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Abstract
Although nanoscience and nanotechnology have been developing for approximately two
decades and have achieved numerous breakthroughs, the experimental results from
nanomaterials with a higher noise level and poorer repeatability than those from bulk materials
still remain as a practical issue, and challenge many techniques of quantification of
nanomaterials. This work proposes a physical–statistical modeling approach and a global fitting
statistical method to use all the available discrete data or quasi-continuous curves to quantify a
few targeted physical parameters, which can provide more accurate, efficient and reliable
parameter estimates, and give reasonable physical explanations. In the resonance method for
measuring the elastic modulus of ZnO nanowires (Zhou et al 2006 Solid State Commun. 139
222–6), our statistical technique gives E = 128.33 GPa instead of the original E = 108 GPa,
and unveils a negative bias adjustment f0. The causes are suggested by the systematic bias in
measuring the length of the nanowires. In the electronic measurement of the resistivity of a Mo
nanowire (Zach et al 2000 Science 290 2120–3), the proposed new method automatically
identified the importance of accounting for the Ohmic contact resistance in the model of the
Ohmic behavior in nanoelectronics experiments. The 95% confidence interval of resistivity in
the proposed one-step procedure is determined to be 3.57 ± 0.0274 × 10−5 ohm cm, which
should be a more reliable and precise estimate. The statistical quantification technique should
find wide applications in obtaining better estimations from various systematic errors and biased
effects that become more significant at the nanoscale.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the discovery of carbon nanotubes (CNTs) [3], people
have realized that one-dimensional (1D) nanomaterials can
exhibit dramatically different or enhanced properties from bulk
materials. For example, CNTs are found to be the current
strongest and stiffest materials in terms of tensile strength and
elastic modulus respectively, both of which are about ten times
larger than those of stainless steel [4, 5]. The 1D nanomaterials
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are believed to be the promising building blocks for micro-
electro-mechanical systems (MEMS) and future nano-electro-
mechanical systems (NEMS). In order to pave the path for
further industrial applications, the need to characterize the
physical and chemical properties of nanomaterials becomes
urgent and important in current research.

However, accurately quantifying the mechanical, elec-
trical and other properties of individual 1D nanomaterials
is still a challenge to many existing testing and measuring
techniques because of the following constraints. Firstly, the
small size of the nanomaterials makes their manipulation rather
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difficult, prohibiting the application of well-established testing
techniques for bulk materials. For instance, conventional
tensile testing requires that the size of the sample be
sufficiently large to be clamped rigidly by the sample holder
without sliding. Thus, the conventional methods are not
readily adapted to measure 1D nanomaterials. Secondly, the
high purity and uniformity of nanomaterials has not been
achieved yet. For example, single-walled carbon nanotubes
can exhibit metallic or semiconductive properties depending
on their different chiral vector [6]. Even nanomaterials with
a simple structure such as ZnO nanowires/nanorods/nanobelts
are expected to possess different properties with different
growth orientations and dimensions [7, 8]. Thirdly, due to
the actual small scale of nanomaterials, the experimental noise
and bias become relatively large, making the measurement
error significant and not negligible in current research [4, 9].
This can lead to large deviations in the experimental results
from different research groups. The common deterministic
approaches for quantification on bulk materials may not be
suitable for nanomaterials. Therefore, new methods and
methodologies need to be developed to quantify the properties
of individual nanomaterials appropriately.

The new methodology should have the capacity to ac-
commodate the aforementioned various experimental artifacts
and uncertainties. Statistical techniques, which readily
incorporate uncertainties of data, can be a powerful tool to
contribute in a solution to these kinds of problems and to
provide a more accurate estimation of the physical parameters.
Previously, statistical methods are proposed to thoroughly
exploit a color diagram for displaying a large amount of
complex experimental results of CdSe nanowires, nanobelts,
and nanosaws synthesis [10, 11]. We also made an early effort
in the development of a new statistical modeling technique
for quantifying the elastic deformation of a bridged ZnO
nanobelt [12, 13]. These two specific cases, involving par-
ticular and complex situations, show the promising efforts of
applying statistical techniques to improve the data analysis and
quantification. To further broaden this vision systematically
and arouse awareness in the nanoscience field, this research
aims to use a few relatively simple but important examples
to illustrate the capacity of employing statistical techniques in
nanomechanics and nanoelectronics.

2. A general physical–statistical model

In general, a physical model is used to quantify the data
to estimate the target physical parameter. Starting from
the physical model, we propose a physical–statistical model
to accommodate various systematic errors and bias effects.
Suppose the physical model is

y = R(β)x, (1)

where y is the dependent variable (response) and x is the
independent variable (predictor). Here β represents the
physical parameter to be quantified. Such a physical model
is deterministic and may not be able to incorporate various

uncertainties. To deal with experimental data with errors and
other noise factors, we propose a physical–statistical model as

y = y0 + (R(β) + R0)x + ε, (2)

where ε is the random error. Here y0 is the bias adjustment
parameter and R0 can be considered as a slope adjustment
parameter [14]. The adjustment parameters can provide the
flexibility to model various experimental artifacts and biases.
The physical–statistical model is then used to fit the entire
measurement results from different samples or different trials.
Hence we can obtain one single value for estimating β , which
is statistically more reasonable and precise. Moreover, the
model is likely to provide some insightful information about
the experiments or measurements. The use of the proposed
physical–statistical model is illustrated through the following
examples.

3. Nanomechanics example

The resonance method represents one of the most important
and widely used techniques in nanomechanics. The scheme of
these kinds of experiments is to excite a single nanostructure
such as a carbon nanotube, ZnO nanowire, or Si nanowire,
which is fixed at one end and free at the other end,
into its resonance status by an external oscillating electric
field with a tunable frequency in a transmission electron
microscope (TEM), a scanning electron microscope (SEM) or
air [1, 15, 16].

When the frequency of the external oscillating electric
field matches the intrinsic resonance frequency of the
nanowire, a maximum vibration magnitude of the nanowire
can be observed (see figure 1(a)). A series of resonance
frequencies with different harmonics will occur, and normally
the first harmonic is easy to detect. The physical model in
this resonance method predicts the resonance frequency of a
nanowire follows:

f = β2
1

2π L2

√
E I

m
, (3)

where f is the resonance frequency, β1 is a constant (β1 =
1.875 for first harmonic), L is the length, E is the elastic
modulus, I is the moment of inertia of cross section, and
m is the unit length mass. Zhou et al (2006) tabled
all the measurement and calculation results for individual
ZnO nanowires, and provided a mathematical average E =
108 GPa [15]. A similar data treatment with tables or diagrams
displaying all the measurement results with large deviations is
common in nanoscience field [2, 7]. Taking potential artifacts
and experimental biases into account, statistical techniques can
be used to better analyze the data and explain the experiment
more appropriately, thus they can provide more insightful
information. The observed frequency may not match the
physical model well, and the statistical model should take
the initial bias into consideration. A simplified form of the
proposed physical–statistical model (1) is proposed to explain
the data:

f = f0 +
(

β2
1

2π L2

√
I

m

)√
E + ε, (4)
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Figure 1. (a) The schematic diagram of the experimental setup for the resonance method. (b) The relationship between resonance frequency

and new variable N = (
β2

1
2π L2

√
I
m ); the elastic modulus E can be inferred from the slope and the intercept indicates the negative f0. (c) The

histogram of the estimated f0, calculated by randomly selecting half of the data points to perform a linear regression from model (4); this
procedure is repeated 100 times.

where f0 is an initial bias, ε is a random error, and the entire
term inside the bracket is regarded as a new independent
variable N . All discrete data are plotted in figure 1(b) to
illustrate the relationship between the resonance frequency
f and the new independent variable N . Assuming all
the nanowires have the same elastic modulus, the slope of
the linear fit of previous discrete data implies one physical
parameter

√
E . From figure 1(b), we can obtain E =

128.33 GPa, f0 = −1.87 kHz, and the standard error of
the estimate E is 9.81 GPa. The value of E estimated
by this statistical model is 18.8% bigger than the original
mathematical average. The mechanical measurement results
on ZnO nanowires still show some discrepancy, mainly
because of the difference in the dimension, orientation,
measurement and data treatment techniques. By accounting
for the bias effects and random errors, the proposed method is
to offer a more reliable estimate of the elastic modulus than the
deterministic physical model.

f0 is the bias adjustment parameter in (4) for modeling
the resonance frequency f . It can provide some insights about
the experiments and measurements. The negative value of f0

may indicate that there are certain systematical biases occurred
during the experiment. In practice, the systematical bias could
come from various sources. Inconsistency in the cross section
will statistically even out and become unimportant, and only

the biased measured parameters will lead to biased results.
One of these parameters is the length, which easily has a
slightly smaller estimation in resonance methods because of
the 3-dimensional to 2-dimensional projection effects. To
the best of our knowledge, the projection effect on the final
results obtained by resonance methods has not been discussed
before which, however, is implied from the analysis using the
proposed statistical techniques. The measured smaller value
in the length results in a negative f0, and a simple estimation
of such a relation is provided in appendix A.1. Thus, it is
very important to accurately measure the length, which was
rather challenging for a free standing nanowire. Recently,
an effective statistics-guided approach has been developed to
better determine the lengths of randomly oriented nanowires
under a microscope [17]. Our facile physical–statistical
modeling strategy developed in this work can be more efficient
and effective by adopting this approach of measuring the
length.

Due to the limited number of data points, f0 may not really
exist and it could purely result from the statistical analysis. To
further verify the existence of bias in the measuring length
L resulting in the negative estimate of f0, we conduct the
following data analysis. We randomly select half of the data
points to perform a linear regression from model (4) and get
the estimate of f0. The analysis is repeated 100 times and the
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Figure 2. (a) The schematic diagram of the experimental setup for the electric measurement on a nanowire. (b) The simplified electrical
diagram to represent (a). (c) The re-plot of the data for a 380 nm diameter Mo nanowire with a different length obtained from the work of
Zach et al [2], black–9.3 μm, red–28 μm, green–48 μm, blue–84 μm, cyan–93 μm, magenta–no wire. (d) The correlation between the total
resistance and the length of the nanowire. The red line is the fitting curve using model (5) and the black line is using model (6).

histogram of the estimated f0 is shown in figure 1(c). From this
figure, we can see that most of the estimated f0 have negative
values. This indicates that the observed length L tends to be
smaller than the actual length, causing the elastic modulus E to
be underestimated and unreliable using the physical model (3).

In addition, we can further theoretically show that even
if the bias term y0 does not exist and the model y =
βx + ε is valid, the linear regression method can achieve a
more precise (smaller variance) estimate of β than that from
the mathematical average. The technical derivation, which
is a special case of Gauss–Markov theorem [18], is in the
appendix A.2.

In this example, we have discussed the use of the discrete
data points from different nanowires to estimate the mechanical
parameter elastic modulus. In the next example, the proposed
physical–statistical modeling and global fitting is used for
all available quasi-continuous data curves such as the force–
distance and current–voltage curves to estimate the electrical
parameter resistivity. From the statistical point of view, this
new approach is much more accurate and efficient.

4. Nanoelectronics example

In this example, nanoelectronics refers to the electric phe-
nomena occurring in nanomaterials such as carbon nanotubes,
ZnO nanobelts and Si nanowires. Figures 2(a) and (b)
indicate the common configuration of a 1D nanomaterial
electronic device. Although most 1D nanomaterial electronic
devices might generally follow the traditional physical models,
certain aspects still need to be considered carefully. For
example, people normally ignore the Ohmic contact resistance
for bulk materials; however, the Ohmic contact resistance
may be comparable to the resistance of the nanomaterials as

the dimension shrinks and it should not be ignored without
scientific verification. Furthermore, the nanomaterials, being
more sensitive and vulnerable to environmental mechanical
vibrations or electrical interferences, can display stronger noise
behavior in their electric transport measurement. Such con-
cerns require an elaborate and systematic data quantification
technique, where statistical modeling and analysis can play
an important role in this aspect. For an Ohmic behavior
measurement, the simplest physical model for a uniform
nanowire is

V = ρ
L

A
I, (5)

where V is the voltage, ρ is the resistivity, L is the length
of the nanowire, A is the area, and I is the current. Zach
et al calculated the resistivity of nanowires by electrically
isolating various lengths of a Mo nanowire [2]. They used
a linear fit to obtain the resistance from each I –V curve,
then the resistivity of the nanowires was estimated from those
calculated resistances as a function of the nanowire length. For
convenience, we denote this method as a two-step procedure.
To account for the resistance of the nanomaterials in the model,
we consider the following model

V =
(

ρ
L

A
+ R0

)
I + ε, (6)

where R0 is the contact resistance during the measurement and
there should be no bias in voltage V because of the nature
of electricity. ε is a random error for the measurement data.
Figure 2(d) shows a linear relation between the Rtotal of the
system (Rtotal = Rnw + R0 = Rnw + Rc1 + Rc2) and the
length of the nanowire. Following the two-step procedure
using (6), we can also estimate the resistivity of the nanowires
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Table 1. The standard multivariable linear regression analysis for
the electrical measurements on a Mo nanowire.

Estimate Std. error t value p value

V0 (mV) −0.114 0.642 −0.177 0.86
ρ (ohm cm) 3.57 × 10−5 0.014 × 10−5 257.05 <2 × 10−16

R0 (kilo hms) 0.405 0.002 197.94 <2 × 10−16

from the slope shown in figure 2(d), assuming R0 is a constant.
(Note: from table 1, later we can see that R0 really has a small
deviation.) We denote such a method as a refined two-step
procedure. Clearly it shows that the fitting using (6) (black
line, with the slope estimate 3.67 × 10−5 ohm · cm) is much
better than that using (5) (red line, with the slope estimate
5.69 × 10−5 ohm · cm). From the data analysis using the
proposed refined two-step procedure, the contact resistance
parameter R0 is statistically significant with a p value of less
than 2 × 10−16. The p value in statistics is a criterion to
show the evidence of rejecting null hypothesis (the estimate
is zero). It indicates that the Ohmic contact resistance can be
comparably significant for nanoscale experiments, and cannot
be neglected from this data analysis of nanoelectronics.

As we mentioned, the proposed physical–statistical
method can use all available discrete data or quasi-continuous
curves to quantify the targeted physical parameter. Therefore,
we are proposing a general physical–statistical model to
quantify that data with a one-step treatment instead of the
previous two-step procedure. Moreover, we can calculate the
Ohmic contact resistance and determine its significance from
the specific physical–statistical model,

V = V0 +
(

ρ
L

A
+ R0

)
I + ε. (7)

For the data consisting of the series I –V curves for the
same Mo nanowire with different lengths (i.e., by electrically
isolating various lengths of this nanowire), there are only three
unknowns V0, ρ and R0 regarded as parameters in the model.
Thus, the equation (7) can be rewritten as:

V = V0 + ρ

(
L I

A

)
+ R0 I + ε, (8)

where LI/A and I are two independent variables. The
parameters can be estimated in one step using all the data
points. The standard multivariable linear regression analysis
can provide the estimation of V0, ρ and R0 [19], which are
summarized in table 1. The t value in table 1 is the value of
the t-statistic (= estimate/standard error) for the hypothesis
testing of whether the estimate is statistically different from
zero.

From the table, the value of the estimate V0 is very small
compared with the observed voltage values. It is also statistical
insignificant, which confirms that there is no bias in V because
of the nature of electricity. The analysis also confirms that both
the parameters ρ and R0 are significant in the model (8). The
significance of R0 confirmed that the Ohmic contact resistance
cannot be easily be ignored in this nanoelectronics experiment.

Furthermore, we can compare the estimation efficiency of
ρ between the refined two-step procedure from model (6) and

the one-step procedure from model (7). The 95% confidence
interval of ρ in the refined two-step procedure is 3.67 ±
0.686 × 10−5 ohm cm, whose interval length is much larger
than the 95% confidence interval in the one-step procedure
3.57 ± 0.0274 × 10−5 ohm cm. We can see that the estimates
of ρ from the two proposed methods are close, but the one-
step method gives a more precise estimation with much smaller
standard errors.

The previous example illustrates a data treatment on
I –V curves with Ohmic behavior. On the contrary,
nonlinear I –V curves that origin from the Schottky metal–
semiconductor junctions or PN junctions are also very common
in nanoelectronics. For example, Lao et al’s work on ZnO
nanobelts indicated a Schottky diode behavior [20]. Thus, the
current should follow a diode current formula:

I = I0

[
exp

(
e

V − Vth

nkT

)
− 1

]
, (9)

where the parameter n is the ideality factor of interest. In
this situation, a log transformation can easily make a physical
formula into a linear equation log(I )(I = log(I0) + e(V −
Vth)/nkT − 1. The proposed method can then be used to
apply on this linear model and then we can use repeated I –
V curves to identify the ideality factor of the devices. In
cases where the physical model is complicated and cannot be
easily transformed into a linear formula, we can consider the
possibility of the nonlinear regression models, which may not
be in the scope of this work. Useful references can be found in
some statistics literatures [21].

5. Conclusions

This work proposes a physical–statistical modeling approach
and a global fitting statistical method to utilize all available
discrete data or quasi-continuous curves to quantify a
few target physical parameters. It can accommodate
various experimental uncertainties and use all available
information to provide more accurate, efficient and reasonable
characterization. A few examples illustrate the applications
of the proposed statistical quantification techniques in
nanomechanics and nanoelectronics. In the resonance method
for measuring the elastic modulus of ZnO nanowires, a
negative f0 is identified by our quantification technique and it
might result from the systematic bias in measuring the length of
nanowires. In the electronic measurement of resistivity of a Mo
nanowire, the proposed new method automatically identified
the importance of accounting for the Ohmic contact resistance
in the model of the Ohmic behavior in nanoelectronics
experiments. It can therefore give a more reliable and
precise estimate of the resistivity. The statistical quantification
technique should find wide applications in obtaining better
estimations from various systematic errors and biased effects
that become more significant at the nanoscale.
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Appendix

A.1.

For simplicity, Lm denotes the measured length, L r is the real
length, and �L is the small difference between Lm and L r. It
is easy to deduce the following steps:

f = β2

2π L2
r

√
E I

m
= β2

2π(Lm + �L)2

√
E I

m

= β2

2π L2
m

(
1 − 2�L

Lm

)√
E I

m

= − β2

2π L2
m

√
E I

m

(
2�L

Lm

)
+ β2

2π L2
m

√
E I

m

A 3% bias in the length measurement can lead to
approximately 1.5 kHz bias in f0 for a nanowire with a 24 kHz
resonance frequency, possibly leading to the 18.8% difference
in elastic modulus measurements.

A.2.

Suppose the underlying model is

Y = β X + ε, ε ∼ N(0, σ 2),

where β is the parameter of interest. There are n observations
(x1, y1), . . . , (xn, yn). If we have two methods to estimate the
parameter β , one (denoted by β̂1) is β̂1 = 1

n

∑n
i=1

yi

xi
, and the

other (denoted by β̂2) is β̂2 = ∑n
i=1 xi yi/

∑n
i=1 x2

i . Note that
β̂1 is a mathematical average estimate used in Zhou et al’s work
and β̂2 is the least-square estimate from the regression method.
Obviously, both estimates are unbiased. i.e.,

E(β̂1) = 1

n

n∑
i=1

E(yi)

xi
= 1

n

n∑
i=1

βxi

xi
= β,

E(β̂2) =
∑n

i=1 xi E(yi)∑n
i=1 x2

i

=
∑n

i=1 x2
i β∑n

i=1 x2
i

= β.

Next, we check the variance of the two estimates β̂1 and β̂2. It
is easy to show that

var(β̂1) = 1

n2

n∑
i=1

var(yi)

x2
i

= 1

n

n∑
i=1

1

xi
σ 2,

var(β̂2) =
∑n

i=1 x2
i var(yi)

(
∑n

i=1 x2
i )

2
= 1∑n

i=1 x2
i

σ 2.

Using the Cauchy–Schwarz inequality, i.e.,

( n∑
i=1

ai bi

)2

�
( n∑

i=1

a2
i

)( n∑
i=1

b2
i

)
,

we can get,

n2 =
( n∑

i=1

1

xi
xi

)2

�
( n∑

i=1

1

x2
i

)( n∑
i=1

x2
i

)

⇒ 1

n2

( n∑
i=1

1

x2
i

)
� 1∑n

i=1 x2
i

.

That is to say var(β̂1) � var(β̂2). Therefore, we show that the
estimate β̂2 is better (smaller variance) than β̂1.
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