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Background

In the article concerning our recent publication (Shen,
Mao, and Deng 2018), Steiner and Mackay (2019)
suggested that our EM-algorithm approach to the
open challenges (Jensen 2018) may fail in two simula-
tion cases, that is, when the sample size is larger than
1000 and when the correlation between the predictor
(intermediate measurement) X and the response (final
measurement) Y is small. They attempted to show
that the challenge problem is impossible to solve and
suggested that some paired intermediate and final
measurements are needed. We greatly appreciate the
interest and comments from Steiner and Mackay
(2019). Here we would like to provide a rejoinder to
their responses.

Assume that there is an available data set with m
samples measured at the intermediate stage, X,ps =
(x1,%2, ..., Xm), and n—m samples measured at the
final stage, ¥,,c = (Vm+1Ym+2s .-, ¥n). In Steiner and
Mackay (2019), since intermediate and final measure-
ments are collected from different sets of units, they
obtained the marginal log-likelihood function as

lmarg (OC, 5) ,LL},, 6)’) - lx<OC, 5) + l},(,uy, 0)’)
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In their setting, they have considered the relation-
ship between the predictor (intermediate measure-
ment) X and the response (final measurement) Y as
Y = By + f1X + € with X ~N(a,6*) and e~ N(0,6?).
Thus, the pair (X, Y) can be viewed from a bivariate
normal distribution with parameters (i, ox, i, gy, p),
where p is the correlation between the intermediate
measurement X and the final measurement Y.

‘ W) Check for updates

To study the relationship between the intermediate
measurement X and the final measurement Y, we
(Shen, Mao, and Deng 2018) believe that the consider-
ation of missing intermediate and final measurements
is essential in fully understanding the open challenge
problem since intermediate and final measurements
are collected from different sets of units. With the
missing measurements, the paired complete data set
(x, y) can be expressed as

X = (xobsaxmis) = (Xl, ~~-axmax:1+1) ...,x:;), (2)

y= (ymisﬂyobs) = (yT7"'7y:n7ym+l7"'7yn)' (3)

Then the likelihood function based on joint distribu-
tion can be established to investigate the dependency
between X and Y. While using marginal likelihood func-
tion as in Steiner and Mackay (2019) for such an inves-
tigation is not adequate and not well defined.

This article is organized in the following way. First,
we provide our opinions on the Steiner and Mackay’s
(2019) on the challenge problem and point out the
flaws in their statement. Then, we justify our EM-
algorithm approach in the simulations used in Steiner
and Mackay (2019). Lastly, we conclude with a short
discussion on the suggestion that some paired obser-
vations are needed in order to solve the chal-
lenge problem.

Is the challenge problem impossible to solve?

The goal of the open challenge problem (Jensen 2018)
is to quantify the relationship between the intermedi-
ate and the final measurements. Consequently, the tol-
erance of the intermediate measurements given the
specification on the final measurements is obtained
from the relationship. However, when the measure-
ments of products are destructive, it is difficult to
quantify the relationship because it is not possible to
test the same product twice. It is worth remarking
that the focus is on the relationship between the
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Table 1. Simulated mean and standard deviation of the esti-
mates for parameters o, o, ||, 0, and o at different sam-
ple sizes.

Parameter Method m=20 m=50 m=100 m=1000 m=5000

o EM  mean 5.11 511 5.09 5.05 491
sd 0.18 0.2 0.07 0.09 0.08
LR mean 500 5.00 5.00 5.00 5.00

sd 0.08 0.05 0.04 0.01 0.01
Bo EM  mean 2716 2629 26.13 26.47 27.23
sd 8.04 507 2.79 1.02 0.65

LR mean 2995 2995 29.98 30.01 30.00
sd 2.31 1.44 1.01 0.34 0.14

1/ EM mean 535 5.51 5.57 5.60 5.76
sd 1.62 1.05 0.57 0.19 0.12

LR mean  5.01 5.01 5.00 5.00 5.00

sd 0.46 0.29 0.20 0.07 0.03

0 EM  mean 0.52 0.52 0.51 0.51 0.51
sd 0.12 0.08 0.04 0.01 0.01

LR mean  0.50 0.50 0.50 0.50 0.50

sd 0.05 0.04 0.03 0.01 0.00

g EM mean  0.67 0.61 0.58 0.59 0.58
sd 0.37 0.24 0.11 0.04 0.02

LR mean 143 1.44 1.44 1.44 1.44

sd 0.16 0.1 0.07 0.02 0.01

intermediate measurement X and the final measure-
ment Y, not on the statistical correlation between X
and Y.

Steiner and Mackay (2019) proposed to view the
challenge problem by deriving the marginal log-likeli-
hood function in Eq. [1] for the observed measure-
ments X, and y,. Based on the linear model
assumption, they then reparametrize their log-likeli-
hood with

e =0, p, = Po+ pro, 0, = \/ Br6* + a2 (4)

Thus, their Eq. [1] can be rewritten as
Doy (xi—a)?
26°
n—m
—In (B0 + %) (5)
ZLmH ()’Fﬂo‘ﬁﬂ)z
2(B26* + a2) '

lmarg (O(, 57 Ky, G)/) =-mln (5)_

We humbly point out that Eq. [5], which is also
equation 5 in Steiner and Mackay (2019), is a mar-
ginal log-likelihood function with “over-para-
metrization” problem. Since the relationship between
the intermediate measurement (X) and the final meas-
urement (Y) is assumed as Y = f, + ;X + ¢, the
joint likelihood function based on the joint distribu-
tion p(y|x)p(x) should be considered for analysis
rather than the marginal likelihood based on p(x)p(y),
where p(-) is the corresponding probability density
function. Consequently, a linear relationship between
the paired intermediate and final measurements can
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be established with the consideration of missing
observations.

In addition, we would like to point out two false
statements in the section of “Why the Challenge as
Stated is Impossible to Solve” (Steiner and Mackay
2019). First, the sentence “We have Equation (5). The
function (5) is then maximized using the EM algo-
rithm.” is not correct. We have the joint log-likeli-
hood function clearly expressed in the section
“Expectation-Maximization algorithm” in Shen, Mao,
and Deng (2018). Specifically, the log-likelihood func-
tion after replacing the missing values in x and y with
the respective conditional expectation given the
observed data, E(x;|y;; @) and E(y;]x;; 0), is

E[l.(0;x,y)] = —nlog(2n)—nlog(5c)

5[0 0) 208, + BB (b 0) + (B + i)

T 52
20% 4

- % Z [()’i—ﬁo)z + BIE(x} [y ) =281 (yi—Bo) E (xilys; 9)}

i=m+1
1 L1 ] 2
_ﬁZ(xi—ot) Y > [E(xi lyi; 0) —20E(x;]y;; 0) + o }7
=1 i=m+1

(6)

where the conditional expectation is given by

E(yilxi) = By + Brxis i=1,.,m.
E(yﬂx,) =+ (Bo+ prxi), i=1,...,m.

E(x?b;i) _ Lﬁz+ (E(xi|y,~))2 i=m+1,.. n.
! a2 + f25°

Clearly, the jointly log-likelihood function E[(6; x,
y)] in Eq. [6] is different from the marginal log-likeli-
hood function g (o, 9, Ly oy) in Eq. [5].

Second, the sentence “Using the real data in Shen
et al, we have ji, =41.778, 62 =30.957 that do not
match the estimates for 4,52 for any starting value of
f1 as given in their Table 1.” is not correct. In Table
1 of our paper (Shen, Mao, and Deng 2018), it is
clearly written that 4~41 and 6*~28 under the
defined notation X ~ N(a, %), which are close to the
estimates from Steiner and Mackay’s numerical evalu-
ation. These two false statements make their conclu-
sions unreliable.

Justification of the EM-algorithm approach in
numerical cases

Steiner and Mackay (2019) considered two simulation
cases where in both cases n = 2m and each simulation
case is repeated for 1000 runs. We have re-run the
two simulation studies to justify the EM-algorithm
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approach in “Simulation study 1 - effect of sample
size” and “Simulation study 2 - effect of correlation”
sections. We modified the R code provided by Steiner
and Mackay (2019) to run the simulation studies and
made the code available in Bitbucket (https://bit-
bucket.org/vtshen/rpackages/src/master/). The simula-
tion settings are almost identical, except that we used
the original data generation mechanism in Shen, Mao,
and Deng (2018), instead of the one mentioned in
Steiner and Mackay (2019). Our data generation
approach is intended to reflect the underlying data
generation mechanism in the challenge problem. It
allows us to conduct comparison with the benchmark

with one mode near the true value and another mode
at another value. We have re-run the simulation and
also found that the provided original R code would
deteriorates the performance of the EM-algorithm
when the sample size is greater than 1000. The reason
is due to encountering singularity errors in the matrix
inversion in the M-step. Now we have fixed the bugs
in the R code regarding the f, and f; update in the
M-step so that the updated version is robust for large
sample sizes. In the updated R code, when singularity
error occurs, we use the explicit estimates of , and
p, in M-step in our paper (Shen, Mao, and Deng
2018). That is,

p 11 (xi — &) [E(yilxi; 0) =] + 201,041 [E(xlyi; 0)—&] (vi—)

Dot (xi_&)z + Z?=m+1[E(xi|}Vi§ 0) - &}2

method: using linear regression (LR) on the full data
(x,y) for evaluating the effect of missing observations
on parameter estimation.

Note that there are typos found in the simulation
section in Shen, Mao, and Deng (2018). The true val-
ues for the parameters including the intercept in the
LR model, f,, and the mean of the normal distribu-
tion of variable X, o, should be 30 and 5, respectively.

Moreover, in the “Simulation study 3 - effect of
signal-to-noise ratio” section, we will investigate the
effect of signal-to-noise ratio (SNR) on the perform-
ance of the proposed EM-algorithm approach, where
the SNR value varies within {0.5, 1, 3, 6, 10} given
parameters (a, 3, 1,0, m).

Simulation study 1 - effect of sample size

In the first simulation study, we follow the settings in
Steiner and Mackay (2019) where the parameters (o,
Bo, B1,0, SNR) = (5, 30, 5, 0.5, 3) and the sample size
m is within {20, 50, 100, 1000, 5000}. The study is
intended to evaluate the effect of sample size on the
performance of the EM-algorithm approach. Steiner
and Mackay (2019) reported that the EM-algorithm
approach works reasonably well when the sample size
is less than 1000, while its performance gets worse,
especially in terms of the parameter estimation of f3,,
when the sample size is larger than 1000. It is
reported previously from Steiner and Mackay that the
distribution of estimates of 5, appears to be bimodal

After these changes in the R code, we found that
the performance of the EM-algorithm approach is
consistently good at both small and large sample sizes.

The simulation results are provided in Table 1,
which reports the estimates for parameters o, fo, |54,
0, and . The |f,| instead of f; is reported because
the sign of the estimated f; is determined by the sign
of the initial f; in the proposed EM-algorithm
approach. However, the absolute value of the esti-
mated f3; is not related to the sign of the initial f;. In
addition, we show that the tolerance of x does not
depend on the sign of the estimated f; in Appendix
(Shen, Mao, and Deng 2018). Note that the parame-
ters fy, Uy O and g, are not of interest in the open
challenge problem. The goal of the open challenge
problem is to estimate the tolerance of the intermedi-
ate measurements given the specification on the final
measurements, which is obtained in the framework of
the LR relationship in our approach (Shen, Mao, and
Deng 2018). It is seen in Table 1 that the EM-algo-
rithm approach provides reasonably good estimators
at various sample sizes. Note that the EM-algorithm
does not provide as accurate estimators as the LR
method even though they are comparable to some
extent. This is expected because the LR method uti-
lizes all the observations assuming that the missing
intermediate and final measurements are recovered.

Steiner and Mackay (2019) also reported that the
estimates for the correlation p are always close to 1 or
—1. Thus, they claimed that the EM-algorithm


https://bitbucket.org/vtshen/rpackages/src/master/
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approach could not possibly work because of the poor
estimation of p, regardless of the fact that the EM-
algorithm approach provides reasonably good esti-
mates for other parameters such as |f$,|. We would
like to reiterate that the goal of the open challenge
problem is to estimate the tolerance of the intermedi-
ate measurements given the specification on the final
measurements. Thus, quantifying the relationship
between the intermediate and final measurements (i.e.,
estimate of f3;) is more important, while the estimate
of p is not of major interest. Note that in Fig. 1 of the
paper Shen, Mao, and Deng (2018), it is visually evi-
dent that the estimated p values from x and y are
close to 1 or —1. The explanation unfolds with the
following justification. In the EM-algorithm approach,
we update the parameters o, f, o 62, and &° until
their convergence. The p is thus estimated based on x
and y, including the imputed missing intermediate
and final measurements. Because the missing parts in
observations are imputed based on the estimated LR
model, the estimated value of 62 is small compared to
that of f,0. According to the equation p = T
the estimates of p would be close to 1 or —1.

Simulation study 2 - effect of correlation

Steiner and Mackay (2019) explored the effect of cor-
relation (between intermediate measurement X and
final measurement Y) on the method performance,
but they did not present the effect of changing correl-
ation on the SNR. According to the equations in

Steiner and Mackay (2019), f; = 2(2.77p) and ¢ =

(2.772—0.25p%), changing the correlation would
affect both f, and o. Note that SNR is defined (Wu
and Hamada 2009) as
_ Variance(f, + f,X) Bis* P

SNR _ ,
0-2 0-2 1 — p2

Therefore, in their simulation study 2, they actually
investigated two effects, f; and SNR, at the same
time. Specifically, when the setting p is within {1, 0.9,
0.75, 0.5, 0.25}, the corresponding f, is {5.54, 4.99,
4.16, 2.77, 1.39} and SNR is {oo, 4.26, 1.29, 0.33,
0.07}. These actions complicated the simulation proc-
esses and we believe it would be better to investigate
the effects of f/; and SNR separately. However, the
purpose of this letter is to give a rejoinder to their
responses (Steiner and Mackay, 2019). Thus, we first
follow their approach but add more details to provide
our response in the simulation study 2. Furthermore,
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Table 2. Simulated mean and standard deviation of the esti-
mates for parameters u,, u,, p, 0y and o, at different correl-
ation values.

Parameter Method p=099 p=09 p=075 p=05 p=025

Ly EM mean  5.12 5.15 5.20 51 5.59
sd 0.13 0.17 0.21 0.18 0.73

naiveLR mean  5.00 5.00 5.00 5.00 5.00

sd 0.07 0.07 0.07 0.07 0.07

LR mean  5.00 5.00 5.00 5.00 5.00

sd 0.05 0.05 0.05 0.05 0.05

marginal mean  5.00 5.00 5.00 5.00 5.00

sd 0.05 0.05 0.05 0.05 0.05

Uy EM mean 7631 7425 7080 6572  59.87
sd 0.54 0.64 0.74 0.54 1.22

naiveLR mean 7693 7493 71,60 66.09 60.53

sd 0.39 0.40 0.36 0.26 0.14

LR mean 7693 7494 7162 66.08 60.54

sd 0.27 0.28 0.26 0.18 0.10

marginal mean 76.93 74.93 7160  66.09 60.53

sd 0.27 0.28 0.26 0.18 0.10

p EM mean  0.97 0.98 0.97 0.97 0.99
sd 0.09 0.08 0.12 0.03 0.01
naiveLR mean 0.12 0.11 0.11 0.11 0.12
sd 0.09 0.08 0.09 0.08 0.08
LR mean  0.99 0.92 0.83 0.75 0.72
sd 0.00 0.01 0.02 0.03 0.04
marginal mean - - - - -
sd - - - - -

Oy EM mean  0.53 0.54 0.57 0.53 1.00
sd 0.08 0.10 0.13 0.13 0.47

naiveLR mean  0.50 0.50 0.50 0.50 0.50

sd 0.05 0.05 0.05 0.05 0.05

LR mean  0.50 0.50 0.50 0.50 0.50

sd 0.04 0.04 0.04 0.04 0.04

marginal mean  0.50 0.50 0.50 0.50 0.50

sd 0.04 0.04 0.04 0.04 0.04

gy EM mean  2.80 2.75 2.59 1.85 1.49
sd 0.25 0.27 0.32 0.31 0.51

naivelR mean 279 2.72 2.50 1.84 0.97

sd 0.28 0.29 0.28 0.20 0.1

LR mean  2.77 2.71 2.49 1.82 0.96

sd 0.20 0.22 0.21 0.15 0.08

marginal mean  2.77 2.69 2.48 1.82 0.96

sd 0.20 0.22 0.21 0.15 0.08

we investigate the effect of SNR in Section
“Simulation study 3 - effect of signal-to-noise ratio”.

We follow the settings in the simulation study 2
(Steiner and Mackay 2019) where the correlation p
varies. That is, (u,, oy, Ly a,) = (5, 0.5, 55, 2.77),
which corresponds to the settings («, 6) = (5, 0.5),
B, =2(2.77p), By = 55—f,, and ¢ = 1/ (2.772—0.253).
Note we consider p = {0.99, 0.9, 0.75, 0.5, 0.25}. We do
not consider the case where p = 1 because when p =
1, 6 = 0 and it is not practical.

It is seen in Table 2 that the reproduced results for
parameters include p, (i.e. o), g, (i.e. 9), Ly, Oy, and p
at various p values from the proposed EM-algorithm
method (Shen, Mao, and Deng 2018) and the so-
called marginal method (Steiner and Mackay 2019).
Furthermore, we add two more approaches in com-
parison: the naive LR (naiveLR) method and the LR
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Table 3. Simulated mean and standard deviation of the esti-
mates for parameters o, o, ||, 6, and o at different correl-
ation values.

Parameter Method p=099 p=09 p=0.75 p=05 p=0.25

o EM  mean 5.12 5.15 5.20 5.11 5.59
sd 0.13 0.17 0.21 0.18 0.73

naiveLR mean  5.00 5.00 5.00 5.00 5.00

sd 0.07 0.07 0.07 0.07 0.07

LR mean  5.00 5.00 5.00 5.00 5.00

sd 0.05 0.05 0.05 0.05 0.05

Po EM  mean 4939 4822 4733 4806 5091
sd 4.80 4.40 4.64 2.49 1.16

naiveLR mean 77.10 74.87 71.65 66.02 60.60

sd 4.15 3.88 3.63 2.61 1.44

LR mean  49.51 50.07 5082 5226  53.59

sd 0.40 1.09 1.41 1.20 0.68

141 EM  mean 526 5.07 453 3.46 1.66
sd 0.99 0.93 0.97 0.51 0.49

naiveLR mean  0.65 0.61 0.57 0.41 0.23

sd 0.50 0.47 0.44 0.32 0.17

LR mean  5.49 497 4.16 2.76 1.39

sd 0.08 0.22 0.28 0.24 0.14

0 EM  mean 053 0.54 0.57 0.53 1.00
sd 0.08 0.10 0.13 0.13 0.47

naiveLR mean  0.50 0.50 0.50 0.50 0.50

sd 0.05 0.05 0.05 0.05 0.05

LR mean  0.50 0.50 0.50 0.50 0.50

sd 0.04 0.04 0.04 0.04 0.04

a EM  mean 0.6 0.53 0.49 0.46 0.15
sd 0.22 0.19 0.25 0.12 0.02

naiveLR mean  2.76 2.69 248 1.82 0.96

sd 0.28 0.29 0.28 0.20 0.1

LR mean  0.39 1.09 137 1.19 0.67

sd 0.03 0.08 0.10 0.08 0.05

Table 4. Simulated mean and standard deviation of the esti-
mates for parameters o, ffo, ||, 0, and o at different SNR.

Parameter Method SNR = 0.5SNR = 1SNR = 3 SNR = 6 SNR = 10

o EM mean 5.07 5.07 5.11 5.14 5.16
sd 0.08 0.08 0.12 0.15 0.18

LR mean 5.00 5.00 5.00 5.00 5.00

sd 0.05 0.05 0.05 0.05 0.05

fo EM mean 1275 2013 2626 28.27 29.25
sd 6.04 474 4.95 4.89 4.66

LR mean 29.98 2996 2995 29.94 30.00

sd 3.63 2.55 1.50 1.03 0.81

141 EM mean 822 6.79 5.51 5.08 4.86
sd 1.14 0.95 1.00 1.01 0.98

LR  mean 5.00 5.01 5.01 5.01 5.00

sd 0.73 0.51 0.30 0.20 0.16

0 EM  mean 0.0 0.50 0.51 0.54 0.55
sd 0.05 0.05 0.07 0.09 0.1

LR mean 0.0 0.50 0.50 0.50 0.50

sd 0.03 0.04 0.03 0.04 0.03

o EM mean 1.15 0.93 0.60 0.54 0.50
sd 0.33 0.24 0.23 0.23 0.23

LR mean 352 2.50 1.43 1.02 0.79

sd 0.24 0.17 0.10 0.07 0.06

method. The naiveLR method is to apply the LR
method on the observations x,,, and y ., given the
number of intermediate and final measurements is
equal in the simulation settings. The LR method is to

apply the LR method on the complete paired meas-
urements, x and y, which include both missing and
observed measurements. Note that in the simulation
case we can have the complete paired measurement.

For a fair comparison, we include the estimates for
parameters o, 0, f,, |f;], and ¢ in Table 3. When
p >0.75, the EM-algorithm method provides reason-
ably good performance in terms of ;. Note that the
EM-algorithm method obtains the estimates consider-
ing the paired measurements x and y with missing
observations, while the so-called marginal method is
built on the x,, and y,,. The marginal method has
comparable performance with the naiveLR and the LR
method in terms of u, (ie., ®), u,, o, (ie., 6), g,, but
these parameters are not of main interest. The
naiveLR has the worst performance in fy, f;, and o
estimation compared to the EM and the LR methods.
The poor performance of the naiveLR method empha-
sizes the importance of considering paired x and y,
including the missing and observed measurements, for
quantifying the relationship between intermediate and
final measurements.

Again, Steiner and Mackay (2019) mentioned the
estimation of p is close to 1 or -1, but it can be
explained by the same reasoning we have stated in
Section “Simulation study 1 - effect of sample size”.

Simulation study 3 - effect of signal-to-noise ratio

In this section, the objective is to investigate the effect
of SNR on the performance of the EM-algorithm
method. Such a simulation study is not performed in
Steiner and Mackay (2019). In this simulation, we set
(o0, By, By, 0,m) = (5,30,5,0.5,50) and vary SNR
within {0.5, 1, 3, 6, 10}. The simulation results are
provided in Table 4.

Table 4 shows that when the SNR is as high as 6
or 10, the EM-algorithm approach performs reason-
ably well. While when the SNR is as low as 0.5 or 1,
the performance of the EM-algorithm method is not
that good, especially in terms of the estimation of f;.
The performance of the LR method also deteriorates
when the SNR is low as its standard deviation of esti-
mator f§; gets larger. To better understand the effect
of SNR on the method performance, recall the pro-

portion of variance explained (PVE, Hastie,
Tibshirani, and Tibshirani 2017) as
Variance(e) SNR

PVE =1—- = .
Variance(f, + f;x +¢€) 1+ SNR

When the SNR decreases to small values, the PVE
gets close to zero. For example, when SNR is 0.5 or 1,



then the corresponding PVE is only 33.3% or 50%,
respectively. The small value of SNR implies that the
data is very noisy and the LR method generally does
not work well. Therefore, it is expected that the per-
formance of methods based on the linear regression,
including the EM-algorithm method and the LR
method, is getting worse with SNR being smaller.

Summary

Overall, the performance of our proposed EM-algo-
rithm method (Shen, Mao, and Deng 2018) in the
numerical studies are properly justified. First, the EM-
algorithm method performs reasonably well and con-
sistently at various sample sizes. Second, the estima-
tion of the correlation p is based on x and y,
including the imputed missing intermediate and final
measurements in the EM-algorithm approach. The
missing parts in observations are imputed based on
the estimated LR model. Thus, the estimated value of
6? is small compared to that of ;0. According to the

Bié
VB e
close to 1 or —1, but the major focus of the open
challenge problem is not on estimation of p. Third,
the performance of the proposed EM-algorithm is rea-
sonably good when SNR is high but deteriorates when
SNR is as low as 0.5 or 1. The reason is that when
SNR is low, the data is highly noisy, and the LR meth-
ods do not work well in such situations.

We would like to emphasize that the performance
of the proposed EM-algorithm method can be affected
by the choice of initial values. In the associated R
code, we provide a strategy to choose appropriate ini-
tial values for parameters, especially f,. The initial
values are chosen such that the imputed x,,;; has simi-
lar distribution as x,p. This is not the only strategy to
select appropriate initial values. Other reasonable
strategies for searching initial values are also possible.

equation p = the estimates of p could be

Discussion

Steiner and Mackay (2019) suggested obtaining some
paired data in combination with the unpaired inter-
mediate and final measurements. If some paired data
were available, the proposed EM-algorithm method
can easily accommodate such situations. What we
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need to update is the complete log-likelihood function
in the E-step in Shen, Mao, and Deng (2018). After
that, the M-step, which is maximizing the expected
complete log-likelihood function, is straightforward.
We also would like to point out that, besides the pro-
posed EM-algorithm method in Shen, Mao, and Deng
(2018) to address the open challenge problem, a more
general method can be the Bayesian method (Kang
et al. 2018) to construct the joint likelihood function
p(y|x)p(x) for quantifying the relationship between
intermediate and final measurements. Results on this
direction will be reported in the future.
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