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Problem restatement

Product testing is a key element in the quality con-
trol. To ensure the final product quality, taking the
intermediate measurements for identifying defects is
an important step. However, when the measurements
of products are destructive, it is difficult to quantify
the correlation between the intermediate measure-
ments and the final measurements because it is not
possible to test the same product twice
(Jensen 2018).

Let us denote the intermediate measurement as a
random variable X and the final measurement as a
random variable Y. Assume that the available data set
contains m samples measured at the intermediate
stage, xobs ¼ (x1; x2; :::; xm), and n – m samples meas-
ured at the final stage, yobs ¼ (ymþ1; ymþ2; :::; yn).
Suppose that a lower and upper limit specification of
the final product is given by {L, U}. The problem of
interest is to find the tolerance of intermediate meas-
urements, [a, b], to ensure that the specification will
be met on the final measurements.

Our Solution: We address the aforementioned
problem under the missing data framework. For the
observed intermediate measurements, we denote
their corresponding missing final measurements as
ymis ¼ðy�1; :::; y�mÞ. For the observed final measure-
ments, we denote their corresponding missing inter-
mediate measurements as xmis ¼ðx�mþ1; :::; x

�
nÞ. Then

the paired complete data set (x; y) can be expressed
as

x ¼ xobs; xmisð Þ ¼ x1; :::; xm; x�mþ1; :::; x
�
n

� �
;

y ¼ ymis; yobsð Þ ¼ y�1; :::; y
�
m; ymþ1; :::; ynð Þ:

We develop an estimation procedure using the
expectation-maximization (EM) algorithm to quantify
the relationship between the intermediate measurements

and the final measurements. Consequently, we obtain the
tolerance of the intermediate measurements given the
specification on the final measurements. The proposed
method can provide an accurate estimation and is robust
to the initial values of the EM algorithm. The merits of
the proposed method are illustrated by both simulation
and the real-data case study.

The proposed method

We consider a linear regression between the inter-
mediate measurements X and the final measurements
Y, that is,

Y ¼ b0 þ b1X þ �;

where b1 6¼ 0 and the error term ��Nð0; r2Þ.
Furthermore, since the intermediate measurement is
continuous, we assume that X�Nða; d2) and X is
independent of �. Then the conditional distribution of
Y given X¼ x is

YjX ¼ x�N b0 þ b1x; r
2

� �
:

The joint distribution of X and Y is a bivariate nor-
mal distribution whose density function is given by

fXY x; yð Þ ¼ fYjX yjx� � � fX xð Þ:
Then the conditional distribution of X given Y¼ y

also follows a normal distribution XjY ¼
y�NðEðXjY ¼ yÞ;VarðXjY ¼ yÞÞ with

E XjY ¼ y
� � ¼ aþ b1d

2

r2 þ b21d
2 y�b0�b1að Þ;

Var XjY ¼ y
� � ¼ r2d2

r2 þ b21d
2 :

Note that correlation coefficient between Y and X
is closely connected with the slope b1 in the simple
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linear regression. For a given value of y 2 ½L;U�, we
can obtain the corresponding tolerance of X, ½ay; by�
such that

Pr X 2 ay; by
� �jy 2 L;U½ �� � ¼ 1�s;

where the significant level s is specified as 1% in this
study. Then we obtain the tolerance of X, ½a; b�, by

a ¼ miny ayf g; b ¼ maxy by
� �

:

As a result, we have

Pr X 2 a; b½ �jy 2 L;U½ �� � � Pr X 2 ay; by
� �jy 2 L;U½ �� � ¼ 1�s:

The estimation of a and b need the estimation of
parameters h ¼ ðb0; b1; r2; a; d2Þ, which will be esti-
mated by using the EM algorithm.

Expectation-maximization algorithm

The EM algorithm is commonly used to deal with
missing data in various applications (Miljkovic and
Barabanov, 2015). In the EM algorithm (Dempster,
Laird, & Rubin 1977; Horton and Laird 1999), the E-
step is to compute the expectation of the complete
log-likelihood function through imputing the missing
values by their conditional expectation, and the M-
step is to estimate parameters by maximizing the
expected complete log-likelihood function.

Given the full data x ¼ ðx1; :::; xm; x�mþ1; :::; x
�
nÞ and

y ¼ ðy�1; :::; y�m; ymþ1; :::; ynÞ, the complete log-likeli-
hood function can be written as

lc h; x; yð Þ ¼�n log 2pð Þ�n log drð Þ

� 1
2r2

Xm
i¼1

y�i�b0�b1xi
� �2� 1

2r2
Xn

i¼mþ1

yi�b0�b1x
�
i

� �2
� 1

2d2
Xm
i¼1

xi�að Þ2� 1

2d2
Xn

i¼mþ1

x�i �a
� �2

:

In the E-step, we replace the missing values in x
and y with the respective conditional expectation given
the observed data, E ðxijyi; hÞ and Eðyijxi; hÞ. Specifically,

where the conditional expectation is given by

E yijxi
� � ¼ b0 þ b1xi; i ¼ 1; :::;m:

E y2i jxi
� � ¼ r2 þ b0 þ b1xið Þ2; i ¼ 1; :::;m:

E x2i jyi
� � ¼ r2d2

r2 þ b21d
2 þ E xijyi

� �� �2
; i ¼ mþ 1; :::; n:

[2]

In the M-step, we obtain the parameter estimator ĥ
by maximizing the E½lcðh; x; yÞ�, which gives the expli-
cit expression as

b̂0 ¼ �y�b̂1 â;

b̂1 ¼

Xm
i¼1

xi � âð Þ E yijxi; h
� ���y� �þ Xn

i¼mþ1

E xijyi; h
� ��â

� �
yi��yð Þ

Xm
i¼1

xi�âð Þ2 þ
Xn

i¼mþ1

E xijyi; h
� �� â�2;

h

â ¼ 1
n

Xm
i¼1

xi þ
Xn

i¼mþ1

E xijyi; h
� �( )

;

d̂
2 ¼ 1

n

Xm
i¼1

xi�âð Þ2 þ
Xn

i¼mþ1

E x2i jyi; h
� ��2âE xijyi; h

� �þ â2
h i( )

;

r̂2 ¼ 1
n

Xm
i¼1

E y2i jxi; h
� ��2 b̂0 þ b̂1xi

� 	
E yijxi; h
� �þ b̂0 þ b̂1xi

� 	2

 �

þ
(

Xn
i¼mþ1

yi�b̂0

� 	2
þ b̂

2
1E x2i jyi; h
� ��2b̂1 yi�b̂0

� 	
E xijyi; h
� �
 �)

;

Table 1. Estimated parameters and tolerances under different
initial slope in the real data.
b1;init b̂1 b̂0 r̂2 â d̂

2
[a, b]

�10.000 �0.27 41.22 0.60 41.31 28.17 [20.7, 62.5]
�6.667 �0.28 41.70 0.41 41.18 28.18 [21.0, 61.7]
�4.445 �0.29 42.08 0.28 41.13 28.09 [21.6, 61.0]
�2.223 �0.29 42.06 0.29 41.14 28.08 [21.5, 61.0]
�1.112 �0.29 42.05 0.30 41.17 28.04 [21.5, 61.1]
�0.001 �0.30 42.23 0.22 41.08 28.05 [21.8, 60.5]
0.001 0.30 18.26 0.22 41.08 28.05 [20.3, 59.0]
1.112 0.29 18.44 0.30 41.17 28.04 [20.0, 59.6]
5.556 0.27 19.10 0.53 41.26 28.19 [19.4, 60.8]

Q h; x; yð Þ ¼ E lc h; x; yð Þ½ � ¼ �n log 2pð Þ�n log drð Þ�
1
2r2

Xm
i¼1

E y2i jxi; h
� ��2 b0 þ b1xið ÞE yijxi; h

� �þ b0 þ b1xið Þ2
h i

�
1
2r2

Xn
i¼mþ1

yi�b0ð Þ2 þ b21E x2i jyi; h
� ��2b1 yi�b0ð ÞE xijyi; h

� �h i
�

1

2d2
Xm
i¼1

xi�að Þ2� 1

2d2
Xn

i¼mþ1

E x2i jyi; h
� ��2aE xijyi; h

� �þ a2
h i

;
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where �y ¼ 1
n f

Pn
i¼mþ1 yi þ

Pm
i¼1 Eðyijxi; hÞg. The

detailed derivations are in the Appendix.
It is noted that the initial b value could have a

significant impact on the algorithm performance.
When the absolute value of initial b1 is large
enough, the imputed complete data ðx; yÞ can be fit-
ted perfectly by the estimated model, making the
range of the imputed xmis values not overlapped
with the range of xobs. That is, we can always have a
perfect fitting on the unpaired data with a large
value of b1. When the absolute value of initial b1 is
small enough, the imputed xmis values can be in a
narrow region within the range of xobs, making the
estimated parameters unstable. To address these
issues, we add additional convergence conditions in
the EM algorithm to ensure that the range of
imputed xmis values is partially overlapped with the
range of observed xobs values. Specifically, we
start with an arbitrary initial b1 to proceed with the
E-step and the M-step, then check the condition
whether the imputed xmis values is partially over-
lapped with the range of observed xobs values.
We summarize the developed EM algorithm in
Algorithm 1, which is implemented in the R

package TOM and is available in Bitbucket (https://
bitbucket.org/vtshen/tom/src/master/).

Algorithm 1

Initialize b1, b0 ¼ �yobs; a ¼ �xobs; d
2 ¼

ðxobs��xobsÞ2
m�1 ; r2 ¼ ðyobs��yobsÞ2

n�m�1 and flag ¼0
repeat

E-step: Compute E½lcðh; x; yÞ�.
M-step: Estimate b0, b1, a, r2 and d2 by maxi-
mizing E½lcðh; x; yÞ�.
if None of imputed missing values for xmis are
in the range of xobs, then
b1¼b1/2, and flag ¼1.

else
if flag ¼0 then
b1¼ 2b1.

end if
end if

until all of b0, b1, a, r2 and d2 are converged.
The convergence of the EM algorithm can also be

checked by the relative difference between the log-likelihood

Figure 1. Simulation results of the estimated slope and the tolerance on the intermediate measurements under different scenarios:
For A the complete data is used. From B to F the initial slope value increases from �100 to 3.611. The red vertical lines are the
estimated tolerance on the intermediate measurements x.
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function. In the Appendix, we prove that the sign of
the initial b1 value does not affect the estimation of the
tolerance of X under certain conditions.

Real data analysis

We analyze the real data in the open challenges
(Jensen 2018), where the unpaired data xobs¼ (32.49,
34.07, 35.17, 35.04, 37.58, 37.72, 38.77, 40.07, 40.43,
41.92, 42.36, 42.4, 44.19, 45.07, 45.73, 46.54, 46.71,
48.21, 49.82, 51.27) and yobs¼ (26.56, 27.43, 28.17,
28.65, 28.77, 29.62, 29.9, 30.07, 30.13, 30.36, 30.51,
30.55, 30.97, 31.08, 31.53, 31.65, 31.9, 32.13, 32.31,
32.61). Table 1 shows the estimated parameters and
tolerance of X under different initial slope values. The
estimated slope is around 0.29 in the absolute value. For
example, if one considers a positive slope, the estimated
relationship between the intermediate measurements
and final measurements could be Ŷ ¼ 18:44þ 0:29X.

We suggest to choose a conservative estimation of
the tolerance, [a, b] by selecting the largest a and
smallest b from Table 1. That is, the tolerance of the
intermediate measurements can be [21.8, 59.0].

Simulation study

We conduct simulation by considering a linear regres-
sion situation,

Y ¼ 3þ 5X þ �; ��N 0; r2
� �

;

where X�N(1, 0.52), X is independent of �, and r2 is
chosen such that the signal-to-noise ratio (Wu and
Hamada 2009) is three. The total number of observations
is 40. We remove the first 20 values in Y as missing, and
remove the last 20 values in X as missing. Under the com-
plete data, the tolerance of X is ½4:4; 5:5� given the specifi-
cation of Y as ½50:0; 59:5� at a significant level s ¼ 1%.

Figure 1 shows the estimation performance of the
proposed method under different initial slope values.
Although different initial slopes lead to different
model estimation, the estimation of the tolerance of X
is quite similar and is close to the true tolerance.

Discussion

For problems with measurements being destructive, it
is difficult to quantify the dependency between the
intermediate measurements X and the final measure-
ments Y. We proposed an EM-algorithm based method
to accurately quantify the dependency, and obtain the
tolerance of the intermediate measurements given the
specification on the final measurements. The proposed
method is not restricted to the simple linear regression

between X and Y. It can be extended to a more general
model as Y ¼ gðXÞ þ � where g(X) is a monotone func-
tion. The EM algorithm can be similarly developed.
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Appendix

Lemma 1. Given the other estimated parameters b0, a, r2,
and d2, the sign of b1 does not affect the tolerance of x.

Proof. We have the conditional distribution of X given
Y¼ y as

XjY ¼ y�N E XjY ¼ y
� �

;Var XjY ¼ y
� �� �

;

where

E XjY ¼ y
� � ¼ aþ b1d

2

r2 þ b21d
2 y�b0�b1að Þ;

Var XjY ¼ y
� � ¼ r2d2

r2 þ b21d
2 :

In EðXjY ¼ yÞ, we substitute EðyjxÞ, equal to ðb0 þ b1xÞ,
for y, and obtain

E XjY ¼ y
� � ¼ aþ b1d

2

r2 þ b21d
2 b1x�b1að Þ

¼ aþ b21d
2

r2 þ b21d
2 x�að Þ:

That is, EðXjY ¼ yÞ does not depend on the sign of b1.
When the magnitudes of estimated parameters are the
same, the tolerance of x keeps the same. �

Derivation in the M-step
Note that the Eðlcðh; x; yÞÞ in the E-step is expressed as:
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Then in the M-step, we conduct parameter estimation of
h by calculating the first order derivatives as follows.

1. Calculate the partial derivative of the Eðlcðh; x; yÞÞ with
respect to the variable b0:

2. Calculate the partial derivative of the Eðlcðh; x; yÞÞ with
respect to the variable b1:

3. Calculate the partial derivative of the Eðlcðh; x; yÞÞ with
respect to the variable a:

Exmis;ymis
lc h; x; yð Þ½ � ¼ �n log 2pð Þ�n log drð Þ�

1
2r2

Xm
i¼1

E y2i jxi; h
� ��2 b0 þ b1xið ÞE yijxi; h

� �þ b0 þ b1xið Þ2
h i

�
1
2r2

Xn
i¼mþ1

yi�b0ð Þ2 þ b21E x2i jyi; h
� ��2b1 yi�b0ð ÞE xijyi; h

� �h i
�

1

2d2
Xm
i¼1

xi�að Þ2� 1

2d2
Xn

i¼mþ1

E x2i jyi; h
� ��2aE xijyi; h

� �þ a2
h i

0 ¼ @

@b0
Exmis;ymis

lc h; x; yð Þ½ �

¼ � 1
2r2

Xm
i¼1

�2E yijxi; h
� �þ 2 b0 þ b1xið Þ� �� 1

2r2
Xn

i¼mþ1

�2 yi�b0ð Þ þ 2b1E xijyi; h
� �� �

)
Xm
i¼1

�2E yijxi; h
� �þ 2 b0 þ b1xið Þ� � ¼ Xn

i¼mþ1

2yi�2b0�2b1E xijyi; h
� �� �

)
Xn

i¼mþ1

yi þ
Xm
i¼1

E yijxi; h
� � ¼ nb0 þ b1

Xm
i¼1

xi þ
Xn

i¼mþ1

E xijyi; h
� �" #

:

0 ¼ @

@b1
Exmis;ymis

lc h; x; yð Þ½ �

¼ � 1
2r2

Xm
i¼1

�2xiE yijxi; h
� �þ xi b0 þ b1xið Þ� �� 1

2r2
Xn

i¼mþ1

2b1E x2i jyi; h
� ��2 yi�b0ð ÞE xijyi; h

� �h i

)
Xm
i¼1

xiE yijxi; h
� �� �þ Xn

i¼mþ1

yiE xijyi; h
� � ¼

Xn
i¼mþ1

E xijyi; h
� �þXm

i¼1

xi

" #
b0 þ

Xn
i¼mþ1

E x2i jyi; h
� �þXm

i¼1

x2i

" #
b1:
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4. Calculate the partial derivative of the Eðlcðh; x; yÞÞ with
respect to the variable d2:

5. Calculate the partial derivative of the Eðlcðh; x; yÞÞ with
respect to the variable r2:

0¼ @

@a
Exmis;ymis

lc h; x; yð Þ½ �

¼� 1

2d2
Xm
i¼1

2 xi�að Þ � �1ð Þ� �� 1

2d2
Xn

i¼mþ1

�2E xijyi; h
� �þ 2a

� �
) na ¼

Xm
i¼1

xi þ
Xn

i¼mþ1

E xijyi; h
� �

:

0 ¼ @

@d2
Exmis;ymis

lc h; x; yð Þ½ �

¼ � n
2
1

d2
� 1
2

Xm
i¼1

xi�að Þ2
h i�1

d4
� 1
2

Xn
i¼mþ1

E x2i jyi; h
� ��2aE xijyi; h

� �þ a2
h i�1

d4

) nd2 ¼
Xm
i¼1

xi�að Þ2 þ
Xn

i¼mþ1

E x2i jyi; h
� ��2aE xijyi; h

� �þ a2
h i

:

0 ¼ @

@r2
Exmis;ymis

lc h; x; yð Þ½ �

¼ � n
2
1
r2

� 1
2

Xm
i¼1

E y2i jxi; h
� ��2 b0 þ b1xið ÞE yijxi; h

� �þ b0 þ b1xið Þ2
h i�1

r4
�

1
2

Xn
i¼mþ1

yi�b0ð Þ2 þ b21E x2i jyi; h
� ��2b1 yi�b0ð ÞE xijyi; h

� �h i�1
r4

) nr2 ¼
Xm
i¼1

E y2i jxi; h
� ��2 b0 þ b1xið ÞE yijxi; h

� �þ b0 þ b1xið Þ2
h i

þ
Xn

i¼mþ1

yi�b0ð Þ2 þ b21E x2i jyi; h
� ��2b1 yi�b0ð ÞE xijyi; h

� �h i
:
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