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A latent process approach to change-point detection of mixed-type
observations

Shuyu Chua, Xueying Liua, Achla Maratheb, and Xinwei Denga

aDepartment of Statistics, Virginia Tech, Blacksburg, Virginia; bBiocomplexity Institute, University of Virginia, Charlottesville, Virginia

ABSTRACT
Mixed-type observations, such as continuous measurements, discrete counts, and binary
outcomes, are commonly present in many applications. The change-point detection with
mixed-type observations is challenging since it is difficult to quantify the hidden association
among mixed-type observations. In this work, we propose a latent process method to
model the mixed observations in a joint manner, and effectively detect the changes.
Bayesian parameter estimation and inference are developed for the proposed method by
combining the discrete particle filter (DPF) and sequential Monte Carlo (SMC) algorithms.
Such an algorithm can efficiently update the high dimensional proposal distribution and
can exploit the discrete and continuous natures of the latent processes simultaneously. The
performance of the proposed method is illustrated by several numerical examples and a
case study of civil-unrest data.
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1. Introduction

In various applications, mixed-type observations are
widely present, where continuous and discrete obser-
vations are often collected together to evaluate the
system performance. For example, in a wafer lapping
manufacturing process (Deng and Jin 2015; Kang
et al. 2018), the total thickness variation is a continu-
ous quality response to characterize the range of the
wafer thickness. The conformity of site total indicator
readings (STIR) is a binary response measurement to
indicate whether the STIR is larger than the tolerance
or not. In the service industry, the average time of job
completion and the daily base job frequency are con-
tinuous and discrete measurements to monitor its ser-
vice process in terms of freight amount (Ning and
Tsung 2012). In an example involving civil unrest
(O’brien 2010; Ramakrishnan et al. 2014), social
events are recorded with several measurements,
including the event frequency during a certain time
interval and a continuous quantity that records the
average tone of the events. The multiple measure-
ments from a system are often highly correlated and
thus should be jointly considered to effectively evalu-
ate the performance of the system.

The change-point problems commonly occur in
many processes. Detection of change-points is an

important task for monitoring the performance of a
system. We consider change-points to be those time
points which divide the whole data set into distinct
homogeneous segments. Generally, change-point
detection techniques can be categorized by offline or
online methods, and parametric or non-parametric
methods. This work restricts its attention to methods
which are offline and parametric. The change-point
detection has been developed for over sixty years,
with early work including Page (1954), Shiryaev
(1963), and Hinkley and Hinkley (1970). Numerous
applications are shown on a wide range of disciplines,
such as manufacturing processes (Ge and Smyth
2000), bioinformatics (Lio and Vannucci 2000;
Erdman and Emerson 2008), healthcare (Gao et al.
2019), cybersecurity (Young and Kuo 2001), and
finance (Spokoiny 2009). For a more general overview
of change-point detection methods, please refer to
M€uller and Siegmund (1994), Chen and Gupta (2011),
Truong, Oudre, and Vayatis (2020), and Xie et al.
(2021).

For the continuous observations, a variety of fre-
quentist and Bayesian approaches are developed to
detect change-points in the literature, including
Hinkley and Hinkley (1970), Chen and Gupta (1997),
Gupta and Chen (1996), Andrieu, Doucet, and
Holenstein (2010), Capp�e, Moulines, and Ryd�en
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(2009), Fearnhead (1998), Fr€uhwirth-Schnatter (2006),
and Whiteley, Andrieu, and Doucet (2010). The fre-
quentist approaches mainly focus on the likelihood-
ratio based or penalized likelihood methods (Li,
Tsung, and Zou 2013; Zhang et al. 2010), while the
Bayesian approaches rely on the specification of a
prior for the number and position of change-points
(Eckley, Fearnhead, and Killick 2011). Among various
methodology, the Bayesian methods using switching
state-space model (SSSM) show promising perform-
ance. The Markov chain Monte Carlo (MCMC) algo-
rithm is often used in such methods for efficient
sampling of the posterior distribution for inference
(Capp�e, Moulines, and Ryd�en 2009; Fr€uhwirth-
Schnatter 2006; Eckley, Fearnhead, and Killick 2011).
The SSSM assumes that the observations are generated
from a latent Markov process, which can be continu-
ous or discrete. If the latent process is continuous,
one can use the sequential Monte Carlo (SMC) algo-
rithm to design efficient high-dimensional proposals
within the MCMC scheme (Andrieu, Doucet, and
Holenstein 2010). If the latent process is discrete, the
discrete particle filter (DPF) is an efficient algorithm
for the estimation and inference of the latent parame-
ters, see Fearnhead (1998), Whiteley, Andrieu, and
Doucet (2010), and Capp�e, Moulines, and Ryd�en
(2009).

However, the change-point problem has not
received much attention for cases when there are both
discrete or mixed observations. Few works have
focused on the change-point detection problem for
mixed-type observations. In terms of modeling of
mixed-type observations, it is mentioned in Chen and
Brown (2013) that the linear Gaussian state-space
model can be extended to accommodate the discrete
or mixed observation. It is also known that the copula
model could provide a unified framework to model
statistical dependencies among continuous, discrete,
or mixed-type random variables (Chen 2013). For
example, de Leon and Wu (2011) developed a copula-
based regression model for binary and continuous
observations, where a latent variable formulation is
adopted for the binary observations. However, the
model in de Leon and Wu (2011) is specially for bin-
ary and continuous observations, and it is not
straightforward to be extended to other types of dis-
crete observations. For the aforementioned modeling
methods, it is also not clear how to combine these
modeling methods with the change-point detection.

There are several frequentist approaches proposed
to address the change-point problem for mixed-type
data. Ning and Tsung (2012) develop a density-based

statistical process control scheme to detect process
changes in mixed-type observations. Their key idea is
to transform the multi-dimensional observations into
a one-dimensional measurement using a local outlier
factor (LOF). However, such a method requires sev-
eral predetermined parameters such as control limits,
which could highly depend on the quantity and qual-
ity of the data. In Qiu (2008), the mixed-type data are
all converted into binary or categorical variables and
their distributions are estimated using the log-linear
modeling approach. Thus the change-point is detected
based on changes in the estimated distributions. But
such an approach requires a reasonable amount of
high-quality in-control data to give an accurate esti-
mation of the in-control distribution, which might be
difficult to obtain in practice.

In this work, we propose a Bayesian approach for the
change-point detection with mixed-type observations.
Specifically, a so-called mixed switching state-space
model (mixed SSSM) is proposed for the mixed-type
observation with both continuous and discrete observa-
tions. The proposed model contains two latent Markov
processes, the continuous and discrete latent processes,
such that they can jointly describe the hidden dynamics
in the continuous and discrete observations. In particu-
lar, a sequence of indicator variables is introduced to
indicate the occurrence of significant changes in the data
sequence. To enable efficient estimation of the posterior
distributions of the latent processes, we develop an effect-
ive estimation algorithm by combining sequential Monte
Carlo and discrete particle filter algorithms iteratively.
The contributions of this work are as follows. First, we
propose a mixed SSSM model for quantifying the rela-
tionship between continuous and discrete variables under
various settings of underlying distributions. Second, a
combined particle filter algorithm is developed for
detecting change-point(s) effectively and estimating
parameters efficiently. Third, the proposed method can
conduct efficient Bayesian inference through the MCMC
technique.

The rest of this work is organized as follows. In
Section 2, we detail the proposed mixed SSSM model
for mixed-type data. Section 3 elaborates the efficient
sampling algorithm, as well as the pseudo-code of the
particle marginal Metropolis-Hastings sampler.
Section 4 reports several numerical examples to dem-
onstrate the performance of the proposed schemes. A
real case study of civil protest is used to illustrate the
implementation of the proposed approach in Section
5. We conclude this work in Section 6 with some
discussion.
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2. Switching state-space models for mixed-
type data

2.1. Notation

For notation convenience, the capital letters are used
for random variables and lowercase letters denote
their values. Suppose there are two sequences of

observations Yn; n ¼ 1, � � � ,Tf g � YN and Zn; n ¼ 1,f
� � � ,Tg� ZN, where TP 1 is the length of the
sequence. Here the Yn is a continuous variable and Zn
is a non-negative discrete variable. We also assume
that the pair Yn and Zn are dependent with each other
in some unobserved manner. Denote 0 < s1 < s2 <
� � � < sk < T to be k change-point locations. It implies
that the observations Yn,Znf g are homogeneous
within each segment ½sj, sjþ1� and heterogeneous
across segments, where j ¼ 0, 1, � � � , k, and
denote s0 ¼ 0, skþ1 ¼ T:

To quantify the relationship between Yn and Zn,
two latent processes are considered, a continuous
latent process Xnf gnP 1 and a discrete latent process
Inf gnP 1: The values of Xn lie in a real-valued set X
and the values of In belong to a finite set I : Denote
jI j as the cardinality of I , then I ¼ 1, � � � , jI jf g:
The process Xnf gnP 1 is to explain the dependence
between Yn and Zn, while the process Inf gnP 1 indi-
cates the states of the observations. That is, change-
point occurs when two consecutive sets of observa-
tions are in different states. Under the context of
change-point detection, we assume that In takes at
least two different possible values. The value of In
maintains the same within each segment and varies
across different segments. Note that if In only takes
one value, then there will be no change point.

Hereafter, let us denote y1:T as an observed vector

y1:T ¼ ðy1, � � � , yTÞ0 of the random vector Y1:T ¼
ðY1, � � � ,YTÞ0: Similarly, one can define z1:T , x1:T ,
i1:T ,Z1:T ,X1:T , and I1:T : Denote the support of I1:n as
In: As n increases, the possible paths of I1:n, which is
jI jn, grows exponentially. Thus, we define a param-
eter N1 as the maximum number of support points of
I1:n at time step n. Similarly, N2 is defined as the
number of sampling points of X1:n at time n. Let us
also denote the indicator function as dAðxÞ, which
takes value of 1 if x 2 A, and 0 otherwise.

2.2. The proposed model

Recall that the observed sequences are Ynf g and
Znf g, and the latent sequences are Inf g and Xnf g,
where nP 1: The main objective of this work is to

find the possible change-point location(s), 0 < s1 <
s2 < � � � < sk < T, 16 k6T, where the latent discrete
process In changes from one state to another.

We assume that both latent processes are Markov
processes with initial values as I1 � vhð�Þ and X1 �
lhð�Þ, respectively. Their transition probability den-
sities are denoted as f Ih and f Xh ,

Inþ1jðIn ¼ iÞ � f Ih ð�jiÞ, (1)

Xnþ1jðXn ¼ xÞ � f Xh ð�jxÞ, (2)

where h 2 H is a vector of static parameters in the
model. Here f Ih is in fact a stochastic transition matrix.
Given Inf g and Xnf g, we assume that Ynf g and Znf g
are conditionally independent, where the distributions
of Yn and Zn only depend on the current latent obser-
vations of In and Xn, for all nP 1, similar to the con-
vention in Whiteley, Andrieu, and Doucet (2010) and
Andrieu, Doucet, and Holenstein (2010). This is
because of the Markov independence property that
knowing the state at any time makes the past, present
and future observations statistically independent. By
denoting ghðyjx, iÞ and hhðzjx, iÞ as the common mar-
ginal probability densities of Yn and Zn given the
latent processes, we can have

YnjðX1 ¼ x1, � � � ,Xn ¼ xn, I1 ¼ i1, � � � , In ¼ inÞ
� gh, inð�jxnÞ, (3)

and,

ZnjðX1 ¼ x1, � � � ,Xn ¼ xn, I1 ¼ i1, � � � , In ¼ inÞ
� hh, inð�jxnÞ: (4)

It is seen that the relationship between Yn and Zn
is well defined through (3) and (4). Changes in the
two latent processes In and Xn have a direct impact
on Yn and Zn simultaneously. Thus the mixed-type
observations are closely connected through the latent
processes. Correspondingly, the complete formulation
of the proposed switching state-space model for
mixed-type observations is described through (1) to
(4). We call the proposed model as the mixed SSSM.

The mixed SSSM generalizes the original SSSM to
observations containing both continuous and discrete
variables through two types of latent processes. In the
proposed model, the continuous latent process not
only controls the latent dynamics but also is devel-
oped as a bridge to connect mixed-type observations.
Moreover, the proposed model retains the Markov
properties and gives more flexibility on data struc-
tures. However, due to the mixture property, the
mixed SSSM is clearly non-linear and non-Gaussian,
which makes the traditional particle filter algorithm

QUALITY ENGINEERING 3



no longer appropriate for the model estimation and
inference.

Example: A linear mixed Gaussian-Poisson SSSM.
Suppose the discrete latent process Inf g, where

In 2 0, 1f g, is a Markov chain with transition matrix
PI as

PI ¼ 0:8 0:2
0:2 0:8

� �
: (5)

For the continuous latent process fXng, consider
the following transition relationship,

xnþ1 ¼ /xn þ rInVn, (6)

where Vnf g are independent and identically distrib-
uted (i.i.d.) with standard normal distribution
Nð0, 1Þ: For the initial distributions, set I1 �
Bernð0:5Þ and X1 � Nð0, 1Þ:

Given the observed continuous process fXng and
the observed discrete process fZng, n ¼ 1, � � � ,T, con-
sider the mixed Gaussian-Poisson SSSM as follows,

yn ¼ xn þ cVn, (7)

zn � Poisson a
ffiffiffiffiffiffiffi
jxnj

p� �
: (8)

It means that, given In and Xn, the continuous vari-
able Yn follows a Gaussian distribution, Nðxn, c2Þ and
the discrete variable Zn follows a Poisson distribution

with parameter a
ffiffiffiffiffiffiffijxnj

p
: Clearly, the static parameter

vector h contains /, r, c, and a in this example.

2.3. Model inference

Based on (3) and (4), we can obtain,

ghðy1:T jx1:T , i1:TÞ ¼
YT
n¼1

gh, inðynjxnÞ, (9)

hhðz1:T jx1:T , i1:TÞ ¼
YT
n¼1

hh, inðznjxnÞ: (10)

Consequently, we get the joint distribution of y1:T
and z1:T given x1:T , i1:T ,

phðy1:T , z1:T jx1:T , i1:TÞ ¼ gh, i1:T ðy1:T jx1:TÞ � hh, i1:T ðz1:T jx1:TÞ

¼
YT
n¼1

gh, inðynjxnÞhh, inðznjxnÞ:

(11)

Conditional on the observed data y1:T , z1:T for
TP 1, the goal is to conduct the Bayesian inference
of all the unknown parameters (h, s1:k), especially the
change-point locations s1:k: If h 2 H is known, it is
easy to see that the Bayesian inference mainly relies

on the posterior density,

phðx1:T , i1:T jy1:T , z1:TÞ / phðx1:T , i1:T , y1:T , z1:TÞ
¼ f Ih ði1:TÞf Xh ðx1:T ji1:TÞghðy1:T jx1:T , i1:TÞhhðz1:T jx1:T , i1:TÞ

¼ vhði1Þlhðx1Þ
YT
n¼2

f Ih ðinjin�1Þf Xh, in�1
ðxnjxn�1Þ

YT
n¼1

gh, inðynjxnÞhh, inðznjxnÞ:

(12)

If h is unknown, we can assign a suitable prior
density pðhÞ and then the Bayesian inference can be
conducted based on the joint density

pðh, x1:T , i1:T jy1:T , z1:TÞ / phðx1:T , i1:T , y1:T , z1:TÞpðhÞ:
(13)

To calculate the posterior distributions of latent
processes Inf g and Xnf g, we propose to alternately
combine the DPF and SMC algorithms, which will be
detailed in the next section. As the model defined
through (1) to (4) can be non-linear or non-Gaussian,
there are often times no explicit expressions for
those posterior densities, phðx1:T , i1:T , y1:T , z1:TÞ and
pðh, x1:T , i1:T jy1:T , z1:TÞ, making exact inference diffi-
cult in practice. Thus it is natural to resort to approxi-
mations, where the particle Markov chain Monte
Carlo (PMCMC) method provides a flexible Bayesian
framework to address such difficulties.

3. Particle MCMC algorithm for mixture SSSM

It is known that particle filter algorithms are commonly
used to conduct efficient Bayesian inferences under the
latent processes context. In the literature, the sequential
Monte Carlo (SMC) algorithm was proposed for the
continuous latent process (Andrieu, Doucet, and
Holenstein 2010), while the discrete particle filter
(DPF) algorithm was specially developed for the dis-
crete latent process (Whiteley, Andrieu, and Doucet
2010; Fearnhead 1998; Fearnhead and Clifford 2003).
However, neither of these two algorithms can work
well individually for the mixed SSSM containing both
continuous and discrete observations. To the best of
our knowledge, there is little work focusing on prob-
lems with both continuous and discrete observations.
To address this challenge, we propose a new algorithm,
so-called “combined DPF & SMC” algorithm, by taking
advantages of both SMC and DPF algorithms such that
we can jointly estimate the unknown parameter h and
change-point(s) s1, � � � , sk: We will detail the combined
DPF & SMC algorithm in Section 3.1. Using the pos-
terior densities estimated from Section 3.1, Section 3.2
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will elaborate how to update unknown parameters and
latent processes using the particle marginal Metropolis-
Hastings (PMMH) sampler.

3.1. Combined DPF & SMC algorithm

A combined DPF & SMC algorithm is developed to
make Bayesian inference for the mixed SSSM, condi-
tional upon the mixed observations y1:T , z1:T and
treating the static parameter h and both the latent
processes X1:T , I1:T unknown. The joint density of
these unknowns is shown in (13). It is easy to see that
this posterior can be factorized as follows,

pðh, x1:T , i1:T jy1:T , z1:TÞ ¼ pðh, i1:T jy1:T , z1:TÞphðx1:T jy1:T , z1:T , i1:TÞ
(14)

where

pðh, i1:T jy1:T , z1:TÞ ¼
phðy1:T , z1:T ji1:TÞpði1:T jhÞpðhÞÐ

H

P
i01:T2ITphðy1:T , z1:T ji01:TÞpði01:T jhÞpðhÞ dh

(15)

However, the difficulty in computing pðh, i1:T jy1:T ,
z1:TÞ comes from the exponentially increasing realiza-

tions of i1:T , which is jI jT : Even if h is fixed, it would
be very expensive to consider all the possible realiza-
tions of i1:T for a modest value of T (Whiteley,
Andrieu, and Doucet 2010). Thus consider an
approximated computation of phði1:T jy1:T , z1:TÞ
sequentially via the recursive relationship,

However, the computation involved in (16) still
increases exponentially in n. Thus the DPF approxi-
mates the posterior distributions pðh, i1:njy1:n,

�
z1:nÞ; 16 n6Tg sequentially using a collection of
N1jI j weighted trajectories (so-called “particles”),

IðkÞ1:n; k ¼ 1, � � � ,N1jI j
n o

,

where jI j is the cardinality of I and N1 is the maximum
number of discrete particles sampled at each time n.

Note that for a given n and h 2 H, the support of
phði1:njy1:n, z1:nÞ is In: Specifically, at each time step n,
we consider to resample N1 of the N1jI j trajectories
and then adjust their weights accordingly. Let us
denote by S1, S2, � � � , ST the random support sets gen-
erated from the resampling step. In particular, each Sn

takes a value sn which is a subset of In: As n increases,
the possible paths of I1:n grows exponentially. Then N1

acts as a pruning parameter to prevent the support
from growing too big, through resampling techniques
when jSnj > N1: On the other hand, the value of N1

controls the precision of the DPF algorithm. A larger
value of N1 will lead to more accurate (on average)
approximation for the target distribution
phði1:T jy1:T , z1:TÞ, and it has been shown that the DPF
algorithm works efficiently even with a moderate num-
ber of particles (Whiteley, Andrieu, and Doucet 2010;
Chen and Liu 2000; Doucet, Godsill, and Andrieu
2000, Doucet, Gordon, and Kroshnamurthy 2001).

Since the objective is to find the change-point(s)
locations, we need the approximation of the posterior
distribution of I1:n, which is approximated by a set of
N1 weighted particles as follows,

p̂hði1:njy1:n, z1:nÞ :¼
XjSnj
k¼1

Wk
ndIk1:nði1:nÞ, (17)

where Wk
n is a so-called normalized importance

weight associated with the kth particle Ik1:n at time n

such that
PjSnj

k¼1 W
k
n ¼ 1: The delta indicator function

dIk1:nð�Þ takes value of 1 if i1:n 2 Ik1:n, and 0 otherwise.

Note that the above approximation requires the esti-
mation of the conditional marginal likelihood
ph, i1:nðy1:n, z1:njy1:n�1, z1:n�1Þ: However, due to its non-
linear or/and non-Gaussian characteristics, the com-

monly used Kalman filter techniques (Kalman 1960)
cannot work here. Therefore, given h and I1:n ¼ i1:n,
the SMC technique is adopted to deal with the con-
tinuous latent process fXngnP 1 to approximate the
density ph, i1:nðy1:n, z1:T jy1:n�1, z1:n�1Þ:

The SMC algorithm aims to approximate the joint
posterior density of the continuous latent process
X1:n, which is ph, i1:nðx1:njy1:n, z1:nÞ by a set of N2

weighted random samples or particles by a discrete
density probability distribution,

p̂h, i1:nðx1:njy1:n, z1:nÞ :¼
XN2

k¼1

~W
k
ndXk

1:n
ðx1:nÞ, (18)

where ~W
k
n is the normalized weight for the kth particle at

time n such that
PN2

k¼1
~W

k
n ¼ 1, and ~W

k
n ¼ ~wnðXk

1:nÞPN2
m¼1

~wnðXm
1:nÞ

phði1:njy1:n, z1:nÞ ¼
phðyn, znjy1:n�1, z1:n�1, i1:nÞf Ih ðinji1:n�1Þphði1:n�1jy1:n�1, z1:n�1ÞP

i01:n2Inphðyn, znjy1:n�1, z1:n�1, i01:n�1Þf Ih ði0nji01:n�1Þphði1:n�1jy1:n�1, z1:n�1Þ : (16)
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with ~wnðXk
1:nÞ being the corresponding unnormalized

weights. The dXk
1:n
ð�Þ takes value of 1 if x1:n 2 Xk

1:n, and 0

otherwise. Here N2 is the number of particles Xk
1:n

sampled at each time n. Similar to N1, the choice of N2

controls the precision of the SMC algorithm. Thus, N1

and N2 together controls the precision of the combined
DPF & SMC algorithm. Then, at time T, we can obtain
the estimation of ph, i1:T ðy1:T , z1:TÞ by SMC as,

p̂h, i1:T ðy1:T , z1:TÞ ¼ p̂h, i1ðy1, z1Þ
YT
n¼2

p̂h, i1:nðyn, znjy1:n�1, z1:n�1Þ,

p̂h, i1:nðyn, znjy1:n�1, z1:n�1Þ ¼ 1
N2

XN2

k¼1

~wnðxk1:nÞ:

(19)

For the detailed procedure of the DPF or SMC
algorithm, please refer to Andrieu, Doucet, and
Holenstein (2010), Fearnhead (1998), and Whiteley,
Andrieu, and Doucet (2010).

A pseudo code of the combined DPF & SMC is
provided below. To alleviate the notational burden, we
adopt the similar convention used in Andrieu,
Doucet, and Holenstein (2010). Whenever the index k
is used, it means “for all k 2 f1, � � � ,N2g” for the con-
tinuous particle fXngn�1: The dependence of weights
on h is also omitted for convenience.

Algorithm 1 (Combined DPF & SMC Algorithm).

Step 1: at time n¼ 1,

a. Set S1 ¼ I and for each i1 2 I , obtain p̂h, i1ðy1, z1Þ
using the SMC algorithm as follows,

~w1ðxk1Þ ¼ gh, i1ðy1jxk1Þhh, i1ðz1jxk1Þ,
p̂h, i1ðy1, z1Þ ¼

1
N1

XN2

k¼1

~w1ðxk1Þ:
(20)

b. Compute and normalize the weights for discrete
particles. For each i1 2 I ,

w1ði1Þ ¼ vhði1Þp̂h, i1ðy1, z1Þ,

W1ði1Þ ¼ w1ði1ÞP
i012I w1ði01Þ :

(21)

Step 2: at times n ¼ 2, � � � ,T,
a. If jSn�1j6N1 set Cn�1 ¼ 1 otherwise set Cn�1 to

the unique solution ofX
i1:n�12Sn�1

1�Cn�1Wn�1ði1:n�1Þ ¼ N1 (22)

b. Maintain the Ln�1 trajectories in Sn�1 which have
weights strictly superior to 1=Cn�1, then apply the

stratified resampling mechanism to the other tra-
jectories to yield N1 � Ln�1 survivors. Set S0n�1 to
the set of surviving and maintained trajectories.

c. Set Sn ¼ S0n�1 � I .
d. For each i1:n 2 Sn, obtain

p̂h, i1:nðyn, znjy1:n�1, z1:n�1Þ using the SMC algorithm

by,

~wnðxk1:nÞ ¼ gh, i1:nðynjxknÞhh, ik1:nðznjxknÞ,

p̂h, i1:nðyn, znjy1:n�1, z1:n�1Þ ¼ 1
N1

XN1

k¼1

~wnðxk1:nÞ:

(23)

e. Compute and normalize the weights. For each
i1:n 2 Sn,

wnði1:nÞ ¼ f Ih ðinji1:n�1Þp̂h, i1:nðyn, znjy1:n�1, z1:n�1Þ
Wn�1ði1:n�1Þ

1�Cn�1Wn�1ði1:n�1Þ ,

Wnði1:nÞ ¼ wnði1:nÞP
i01:n2Sn

wnði01:nÞ :

(24)

In addition, the proposed combined DPF & SMC
algorithm also provides an estimate of the marginal
likelihood phðy1:T , z1:TÞ given by

p̂hðy1:T , z1:TÞ ¼ p̂hðy1, z1Þ
YT
n¼2

p̂hðyn, znjy1:n�1, z1:n�1Þ,

(25)

where

p̂hðy1, z1Þ ¼
X
i12I

w1ði1Þ,

p̂hðyn, znjy1:n�1, z1:n�1Þ ¼
X
i1:n2Sn

wnði1:nÞ, n > 1:
(26)

Note that phði1:njy1:n, z1:nÞ can be computed exactly
when n is small. However, when n is large enough
with jSn�1j > N1, the stratified resampling mechanism
is employed to prune the set of trajectories. One can
refer to Whiteley, Andrieu, and Doucet (2010) for
more details about the resampling techniques.

3.2. Particle marginal metropolis–hastings sampler

A popular choice for sampling from
pðh,X1:T , I1:T jy1:T , z1:TÞ is the particle marginal
Metropolis-Hastings (PMMH) widely recommended
in literatures for efficient parameter estimation and
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inference (Andrieu, Doucet, and Holenstein 2010;
Whiteley, Andrieu, and Doucet 2010). The PMMH
sampler can jointly update the unknown static param-
eters h, and two latent processes X1:T and I1:T by
using the proposal density below,

q ðh	, x	1:T , i	1:TÞjðh, x1:T , i1:TÞ
� �
¼ qðh	jhÞph	 ðx	1:T , i	1:T jy1:T , z1:TÞ:

In this scenario, the proposed x	1:T and i	1:T are per-
fectly “adapted” to the proposed h	, and the only
degree of freedom of the algorithm is qðh	jhÞ: The
resulting MH acceptance ratio is given by

pðh	, x	1:T , i	1:T jy1:T , z1:TÞ
pðh, x1:T , i1:T jy1:T , z1:TÞ

q ðh, x1:T , i1:TÞjðh	, x	1:T , i	1:TÞ
� �
q ðh	, x	1:T , i	1:TÞjðh, x1:T , i1:TÞ
� �

¼ p	hðy1:T , z1:TÞpðh	Þ
phðy1:T , z1:TÞpðhÞ

qðhjh	Þ
qðh	jhÞ :

(27)

The ratio in (27) suggests that the PMMH algorithm
effectively targets the marginal density pðhjy1:T , z1:TÞ /
phðy1:T , z1:TÞpðhÞ, justifying the terminology of mar-
ginal Metropolis-Hastings. Moreover, it bypasses the
difficulty of sampling from pðh, x1:T , i1:T jy1:T , z1:TÞ by
sampling from pðhjy1:T , z1:TÞ, which is typically defined
on a much smaller space and can be approximated
using Algorithm 1. The proposed PMMH sampler is
summarized as follows.

Algorithm 2 (PMMH Sampler).

Step 1: initialization, j¼ 0,

a. set hð0Þ arbitrarily and
b. run Algorithm 1 targeting both phð0Þðy1:T , z1:TÞ

and phð0Þði1:T jy1:T , z1:TÞ, sample i1:Tð0Þ � p̂hð0Þ
ð�jy1:T , z1:TÞ and let p̂hð0Þðy1:T , z1:TÞ denote the

marginal likelihood estimate.

Step 2: for iteration jP 1,

a. sample h	 � q �jhðj� 1Þ� �
,

b. run Algorithm 1 targeting both ph	 ðy1:T , z1:TÞ and
ph	 ði1:T jy1:T , z1:TÞ, sampling i	1:T � p̂h	 ð�jy1:T , z1:TÞ,
and let p̂h	 ðy1:T , z1:TÞ denote the marginal likeli-
hood estimate, and

c. with probability

1�
p̂h	 ðy1:T , z1:TÞpðh	Þ

p̂hðj�1Þðy1:T , z1:TÞp hðj� 1Þ� � q hði� 1Þjh	� �
q h	jhðj� 1Þ� � (28)

set hðjÞ ¼ h	, i1:TðjÞ ¼ i	1:T and p̂hðjÞðy1:T , z1:TÞ ¼
p̂h	 ðy1:T , z1:TÞ; otherwise set hðjÞ ¼ hðj� 1Þ, i1:TðjÞ ¼
i1:Tðj� 1Þ and p̂hðjÞðy1:T , z1:TÞ ¼ p̂hðj�1Þðy1:T , z1:TÞ:

4. Simulation study

In this section, simulation studies are conducted to
evaluate the performance of the proposed method for
change-point detection. Four scenarios of mixed-type
data based on the mixed SSSM are considered: (S1)
mixed Gaussian-Bernoulli, (S2) mixed Gaussian-
Poisson, (S3) mixed Gaussian-Gaussian, and (S4)
mixed Gaussian-Noncentral t. For each scenario, we
consider one change-point as well as multiple change-
points. Moreover, we also consider three different
locations where the change occurs: at the beginning of
the time period, in the middle of the time period, and
at the end of the time period. Each simulation setting
is repeated for 50 iterations.

4.1. Data generation

For simplicity, we assume that Yn is a continuous ran-
dom variable following a Gaussian distribution, while
Zn is a discrete random variable following either
Bernoulli in (S1) or Poisson distribution in (S2). Since
the proposed method also can accommodate the situ-
ation of both Yn and Zn being continuous, we con-
sider that Zn follows Gaussian in (S3) or noncentral t
distribution in (S4). Suppose I ¼ 0, 1f g, which means
that there are two states for the Markov chain, Inf g:
The transition matrix PI is

PI ¼ p1 1� p1
1� p2 p2

� �
, (29)

where PðIn ¼ 1jIn�1 ¼ 0Þ ¼ 1� p1,PðIn ¼ 0jIn�1 ¼ 0Þ ¼
p1,PðIn ¼ 0jIn�1 ¼ 1Þ ¼ 1� p2,PðIn ¼ 1jIn�1 ¼ 1Þ ¼ p2,
for n>1. Note that p1 and p2 are also unknown parame-
ters need to be estimated together with other unknown
parameters. And In takes different values before and after
each true change-point position si, i¼ 1, � � � ,k: Four
scenarios of data generation based on the mixed SSSM
are listed as follows,

(S1) Mixed Gaussian-Bernoulli

xnþ1 ¼ /xn þ rInVn,
yn ¼ xn þ cVn,
zn � BernðpðInÞÞ,

where pðInÞ � Unif ½0:1þ 0:5In, 0:4þ 0:5In�: Thus, if
In ¼ 0, the parameter p in the Bernoulli distribution
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follows a uniform distribution with support [0.1, 0.4].
While, if In ¼ 1, the support is [0.6, 0.9].

(S2) Mixed Gaussian-Poisson

xnþ1 ¼ /xn þ rInVn,
yn ¼ xn þ cVn,

zn � Poisson
ffiffiffiffiffiffiffijxnj

p� �
:

(S3) Mixed Gaussian-Gaussian

xnþ1 ¼ /xn þ rInVn,
yn ¼ xn þ cVn,
zn ¼ xn þ Vn:

(S4) Mixed Gaussian-Noncentral t

xnþ1 ¼ /xn þ rInVn,
yn ¼ xn þ cVn,
zn � Tðdf , xnÞ,

where Tðdf , dÞ denotes the Noncentrol t distribution
with degree of freedom df and noncentrality param-
eter d. In the simulation example, df¼ 4 will be
used.

In the above four scenarios, Vnf g are i.i.d. standard
normal random variables, and h ¼ ð/, r, c, p1, p2Þ: For
the initialization of the mixed SSSM, we set the initial
distribution X1 � Nð0, 1Þ: The initial distribution of
In is Bernoulli with probability 0.01, i.e., I1 �
Bernð0:01Þ: Such a small value in the initial density is
used to ensure that the initial state is always 0
(I1 ¼ 0) for easy comparison. Based on the true
change-points s1, � � � , sk, we first generate the state
process I1:T , where T is set as T¼ 100. Then two sets
of observations ðy1:T , z1:TÞ are generated according to
the corresponding mixed SSSMs in (S1)-(S4) with / ¼
0:9, r ¼ 4, c ¼ 1: Here we use a proper proposal for
combined DPF & SMC sampling, i.e., qhðx1Þ ¼ lhðx1Þ
and qhðxnjyn, zn, xn�1Þ ¼ f Xh ðxnjxn�1Þ for n ¼ 2, � � � ,T:
For the prior of h, the following independent priors
are used, logitð/Þ � N ðl/, r2/Þ, log ðrÞ � N ðlr, r2rÞ,
and c � Nðlc, r2cÞ, where logitðxÞ ¼ log x

1�x

	 

: Such

settings of priors are commonly used in the literature
(Gelman et al. 1995; Kang et al. 2018, 2021; Chen
et al. 2023). The values of hyper-parameters are set as
l/ ¼ 1, r2/ ¼ 2, lr ¼ 1:5, r2r ¼ 2, and lc ¼ 2, r2c ¼ 2:

For 0 < p1 < 1 and 0 < p2 < 1, the same Dirichlet

distribution Dirð½1 1�Þ is used. Let N1 ¼ 128 and
N2 ¼ 200 in Algorithm 1. The number of MCMC
simulation is N¼ 300 with burn-in 200. A normal
random-walk Metropolis-Hastings proposal is used in
Algorithm 2 to update the parameters jointly, with the
covariance of the proposal proportional to the identity
matrix up to some small constant, such as 0.3.

4.2. Results for one change-point detection

For the case of only one change-point s, the transition
matrix needs certain restriction such that In can only
change from 0 to 1 once, and not the other way
around. This can be accomplished by setting PðIn ¼
0jIn�1 ¼ 1Þ ¼ 0: Thus the transition matrix in (29)
can be rewritten as

PI ¼ p 1� p
0 1

� �
: (30)

Recall that the data contain T¼ 100 observations
collected at locations 1, � � � ,T, respectively. If the
change-point location is s, then the state becomes,

In ¼ 0 for n ¼ 1, � � � , s,
1 for n ¼ sþ 1, � � � ,T:

�
(31)

For each scenario, we consider three different
change-point locations s ¼ 21, 51, 91, respectively.
Here the unknown parameters h ¼ ð/, r, cÞ are set as
/ ¼ 0:9, r ¼ 4:0, c ¼ 1:0: Table 1 reports the median
of the estimated values of /, r, c and change-point s
based on 50 iterations. The median absolute deviation
(MAD) of the estimates s is also reported based on 50
iterations. From the results in Table 1, it is seen that
the estimated change-points are accurate with only
one or two times delay for all scenarios. And the
MADs are small ranging from zero to one time unit
over all scenarios.

Moreover, the acceptance rates are reported in
Table 1. The acceptance rates are well maintained
around 20% to 32%, which is within a reasonable
range for efficient MCMC updates. A high acceptance
rate means that the Markov chain is moving slowly
and not fully exploring the parameter space. On the
other hand, a low acceptance rate indicates that the
proposed samples are always rejected and the chain

Table 1. Simulation results for one change-point scenario: the median of ŝ over 50 iterations.
S1 S2 S3 S4

T 21 51 91 21 51 91 21 51 91 21 51 91

ŝ 22 53 93 23 53 93 23 53 93 23 53 93
MAD ðŝÞ 1 1 1 0 0 0 1 0 0.5 1 0.5 1
Acceptance rate of MCMC 0.24 0.23 0.20 0.18 0.18 0.20 0.19 0.22 0.25 0.28 0.28 0.32
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may fail to converge. An efficient Metropolis sampler
should have an acceptance rate that is neither too
high nor too low. Roberts, Gelman, and Gilks (1997)
shows that for random-walk Metropolis algorithms,

the optimal acceptance probability for the Markov
chain should be around 23% in high dimensions.

In addition, Figure 1 shows the simulated data and
estimated probability of states in one simulation for

Figure 1. One change-point detection for Gaussian-Bernoulli (S1).
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(S1). Similar plots are reported in Figures B1–B3 for
(S2)-(S4) in Appendix B. Taking Figure 1 as an
example, the left panels of the figure include the con-
tinuous latent process X1:T , the continuous observa-
tion Y1:T and the other observation sequence Z1:T :

For 16 n6T, the probabilities of pðIn ¼ 1Þ and
pðIn ¼ 0Þ ¼ 1� pðIn ¼ 1Þ are calculated based on 100
estimates of the latent process I1:T from MCMC simu-
lations, and their plots are shown in the right panels
of the figure. These plots show that the process is in
state 0 at the beginning with a high probability of
pðI1 ¼ 0Þ, and the high probability value is main-
tained until a certain time point when it decreases
drastically to almost 0. Thus we can identify the
change point accurately.

Note that the values of N1 and N2 control the accur-
acy of the DPF and SMC algorithms, respectively. The
larger their values are, the more accurate approximation
of the target distribution will be. We have also con-
ducted additional simulations to investigate the choice
of N1 and N2 in Appendix A. Furthermore, we investi-
gate the effect on the setting of r for the performance of

the proposed methods under the mixed Gaussian-
Bernoulli scenario. Specifically, for each value of s, we
examine three different values of r ¼ 4, 1, and 0.1.
Table 2 reports the median value for the estimated
change-point s and the median absolute deviation
(MAD) of the estimates s based on 50 iterations. The
results indicate that the estimated change-points are
generally accurate, with a delay of only one or two time
steps. However, as r decreases, the MADs increase,
indicating that the variability of estimation increases as
the magnitude of the change decreases. Such a pattern
can also be observed by Figure 2, where the interquar-
tile range for the case of r ¼ 0:1 is larger than other
cases. Moreover, as r decreases, the acceptance rates
decrease. It indicates that the MCMC samples are more
likely to be rejected, and the chain may fail to converge
when the value of r is small.

4.3. Results for multiple change-point detection

Under the multiple change-point scenario, the key dif-
ference from the one change-point detection is the

Table 2. Simulation results for one change-point scenario of different r values in (S1): the median of ŝ over 50 iterations.

s
21 51 91

r 4 1 0.1 4 1 0.1 4 1 0.1

ŝ 22 21 21 53 52 51 93 93 92
MAD ðŝÞ 1.5 3.0 5.2 1.5 3.0 3.0 1.5 2.2 4.4
Acceptance rate of MCMC 0.24 0.22 0.22 0.23 0.20 0.19 0.19 0.18 0.17

Figure 2. Boxplots of estimated change point in one change-point scenario for different r values in (S1). Purple lines are the true
change point s ¼ 21, 51, 91:

Table 3. Simulation results for two change-points scenario: the median of ŝ over 50 iterations.
S1 S2

T f21, 51g f51, 91g f21, 91g f21, 51g f51, 91g f21, 91g
ŝ f22, 52g f52, 92g f22, 92g f22, 52g f52, 92g f22, 92g
MAD ðŝÞ f1, 1g f1, 1g f1, 1g f0, 1g f0, 1g f1, 1g
Acceptance rate of MCMC 0.20 0.19 0.20 0.22 0.33 0.23

S3 S4

T f21, 51g f51, 91g f21, 91g f21, 51g f51, 91g f21, 91g
ŝ f22, 52g f52, 92g f22, 92g f22, 52g f52, 92g f22, 92g
MAD ðŝÞ f0, 0g f0, 1g f0, 1g f0.5, 1g f1, 2 g f0, 1g
Acceptance rate of MCMC 0.26 0.28 0.28 0.31 0.35 0.34
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structure of the transition matrix PI. Now the state
parameter In can change from state 0 to 1 and then
back to 0. For simplicity, let p1 ¼ p2 in (29), and then
the transition matrix can be specified as,

PI ¼ p 1� p
1� p p

� �
: (32)

The unknown parameters are still the same, h ¼
ð/, r, c, pÞ: We consider the cases of two change-
points and three change-points, respectively. Three
sets of true change-points (s) are selected under each
case. Tables 3 and 4 report the estimation results for
two change-points and three change-points based on
50 iterations, respectively. In general, the estimated
change-points are all close to the truth within one
time unit delay. The largest value of MAD is about
two time units. The estimations of static parameters
are also very close to the true values. Figures 3 and 4
illustrate the simulated data and the change-point esti-
mation for two and three change-points for one simu-
lation under (S1), respectively.

5. Case study of civil unrest data

In this section, the proposed method is applied for
change-point detection of the civil unrest data. Social
events, such as strikes, protests and fights are happening
every day across the globe. Millions of lives could be
saved or protected if these kinds of social unrest events
could be known in advance. Two datasets, ICEWS
(Integrated Conflict Early Warning System) and GDELT
(Global Database of Events, Language, and Tone) pro-
vide a global database of political and social events and
have been used to develop predictive systems Cadena
et al. (2015); Ramakrishnan et al. (2015, 2014).

GDELT is a global database of events which has
been coded from vast quantities of publicly available
text that is produced by the world’s news media.
ICEWS, on the other hand, is an early warning system
designed to help US policy analysts understand, moni-
tor and predict national and international crises to
which the US might have to respond. These include

international and domestic crisis, ethnic and religious
violence, as well as rebellion and insurgency. GDELT
and ICEWS are based on similar, though not identical
methods and sources. Both data sets use Conflict and
Mediation Event Observations (CAMEO) coding for
recording events. There are 20 event types in total,
and it has an ordinal increase in cooperation as one
goes from category 01 to 09, and an ordinal increase
in conflict as one goes from 10 to 20. In this work,
we will mainly focus on protests (the 14th event type)
in three Latin America countries, Argentina, Brazil,
and Venezuela, since these countries often encounter
events related to civil unrest.

The mixed observation used for analysis is weekly
binary observations indicating whether protests
occurred during a week or not, and weekly continu-
ous observations measuring the AverageTone of all
protests in each week. The value of AverageTone is
the average tone of all documents containing one or
more mentions of an event. The value ranges from
�10 and þ 10, with 0 indicating neutral. The events
and tone are highly related because if a protest has an
extremely negative average tone, it suggests a far more
serious occurrence of civil unrest, which is likely to
spread spatially and may even become violent.

The goal is to detect change times (in weeks) when
more frequent or serious protests are going to happen.
The time period of the data used is from January
2010 to April 2014. Within this time period, a
sequence of protests that were clustered around a
time period occurred in each of the three countries, as
recorded in Wikipedia. These protests are: (1) the
protests during September 2012, at Cacerolazo in
Argentina, (2) protests in Brazil during April and July
2013, (3) protests in Venezuela started on February
12, 2014 and are ongoing. Details about these protests
can be found in Wikipedia (2015), Wikipedia (2016a),
and Wikipedia (2016b).

By applying the proposed method using the
Gaussian-Bernoulli setting with one change-point
defined in Section 4.1, the change-point in each

Table 4. Simulation results for three change-points scenario: the median of ŝ over 50 iterations.
S1 S2

T f21, 51, 91g f17, 32, 77g f21, 52, 72g f21, 51, 91g f14, 51, 90g f37, 63, 88g
ŝ f22, 52, 91g f18, 33, 78g f22, 53, 72g f22, 52, 92g f15, 52, 91g f38, 64, 89g
MAD ðŝÞ f1, 1, 1g f1, 1, 1g f1, 1, 1g f0, 1, 0g f0, 1, 0.5g f0, 1, 0g
Acc. rate 0.29 0.30 0.30 0.20 0.20 0.20

S3 S4

T f21, 51, 91g f12, 22, 75g f42, 61, 94g f21, 51, 91g f7, 37, 64g f41, 76, 85g
ŝ f22, 52, 92g f13, 23, 76g f43, 62, 95g f22, 52, 92g f8, 38, 66g f42, 77, 86g
MAD ðŝÞ f0, 1, 1.5g f0, 0 0, 0g f0, 0.5, 0g f0.5, 1, 0g f1, 2, 0.5g f0.5, 2, 1g
Acc. rate 0.26 0.27 0.27 0.31 0.33 0.34
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country is successfully detected. Figure 5 shows the
mixed observations and the change-point detection
plots for each country. The change-points indicate the
weeks after which those three sequences of protests
would happen. We summarize the analysis results as
follows. (1) In Argentina, the estimated change-point
occurred around week 09/09/2012, which is the same

week as recorded in Wikipedia (2015). (2) In Brazil,
the estimated week is 02/24/2013, and it is five weeks
before the so-called Brazilian Spring movement
(Wikipedia 2016a). (3) In Venezuela, the estimated
week is around 01/26/2014, which is just one week
before the February protests reported in Wikipedia
(2016b).

Figure 3. Two change-points detection for Gaussian-Bernoulli (S1).

12 S. CHU ET AL.



5.1. Comparison

Since the proposed method can make full use of both
the discrete and continuous observations, it is
expected to detect changes more efficiently than those
only one type of observations. To show this advan-
tage, we compare the proposed method with two con-
ventional methods: (M1) SSSM only using continuous
observations, and (M2) SSSM only using binary

observations. The change-point detection results are
reported in Table 5. From the results in the table, we
can see that the M1 method, which only uses the con-
tinuous observations, cannot detect any changes at all
for three countries. For the M2 method which only
makes use of binary observations, changes can still be
detected for Argentina and Venezuela, but not for
Brazil. In contrast, the proposed mixed SSSM can
always effectively detect changes for all three

Figure 4. Three change-points detection for Gaussian-Bernoulli (S1).
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countries. One possible explanation is that the binary
observations could contain sufficient information to
detect the changes for Argentina and Venezuela. But
for Brazil, neither the continuous nor the binary

observations alone can provide enough knowledge
about the big onset of protests. Thus, by combing
these two types of information together, the proposed
method can make a better detection of the change(s).

Figure 5. Protests detection for Argentina, Brazil, and Venezuela.
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6. Discussion

The mixed-type data problem attracts broad interests
because of its increasing popularity in modern society.
However, dealing with mixed-type data is quite chal-
lenging due to the difficulty of quantifying the
dependency between continuous and discrete variables
in an appropriate manner. The proposed method
models the mixed-type data by the latent processes in
state-space models. Bayesian estimation and inference
are conducted efficiently by developing a combined
DPF & SMC algorithm.

The proposed method can accommodate various set-
tings of mixed data such as mixed Gaussian-Bernoulli
and mixed Gaussian-Poisson under different change-
point scenarios. Both numerical examples and real case
studies are analyzed to elaborate the merits of the pro-
posed method in terms of estimation accuracy of param-
eter and change-points. Note that the current method
has distribution assumptions for Gaussian and Bernoulli
or Poisson. If the process is misspecified, the accuracy of
the proposed method may be affected. It will be interest-
ing to extend the proposed method to a robust change-
point detection for the mixed-type observations. The
proposed method can also be extended to the analysis of
high-dimensional data. It may require multiple latent
processes in the mixed SSSM to quantify the associations
in the high-dimensional data.

Regarding the number of change-points, if it is
known that there is only one change-point in the data,
the transition matrix PI is restricted in (30), such that
only one estimated change-point is guaranteed.
However, if there are more than one change-point, the
construction in (32) may not give exactly the same
number of change-points. In this situation, if the true
number of change-points K is pre-specified, one can
perform K-means clustering on the estimated change-
points. However, in practice, the value of K is usually
unknown. Knowledge from domain experts can provide
a good guideline for the choice of K. Alternatively, one
can consider other clustering methods such as hierarch-
ical clustering to address the problem.
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Appendices A. Investigation on the choice of
N1 and N2

It is known that the values of N1 and N2 control the preci-
sion of the DPF and SMC algorithms, respectively. The
choice of N1 and N2 has been discussed in details for the
DPF and SMC algorithms (Andrieu, Doucet, and
Holenstein 2010; Whiteley, Andrieu, and Doucet 2010;
Fearnhead 1998; Fearnhead and Clifford 2003; Chen and
Liu 2000; Doucet, Godsill, and Andrieu 2000, Doucet,
Gordon, and Kroshnamurthy 2001). Based on our empirical
study, the proposed algorithm works efficiently with a mod-
erate value of N1 or N2. The decision of using values ðN1 ¼
128,N2 ¼ 200Þ follows the suggestion from those papers.

We have conducted additional simulation for N1 ¼
512,N2 ¼ 512 in mixed Gaussian-Bernoulli (S1) scenario.
Table A1 and Figure A1 report the comparison results. The
results suggest that increasing the values of N1 and N2 can lead
to slightly more accurate estimations. Note that this improve-
ment comes at the cost of increased computational time.

Table A1. Simulation results for one change-point scenario of different N1 and N2 values in (S1): the median of ŝ over 50
iterations.

s
21 51 91

½N1,N2� ½128, 200� ½512, 512� ½128, 200� ½512, 512� ½128, 200� ½512, 512�
ŝ 22 22 53 52 93 92
MAD ðŝÞ 1.5 1.5 1.5 1.5 1.5 1
Time elapsed (s) 137.55 180.50 153.15 194.36 157.95 197.85
Acceptance rate of MCMC 0.24 0.25 0.23 0.22 0.20 0.19

Figure A1. Boxplots of estimated change point in one change-point scenario for different N1 and N2 values in (S1). Purple lines
are the true change point s ¼ 21, 51, 91:
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B. Additional simulation results

Figure B1. One change-point detection for Gaussian-Poisson (S2).
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Figure B2. One change-point detection for Gaussian-Gaussian (S3).
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Figure B3. One change-point detection for Gaussian-Noncentral t (S4).
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