the 
“top three” optimal δDECs and δLATs. This phenomenon indicates that the 
selection of δACC is trivial for the driver risk prediction model. The 
prediction performance is insensitive to the thresholds for δACC. 

4. Summary and discussion 

Accurate assessment and prediction of driving risk is of great 
importance for developing safety countermeasures and fleet safety 
management. In practice, the objectives of the prediction models typi-
cally vary by specific applications. The traditional risk assessment treats 
model development and decision making as two separate modules, 
which often lead to sub-optimal performance. The decision-adjusted 
modeling framework proposed in this paper combines decision objec-
tives and modeling procedure in an integrated framework which leads to 
optimal models for the specific research application and objectives. The 
approach is especially beneficial in severely imbalanced data scenarios, 
i.e., the number of observations from one category dominates the others 
for the model response. In the application of identifying a small per-
centage of highest risk drivers, the decision-adjust modeling framework 
demonstrates superior performance over general model selection 
criteria, such as the AUC of ROC curve. 

The high frequency, high resolution kinematic driving data provide a 
novel data source for driving risk assessment. The high G-force events 
have been widely used in insurance industry and driver risk prediction. 
The kinematics driving data reflect many factors related to safety, e.g., 
traffic condition and risky driving behavior. Subsequently, they can 
serve as a risk predictor for future crashes or crash surrogates for safety 
assessment as crashes are rare events Simons-Morton et al. (2013). The 
kinematic events can be detected automatically through continuous 
driving data thus are more efficient and scalable than surrogates 
requiring manual confirmation such as near-crashes Guo et al. (2010). 

This study bridges a important gap in utilizing high G-force, namely 
how to identify the optimal threshold to define a high G-force events. 
The proposed decision adjusted framework provides systematic and 

Table 4 
Prediction performance comparison of the three models.  

Risky pct 
Number of true positives Prediction precisiona 

ℳ0  ℳ1  ℳ2  ℳ0  ℳ1  ℳ2  

1% 23 22 29 67.6% 64.7% 85.3% 
2% 46 42 53 66.7% 60.9% 76.8% 
3% 64 62 76 62.1% 60.2% 73.8% 
4% 79 83 96 57.7% 60.6% 70.1% 
5% 97 98 111 56.4% 57% 64.5% 
6% 116 121 132 56.3% 58.7% 64.1% 
7% 138 143 155 57.3% 59.3% 64.3% 
8% 157 160 175 57.1% 58.2% 63.6% 
9% 174 177 196 56.3% 57.3% 63.4% 
10% 187 193 211 54.4% 56.1% 61.3% 
11% 203 208 225 53.7% 55% 59.5% 
12% 222 224 242 53.9% 54.4% 58.7% 
13% 237 239 260 53% 53.5% 58.2% 
14% 251 257 277 52.2% 53.4% 57.6% 
15% 267 270 292 51.7% 52.3% 56.6% 
16% 287 286 306 52.2% 52% 55.6% 
17% 299 304 323 51.2% 52.1% 55.3% 
18% 316 320 337 51.1% 51.7% 54.4% 
19% 331 332 352 50.7% 50.8% 53.9% 
20% 345 345 367 50.2% 50.2% 53.4%  

a Predictionprecision =
numberoftruepositives

numberofpredictedpositives 

Fig. 5. Heat map of ℳ1’s AUC values evaluated on δACC = 0.3 g (left) and δDEC = 0.46 g (right). The dots represent the optimal threshold setting of ℳ1, (δACC,δDEC,

δLAT) = (0.30g,0.46g,0.50g), which maximizes the AUC value among all threshold settings evaluated. 
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comprehensive way to address the threshold issue. The results demon-
strate that the optimal thresholds do vary according to different decision 
rules. In the context of predicting a small percentage of highest risk 
drivers, the proposed model framework provides superior results 
compared to subjectively defined thresholds or selected based on gen-
eral model selection criteria. 

Using data from the largest NDS conducted to date, the SHRP 2 NDS, 
we confirmed that high G-force events, including longitudinal and 
lateral acceleration, provide crucial information on individual driver 
risk prediction. With the rapid development in connected vehicle tech-
nology, high-frequency, high resolution telematics data will be ubiqui-
tously available in the near-future. Telemetries information provides a 
cost-effective and scalable approach for large scale driving risk assess-
ment applications, such as insurance, fleet safety management, ride- 
hailing driver and teenage driver risk management. 

There are several limitation of the study. The optimization process 
does require substantial amount of events with low threshold, which 
might not be universally available. Thresholds based AUC of ROC curve 
may be valuable for general purpose, although it’s not recommended for 
cases with severely imbalanced classes. The SHRP2 NDS drivers were 
voluntary samples thus the behavior might not represent the general 
driver population and caution should be used when extrapolating the 
results to other driver populations. 

The decision-adjusted modeling framework provides a tailored so-
lution to optimize models for a specific research objective. The results 
confirm that driving kinematic signatures provide useful information for 

crash risk prediction and that the thresholds for kinematic events are 
critical for driver-level crash risk prediction. The methodology and re-
sults of this paper could provide crucial information for driver risk 
prediction, safety education, use-based insurance, driver behavior 
intervention, as well as connected-vehicle safety technology 
development. 
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