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Abstract. This paper develops an efficient implementation of the ensemble Kalman filter based
on a modified Cholesky decomposition for inverse covariance matrix estimation. This implementation
is named EnKF-MC. Background errors corresponding to distant model components with respect
to some radius of influence are assumed to be conditionally independent. This allows one to obtain
sparse estimators of the inverse background error covariance matrix. The computational effort of
the proposed method is discussed and different formulations based on various matrix identities are
provided. Furthermore, an asymptotic proof of convergence with regard to the ensemble size is
presented. In order to assess the performance and the accuracy of the proposed method, experiments
are performed making use of the atmospheric general circulation model SPEEDY. The results are
compared against those obtained using the local ensemble transform Kalman filter (LETKF). Tests
are performed for dense observations (100% and 50% of the model components are observed) as
well as for sparse observations (only 12%, 6%, and 4% of model components are observed). The
results reveal that the use of EnKF-MC can reduce the impact of spurious correlations during the
assimilation cycle, i.e., the results of the proposed method are of better quality than those obtained
via the LETKF in terms of root mean square error.
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1. Introduction. The goal of sequential data assimilation is to estimate the true
state of a dynamical system xtrue ∈ Rn×1 using information from numerical models,
priors, and observations. A numerical model captures (with some approximation) the
physical laws of the system and evolves its state forward in time [7]:

xk =Mtk−1→tk (xk−1) ∈ Rn×1 for x ∈ Rn×1,(1)

where n is the dimension of the model state, k denotes the time index, and M
can represent, for example, the dynamics of the ocean and/or atmosphere. A prior
estimation xb

k ∈ Rn×1 of xtrue
k is available:

xb
k − xtrue = νk ∼ N (0, Bk) ∈ Rn×1,(2)

where the prior error νk is assumed to have mean zero and a covariance matrix
Bk ∈ Rn×n. Noisy observations (measurements) of the true state yk ∈ Rm×1 are
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taken, and the observation errors ε are usually assumed to be normally distributed:

yk −H
(
xtrue
k

)
= εk ∼ N (0, Rk) ∈ Rm×1,(3)

where m is the number of observed components, H : Rn×1 → Rm×1 is the linear
observation operator, and Rk ∈ Rm×m is the data error covariance matrix.

Making use of Bayesian statistics and matrix identities, the assimilation of the
observation (3) is performed as follows:

xa
k = xb

k + Bk ·HT
k ·
[
Hk ·Bk ·HT

k + Rk

]−1 · [yk −H(xb
k)
]
∈ Rn×1,

Ak =
[
I−Bk ·HT

k ·
[
Rk + Hk ·Bk ·HT

k

]−1 ·Hk

]
·Bk ∈ Rn×n,

(4)

where Hk ∈ Rm×n is a linear observation operator, Ak is the analysis (posterior)
covariance matrix, and xa

k ∈ Rn×1 is the analysis state. Typically, in the context
of Kalman filtering, the observational operator is assumed linear [20]. Nonlinear
observation operators are treated either by linearization, Hk ≈ H′(xb

k), or by an
ensemble approximation. For simplicity of presentation we will silently consider here
a linear observation operator; this does not restrict the generality of the discussion
below since the standard treatment of nonlinear operators can be directly applied.

According to (4) the elements of Bk determine how the information about the
observed model components contained in the innovations yk − H(xb

k) ∈ Rm×1 is
distributed to properly adjust all model components, including the unobserved ones.
Thus, the successful assimilation of the observation (3) will rely, in part, on how well
the background error statistics are approximated.

In the context of ensemble-based methods, an ensemble of model realizations,

Xb
k =

[
x
b[1]
k , x

b[2]
k , . . . , x

b[Nens]
k

]
∈ Rn×Nens ,(5)

is used in order to estimate the unknown moments of the background error distribu-
tion:

xb
k =

1

Nens
·
Nens∑
i=1

x
b[i]
k ∈ Rn×1, Bk ≈ Pb =

1

Nens − 1
·Ub

k ·
(
Ub
k

)T ∈ Rn×n,(6a)

where Nens is the number of ensemble members, x
b[i]
k ∈ Rn×1 is the ith ensemble

member, xb
k ∈ Rn×1 is the background ensemble mean, Pb

k is the background ensemble
covariance matrix, and Uk ∈ Rn×Nens is the matrix of member deviations:

Ub
k = Xb

k − xb
k · 1TNens

∈ Rn×Nens .(6b)

One attractive feature of Pb
k is its flow dependency which allows one to approximate

the background error correlations based on the dynamics of the numerical model (1).
However, in operational data assimilation, the number of model components is much
larger than the number of model realizations, n � Nens, and, therefore, Pb

k is rank
deficient. Spurious correlations (e.g., correlations between distant model components
in space) can degenerate the quality of the analysis corrections. One of the most
successful ensemble Kalman filter (EnKF) formulations is the local ensemble trans-
form Kalman filter (LETKF) in which the impact of spurious analysis correlations is
avoided by making use of local domain analyses. In this context, every model com-
ponent is surrounded by a box of a prescribed radius, and then the assimilation is
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EnKF BASED ON MODIFIED CHOLESKY DECOMPOSITION A869

performed within every local box. In this case the background error correlations are
provided by the local ensemble covariance matrix. The local analyses are mapped
back onto the global domain to obtain the global analysis state. Nevertheless, when
sparse observational networks are considered many boxes can contain no observations,
in which case the local analyses coincide with the background. The local box sizes
can be increased in order to include observations within the local domains, in which
case local analysis corrections can be impacted by spurious correlations. Moreover,
in practice, the size of local boxes can be still larger than the number of ensemble
members and, therefore, the local sample covariance matrix can be rank deficient.

In order to address the above issues this paper proposes a better estimation of the
inverse background error covariance matrix B−1 obtained via a modified Cholesky de-
composition. By imposing conditional independence between errors in remote model
components we obtain sparse approximations of B−1.

This paper is organized as follows. In section 2 ensemble-based methods and the
modified Cholesky decomposition are introduced. Section 3 discusses the proposed
EnKF based on a modified Cholesky decomposition for inverse covariance matrix esti-
mation; a theoretical convergence of the estimator in the context of data assimilation
as well as its computational effort are discussed. Section 4 presents numerical ex-
periments using the Lorenz-96 model and the atmospheric general circulation model
SPEEDY; the results of the new filter are compared against those obtained by the
LETKF. Conclusions are drawn in section 5.

2. Background. The EnKF is a sequential Monte Carlo method for state and
parameter estimation of nonlinear models such as those found in atmospheric and
oceanic sciences [9, 29]. The EnKF popularity is due to its basic theoretical formula-
tion and its relative ease of implementation [9]. Given the background ensemble (5)
EnKF builds the analysis ensemble as follows:

Xa = Xb + Pb ·HT ·
[
R + H ·Pb ·HT

]
·∆ ∈ Rn×Nens ,(7a)

where

∆ = Ys −H ·Xb ∈ Rm×Nens ,(7b)

and the matrix of perturbed observations Ys ∈ Rm×Nens is

(7c) Ys =
[
y + ε[1], y + ε[2], . . . , y + ε[Nens]

]
∈ Rm×Nens , ε[i] ∼ N (0, R) ,

for 1 ≤ i ≤ Nens. For ease of notation we have omitted the time index superscripts.
The use of perturbed observations (7c) during the assimilation provides asymp-

totically correct analysis-error covariance estimates for large ensemble sizes and makes
the formulation of the EnKF statistically consistent [31]. However, it also has been
shown that the inclusion of perturbed observations introduces sampling errors in the
assimilation [2, 15].

One of the important problems faced by current ensemble-based methods is that
spurious correlations between distant components in the physical space lead to spu-
rious analysis corrections. Better approximations of the background error covariance
matrix are proposed in the literature in order to alleviate this problem. A traditional
approximation of B is the Hollingworth and Lonnberg method [12] in which the dif-
ference between observations and background states are treated as a combination of
background and observations errors. However, this method provides statistics of back-
ground errors in observation space, and requires dense observing networks (not the
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A870 ELIAS D. NINO-RUIZ, ADRIAN SANDU, AND XINWEI DENG

case in practice). EnKF formulations, with an inverse background error covariance
matrix, have been proposed in order to exploit features of the precision matrices [30].
Another method has been proposed by Benedetti and Fisher [3] based on forecast
differences in which the spatial correlations of background errors are assumed to be
similar at 24 and 48 hour forecasts. This method can be efficiently implemented in
practice; however, it does not perform well in data-sparse regions, and the statistics
provided are a mixture of analysis and background errors. Another way to reduce the
impact of spurious correlations is based on adaptive modeling [18]. In this context,
the model learns and changes with regard to the data collected (i.e., parameter values
and model structures). This allows one to calibrate, in time, the error subspace rank
(i.e., number of empirical orthogonal functions used in the assimilation process), the
tapering parameter (i.e., local domain sizes), and the ensemble size, among others.
Yet another method based on error subspace statistical estimation is proposed in [19].
This approach develops an evolving error subspace, of variable size, that targets the
processes where the dominant errors occur. Then, the dominant errors are minimized
in order to estimate the best model state trajectory with regard to the observations.
Furthermore, spurious correlations can be damped out by using shrinkage covariance
matrix estimators which have been successfully implemented in the context of sequen-
tial data assimilation [24]. We proposed approximations based on autoregressive error
models [8] and using hybrid subspace techniques.[7].

Covariance matrix localization artificially reduces correlations between distant
model components via a Schur product with a localization matrix Π ∈ Rn×n [28]:

P̂b = Π ◦Pb ∈ Rn×n ,(8)

and then Pb is replaced by P̂b ∈ Rn×n in the EnKF analysis equation (7a). For
instance, the entries of Π can decrease with the distance between model components
depending on the radius of influence ζ:

{Π}i,j = exp

(
−π (mi, mj)

2 · ζ2

)
for 1 ≤ i ≤ j ≤ n ,(9)

where π (mi, mj) represents the physical distance squared between the model compo-
nents mi and mj . The exponential decay allows one to reduce the impact of innova-
tions between distant model components. The use of covariance matrix localization
alleviates the impact of sampling errors. However, the explicit computation of Π
(and even Pb) is prohibitive owing to numerical model dimensions. Thus, domain
localization methods [6, 16] are commonly used in the context of operational data
assimilation. One of the best EnKF implementations based on domain localization is
the LETKF [27]. In the LETKF the analysis increments are computed in the space
spanned by the ensemble perturbations Ub defined in (6b). An approximation of the
analysis covariance matrix in this space reads

P̂a =
[
(Nens − 1) · I + QT ·R−1 ·Q

]−1 ∈ RNens×Nens ,(10a)

where Q = H · Ub ∈ Rm×Nens and I is the identity matrix consistent with the
dimension. The analysis increments in the subspace are:

αa = P̂a ·QT ·R−1 ·
[
y −H · xb

]
∈ RNens×1(10b)

from which an estimation of the analysis mean in the model space can be obtained:

xa = xb + Ub ·αa ∈ Rn×1.(10c)
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EnKF BASED ON MODIFIED CHOLESKY DECOMPOSITION A871

Finally, the analysis ensemble reads

xa = xa · 1TNens
+ Ub ·

[
(Nens − 1) · P̂a

]1/2
∈ Rn×Nens .(10d)

The domain localization in the LETKF is performed as follows: each model com-
ponent is surrounded by a local box of radius ζ. Within each local domain the analysis
equations (10) are applied, and therefore a local analysis component is obtained. All
local analysis components are mapped back onto the model space to obtain the global
analysis state. The local sample covariance matrix (6) is utilized as the covariance
estimator of the local B. This can perform well when small radii ζ are considered
during the assimilation step. However, for large values of ζ, the analysis corrections
can be impacted by spurious correlations since the local sample covariance matrix can
be rank deficient. Consequently, the local analysis increments can perform poorly.

There is an opportunity to reduce the impact of sampling errors by improving the
background error covariance estimation. We achieve this by making use of the mod-
ified Cholesky decomposition for inverse covariance matrix estimation [5]. Consider
the sample of (approximately) Nens Gaussian random vectors (6b)

Ub =
[
u[1], u[2], . . . , u[Nens]

]
∈ Rn×Nens

with statistical moments u[j] ∼ N (0n, B) for 1 ≤ j ≤ Nens. Denote by x[i] ∈
RNens×1 the vector holding the ith component across all the samples (the ith row of
Ub, transposed). The modified Cholesky decomposition arises from regressing each
component on his predecessors:

x[i] =

i−1∑
j=1

x[j] · βi,j + ε[i] ∈ RNens×1, 2 ≤ i ≤ n,(11)

where x[j] is the jth model component which precedes x[i] for 1 ≤ j ≤ i−1, ε[1] = x[1],
and ε[i] ∈ RNens×1 is the error in the ith component regression for i ≥ 2. Likewise,
the coefficients βi,j in (11) can be computed by solving the optimization problem

β[i] = arg min
β

∥∥x[i] − Z[i] · β
∥∥2
2
,(12)

where

Z[i] =
[
x[1], x[2], . . . , x[i−1]

]T
∈ R(i−1)×Nens , 2 ≤ i ≤ n,

β[i] = [βi,1, βi,2, . . . , βi,i−1]
T ∈ R(i−1)×1.

The simplest solution of (12) of which one can think reads

β[i] =
[
Z[i] · Z[i] T

]−1
· Z[i] · x[i] .(13)

The regression coefficients form the lower triangular matrix

{
T̂
}
i,j

=


−βi,j for 1 ≤ j < i,

1 for j = i,

0 for j > i,

1 ≤ i ≤ n,(14a)
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where {T̂}i,j denotes the (i, j)th component of matrix T̂ ∈ Rn×n. The empirical
variances ĉov of the residuals ε[i] form the diagonal matrix

D̂ = diag
1≤i≤n

(
ĉov(ε[i])

)
= diag

1≤i≤n

 1

Nens − 1

Nens∑
j=1

{
ε[i]
}2
j

 ∈ Rn×n ,(14b)

where {D̂}1,1 = ĉov
(
x[1]

)
. Then an estimate of B−1 can be computed as follows:

B̂−1 = T̂T · D̂−1 · T̂ ∈ Rn×n(15a)

or, by basic matrix algebra identities, the estimate of B reads

B̂ = T̂−1 · D̂ · T̂−T ∈ Rn×n .(15b)

Note that the structure of B̂−1 is strictly related to the structure of T̂. This can be
exploited in order to obtain sparse estimators of B−1 by imposing that some entries
of T̂ are zero. This is important for high dimensional probability distributions where
the explicit computation of B̂ or B̂−1 is prohibitive. The zero components in T̂ can be
justified as follows: when two model components are conditionally independent for a
given radius of influence ζ their corresponding entry in B̂−1 is zero. In the context of
data assimilation, the conditional independence of background errors between different
model components can be achieved by making use of local neighborhoods [30]. For a
given model component, its neighborhood is formed by components within the scope
of some radius of influence ζ. We can consider zero correlations between background
errors corresponding to model components located at distances that exceed ζ. In
the next section we present an EnKF implementation based on modified Cholesky
decomposition for inverse covariance matrix estimation.

3. EnKF based on modified Cholesky decomposition. In this section we
discuss the new EnKF based on modified Cholesky decomposition for inverse covari-
ance matrix estimation (EnKF-MC).

3.1. Estimation of the inverse background covariance. As we mentioned
before, the structure of B̂−1 depends on that of T̂. If we assume that the correlations
between model components are local, and there are no correlations outside a radius
of influence ζ, we obtain lower-triangular sparse estimators of T̂. Consequently, the
resulting B̂−1 will also be sparse, and B̂ will be localized. Since the regression (11)
can be performed only on the predecessors of each model component, an ordering
(labeling) must be set on the model components prior the computation of T̂. Since we
work with gridded models we consider column-major and row-major orders. Figure 1
shows the neighborhood and the predecessors of the model component 6 when column-
major order is utilized.

The estimation of B̂−1 proceeds as follows:
1. For the ith model component, making use of the truncated singular value

decomposition [14, 13, 11], estimate the regression coefficients βi,j for 1 ≤
i ≤ n and j ∈ P (i, ζ), that satisfies

x[i] =
∑

j∈P (i,ζ)

βi,j · x[j] + ε[i] ∈ RNens×1 ,(16)

where P (i, ζ) denotes the set of predecessors indexes for model component i
when the radius of influence is ζ.
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(a) In blue, neihgborhood for the
model component 6 when ζ = 1.

(b) In blue, predecessors of the model
component 6 for ζ = 1.

Fig. 1. Neighborhood and local predecessors within the scope of ζ = 1 for the model component
6. Column-major ordering is utilized to label the model components.

2. Build the matrices

{
T̂
}
i,j

=


−βi,j , j ∈ P (i, ζ) ,

1 , i = j ,

0 , otherwise ,

and D̂ according to (14b). Note that the number of nonzero elements in

the ith row of T̂ equals the number of predecessors for model component
i. Note that, since residuals in (16) are never zero, they implicitly inflate
the estimated variances and, therefore, the use of covariance inflation may
become unnecessary with the EnKF-MC assimilation.

3.2. Formulation of EnKF-MC. Once B̂−1 is estimated, EnKF-MC computes
the analysis using Kalman’s formula

xa = xb + Â ·HT ·R−1 ·∆ ∈ Rn×Nens ,(17a)

where Â ∈ Rn×n is the estimated analysis covariance matrix

Â =
[
B̂−1 + HT ·R−1 ·H

]−1
,

and ∆ ∈ Rm×Nens is the innovation matrix on the perturbed observations given in
(7b).

More efficient alternatives to (17a) can be obtained by making use of elementary
matrix identities:

xa = Â ·
[
B̂−1 · xb + HT ·R−1 ·Ys

]
∈ Rn×Nens(17b)

= xb + T̂−1 · D̂1/2 ·VT
B̂
·
[
R + VB̂ ·V

T
B̂

]−1
·∆ ,(17c)

where VB̂ = H · T̂−1 · D̂1/2 ∈ Rn×m, and Ys are the perturbed observations. The
formulation (17c) is well known as the EnKF dual formulation (17b) is known as the
EnKF primal formulation, and (17a) is the incremental form of the primal formulation.
It can be easily shown that, by making use of the iterative Sherman–Morrison formula
[23], the computational effort of the method is bounded by

O (m · n+m · n ·Nens) .

3.3. Convergence of the covariance inverse estimator. In this section we
prove the convergence of the B̂−1 estimator in the context of data assimilation.
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Comment 1 (sparse Cholesky factors and localization). The modified Cholesky
decomposition for inverse covariance matrix estimation can be seen as a form of co-
variance matrix localization method in which the resulting matrix approximates the
inverse of a localized ensemble covariance matrix. This process is implicit in the re-
sulting estimator when only a local neighborhood for each model component is utilized
in order to perform the local regression and to estimate T̂ and D̂.

To start our proof, the inverse of the (exact) background error covariance matrix

B−1 and of the its estimator B̂−1 can be written as

B̂−1 =
[
I− Ĉ

]T
· D̂−1 ·

[
I− Ĉ

]
∈ Rn×n(18a)

and

B−1 = [I−C]
T ·D−1 · [I−C] ∈ Rn×n,(18b)

respectively, where Ĉ = I− T̂ ∈ Rn×n and C = I−T ∈ Rn×n. Moreover, D and D̂
are diagonal matrices:

D = diag
{
d21, d

2
2, . . . , d

2
n

}
, D̂ = diag

{
d̂21, d̂

2
2, . . . , d̂

2
n

}
,

where {D}i,i = d2i and {D̂}i,i = d̂2i for 1 ≤ i ≤ n. In what follows we denote by

ĉ{j} ∈ Rn×1 and c{j} ∈ Rn×1 the jth columns of matrices Ĉ and C, respectively, for
1 ≤ j ≤ n.

Definition 1 (class of matrices under consideration). We consider the class of
covariance matrices with correlations decreasing quickly:

U−1 (ε0, C, α) =

{
B : 0 < ε0 ≤ λmin (B) ≤ λmax (B) ≤ ε−10 ,(19a)

max
k

∑
j 6∈P (k,ζ)

∣∣∣{T}k,j∣∣∣ ≤ C · ζ−α
}
,

where B−1 = TT D−1 T, α is the decay rate (related to the dynamics of the numerical
model), and P (k, ζ), for a given radius ζ, denotes the row indexes of predecessors for
model component k.

Theorem 1 (error in the covariance inverse estimation). Uniformly for B ∈
U−1 (ε0, C, α), if ζ ≈

[
Nens

−1 · log n
]−1/2(α+1)

and Nens
−1 · log n = o(1),

∥∥B̂−1 −B−1
∥∥
∞ = O

([
log(n)

Nens

]α(α+1)/2
)
,(19b)

where
∥∥ · ∥∥∞ denotes the infinity norm (matrix or vector).

In order to prove Theorem 1, we need the following result.

Lemma 1. Under the conditions of Theorem 1, uniformly on U−1

max
{∥∥ĉ{j} − c{j}

∥∥
∞ : 1 ≤ j ≤ n

}
= O

(
Nens

−1/2 log1/2 n
)
,(20a)

max
{∣∣∣d̂2j − d2j ∣∣∣ : 1 ≤ j ≤ n

}
= O

([
Nens

−1 log n
]α/(2(α+1))

)
,(20b) ∥∥C∥∥∞ = O (1) , and

∥∥D−1∥∥∞ = O (1) .(20c)
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The proof of Lemma 1 is based on the following results of Bickel and Levina in
[5].

Lemma 2 (see [5, Lemma A.2]). Let ν [k] ∼ N (0, B) and λmax (B) ≤ ε−10 < ∞
for 1 ≤ k ≤ Nens. Then, if {B}i,j denotes the (i, j)th component of B, for 1 ≤ i ≤
j ≤ n,

Prob

[
Nens∑
k=1

[{
ν [k]

}
i
·
{
ν [k]

}
j
− {B}i,j

]
≥ Nens · ν

]
(21)

≤ C1 · exp
(
−C2 ·Nens · ν2

)
for |ν| ≤ δ, where

{
ν [k]

}
i

is the ith component of the sample ν [k] for 1 ≤ k ≤ Nens

and 1 ≤ i ≤ n. Likewise, C1, C2, and δ depend on ε0 only.

Proof of Lemma 1. In what follows we denote by cov and ĉov the true and the
empirical covariances, respectively. In the context of EnKF we have that cov

(
Ub
)

=
B.

Recall that

ĉov
(
Ub
)

= Pb =
1

Nens − 1
·Ub ·UbT =

1

Nens − 1
·
Nens∑
k=1

ub[k] · ub[k]T

⇔
{
ĉov

(
Ub
)}
i,j

=
1

Nens − 1
·
Nens∑
k=1

{
ub[k]

}
i
·
{

ub[k]
}
j
.

For ν > 0,
{
ν [k]

}
i
·
{
ν [k]

}
j
− {B}i,j ≥ Nens · ν implies

{
ν [k]

}
i
·
{
ν [k]

}
j
− {B}i,j ≥

(Nens − 1) · ν and, therefore, by Lemma 2 we have∥∥cov
(
Ub
)
− ĉov

(
Ub
) ∥∥
∞ = O

(
Nens

−1/2 · log1/2 n
)

(22a)

since the entries of cov
(
Ub
)
− ĉov

(
Ub
)

can be bounded by

∣∣∣{cov
(
Ub
)
− ĉov

(
Ub
)}
i,j

∣∣∣ ≤ Nens
−1 ·

Nens∑
k=1

∣∣∣∣{ub[k]
}
i
·
{

ub[k]
}
j
− {B}i,j

∣∣∣∣ .
Lemma 2 ensures that

Prob

[
max
i,j

∣∣∣∣∣Nens
−1 ·

Nens∑
k=1

{
ub[k]

}
i
·
{

ub[k]
}
j
− {B}i,j

∣∣∣∣∣ ≥ ν
]

≤ C1 · n2 · exp
(
−C2 ·Nens · ν2

)
for |ν| ≤ δ. Let ν =

(
logn2

Nens·C2

)1/2
·M for M arbitrary.

Since Z[i] stores the columns of Ub corresponding to the predecessors of model
component i, an immediate consequence of (22a) is

max
i

∥∥cov
(
Z[i]

)
− ĉov

(
Z[i]

) ∥∥
∞ = O

(
Nens

−1/2 · log1/2 n
)
.(22b)

Also, ∥∥B−1∥∥∞ =
∥∥cov

(
Ub
)−1 ∥∥

∞ ≤ ε
−1
0 .
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According to (12), we have,{
c[i]
}
j

=
{

cov
(
Z[i]

)−1
Z[i] · x[i]

}
j
,
{

ĉ[i]
}
j

=
{

ĉov
(
Z[i]

)−1
Z[i] · x[i]

}
j

;

therefore,

max
k

∣∣∣{c[i]
}
k
−
{

ĉ[i]
}
k

∣∣∣
= max

k

∣∣∣{cov
(
Z[i]

)−1
Z[i]x[i]

}
k
−
{

ĉov
(
Z[i]

)−1 · Z[i]x[i]

}
k

∣∣∣(23)

= max
k

∣∣∣{[cov
(
Z[i]

)−1 − ĉov
(
Z[i]

)−1] · Z[i]x[i]

}
k

∣∣∣
= O

(
Nens

−1/2 · log1/2 n
)
,(24)

from which (20a) follows. Note that

x[i] =
∑

j∈P (i,ζ)

{
ĉ[i]
}
j
x[j] + ε̂[i] ⇔ ĉov

(
x[i]

)
= ĉov

 ∑
j∈P (i,ζ)

{
ĉ[i]
}
j
x[j] + ε̂[i]


⇔ ĉov

(
x[i]

)
= ĉov

 ∑
j∈P (i,ζ)

{
ĉ[i]
}
j
· x[j]

+ ĉov
(
ε̂[i]
)

⇔ d̂2i = ĉov
(
x[i]

)
− ĉov

 ∑
j∈P (i,ζ)

{
ĉ[i]
}
j
· x[j]


and, similarly,

d2i = cov
(
x[i]

)
− cov

 ∑
j∈P (i,ζ)

{
c[i]
}
j
· x[j]

 .

The claim (20b) and the first part of (20c) follow from (22a), (22b), and (24).
We have∣∣∣d̂2i − d2i ∣∣∣ ≤ ∣∣cov

(
x[i]

)
− ĉov

(
x[i]

)∣∣
+

∣∣∣∣∣∣ĉov

 ∑
j∈P (i,ζ)

[{
ĉ[i]
}
j
−
{

c[i]
}
j

]
· x[j]

∣∣∣∣∣∣(25)

+

∣∣∣∣∣∣ĉov

 ∑
j∈P (i,ζ)

{
ĉ[i]
}
j
· x[j]

− cov

 ∑
j∈P (i,ζ)

{
ĉ[i]
}
j
· x[j]

∣∣∣∣∣∣ .
By Lemma 2 the maximum over i of the first term is

max
i

∣∣cov
(
x[i]

)
− ĉov

(
x[i]

)∣∣ = O
(

Nens
−1/2 · log1/2 n

)
.
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The second term can be bounded as follows:∣∣∣∣∣∣
∑

j∈P (i,ζ)

[{
ĉ[i]
}
j
−
{

c[i]
}
j

]2
ĉov

(
x[j]

)∣∣∣∣∣∣ ≤
∑

j∈P (i,ζ)

[{
ĉ[i]
}
j
−
{

c[i]
}
j

]2 ∣∣ĉov
(
x[j]

)∣∣
≤ max

k

[{
ĉ[i]
}
k
−
{

c[i]
}
k

]2
·max

i

∣∣ĉov
(
x[i]

)∣∣ = O
(
ζ2 ·Nens

−1 · log n
)

= O
([

Nens
−1 · log n

]α/2·(α+1)
)

by (20a) and
∥∥B∥∥ ≤ ε−10 . The third term can be bounded similarly. Thus (20b)

follows. Furthermore,

d2i = cov

x[i] −
∑

j∈P (i,ζ)

{
ĉ[i]
}
j
· x[j]

 ≥ ε0 ·
1 +

∑
j∈P (i,ζ)

[
ĉ
[i]
j

]2 ≥ ε0 ,
and the lemma follows.

Comment 2 (Gaussian assumption relaxation). The Lemma 2 here, originally
from Bickel and Levina in [5], is based on the assumption that samples follow a Gaus-
sian distribution with covariance matrix B such that the sample covariance component
has the exponential decay property (21). However, the Gaussian assumption can be
relaxed to other distributions whose second moment satisfies such a decay condition
(even may be slower than exponential decay) and even more, high-order moments are
bounded by second ones, for instance, probability distributions from the exponential
family such as the exponential, the normal, and the gamma.

We now are ready to prove Theorem 1.

Proof of Theorem 1. We need only check that∥∥B̂−1 −B−1
∥∥
∞ = O

(
Nens

−1/2 · log1/2 (n)
)

(26a)

and ∥∥B−1 − Φζ
(
B−1

) ∥∥
∞ = O

(
ζ−α

)
,(26b)

where the entries of Φζ
(
B−1

)
are given by

{
Φζ
(
B−1

)}
k,j

=

{{
B−1

}
k,j

for j ∈ P (k, ζ),

0 otherwise,
for 1 ≤ k ≤ n .(26c)

We first prove (26a). By definition,

B̂−1 −B−1 = T̂T · D̂−1 · T̂−TT ·D−1 ·T.(27)

Applying the standard inequality∥∥TT ·D−1 ·T− T̂T · D̂−1 · T̂T
∥∥ ≤ ∥∥TT − T̂T

∥∥ · ∥∥D̂∥∥ · ∥∥T̂∥∥
+
∥∥D− D̂

∥∥ · ∥∥T̂T
∥∥ · ∥∥T̂∥∥

+
∥∥T− T̂

∥∥ · ∥∥T̂∥∥ · ∥∥D̂∥∥
+
∥∥T̂∥∥ · ∥∥D− D̂

∥∥ · ∥∥T̂T −TT
∥∥

+
∥∥D̂∥∥ · ∥∥T− T̂

∥∥ · ∥∥T̂T −TT
∥∥

+
∥∥T̂T

∥∥ · ∥∥D− D̂
∥∥ · ∥∥T̂−T

∥∥
+
∥∥D− D̂

∥∥ · ∥∥T− T̂
∥∥ · ∥∥TT − T̂T

∥∥ ,
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all previous terms can be bounded making use of Lemma 1 and, therefore, (26a)
follows. Likewise, for (26b), we need to note that for any matrix M,∥∥M ·MT − Φζ (M) · Φζ (M)

T ∥∥
∞ ≤ 2

∥∥M∥∥
∞

∥∥Φζ (M)−M
∥∥
∞ +

∥∥Φζ (M)−M
∥∥2
∞ ,

and by letting M = TT ·D−1/2, the theorem follows from Definition 1.

4. Numerical experiments. We make use of two numerical models in order
to assess the accuracy of the proposed EnKF implementation: the Lorenz-96 model
and the atmospheric general circulation model SPEEDY. Given its simple formulation
and low computational cost, the Lorenz-96 model allows one to run large numbers of
experiments to determine the statistics of errors associated with ensemble forecasts.
We use the Lorenz-96 model to investigate the effect of the ensemble inflation factor
on the analysis quality. The SPEEDY model provides more realistic test scenarios,
closer to those found in operational data assimilation.

The EnKF-MC analyses are compared against those obtained with the standard
LETKF implementation of Ott et al. [25, 26, 27]. As a measure of accuracy, the L2

norm of the analysis error is computed at each assimilation step:

λi =
∥∥xref

i − xai
∥∥
2

for 1 ≤ i ≤M ,(28a)

where M denotes the number of observation times within the assimilation window,
xref
i and xai are the reference solution and the analysis states at time i, respectively.

The root mean square error (RMSE) across all times is used to assess the average
accuracy of a filter solution throughout the entire assimilation window:

RMSE =

√√√√ 1

M
·
M∑
k=1

λ2i .(28b)

The threshold used in the truncated singular value decomposition during the computa-
tion of B̂−1 is 0.10. During the assimilation steps, the data error covariance matrices
Rk are used (no representative errors are involved during the assimilations). The
different EnKF implementations are performed making use of Fortran and special-
ized libraries such as BLAS and LAPACK are used in order to perform the algebraic
computations.

4.1. Lorenz-96 model. The Lorenz-96 model [21] is described by the following
set of ordinary differential equations:

dxj
dt

=


(x2 − xn−1) · xn − x1 + F for j = 1,

(xj+1 − xj−2) · xj−1 − xj + F for 2 ≤ j ≤ n− 1,

(x1 − xn−2) · xn−1 − xn + F for j = n,

(29)

where F is the external force and n = 40 is the number of model components. Periodic
boundary conditions are assumed. When F = 8 units the model exhibits chaotic
behavior, which makes it a relevant surrogate problem for atmospheric dynamics.
The reference initial condition of the model is obtained after a long propagation of
a random initial state. The background errors at the initial time are samples from
a zero-mean normal distribution with covariance matrix 0.05 · I ∈ Rn×n, where I is
the identity matrix. Observations are taken every 0.5 time units (which corresponds
to 3.5 days in the atmosphere). Observations errors are drawn from a zero-mean
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Gaussian distribution with covariance matrix 0.01 · I ∈ Rm×m. The assimilation
window consists of 25 observations evenly distributed in time. Two ensemble sizes
are utilized during the tests: Nens = 20 and Nens = 60. Two inflation factors are
considered for the experiments, a smaller value α = 1.05 and a larger value α = 1.09.
For each configuration we perform 45 runs, each with a different reference initial
condition, and with different realizations of the background and observation errors.
At each time m = 30 components of the model space are observed; the observed
components are randomly selected for each run, and are therefore different for each
scenario.

The logarithm of mean errors (28a) at each assimilation time are reported in
Figure 2 for all inflation factors and ensemble sizes. Both filters converge for all
experimental configurations. The traditional LETKF analyses become more accurate
when the inflation factor is increased; this behavior is expected and has been well
studied previously [1, 10]. Results reveal that the use of inflation can also improve
the quality of EnKF-MC analyses. The quality of the results with both filters is also
better for the larger ensemble size, as expected.

A comparison of EnKF-MC versus LETKF results shows that, for all ensemble
sizes and inflation factors, the EnKF-MC converges faster than LETKF. Moreover,
for each scenario, the logarithm of standard deviations of the EnKF-MC results across
the 45 different runs are visibly smaller than the standard deviations of the LETKF
results for most of the assimilation steps. This indicates that EnKF-MC provides the
more robust implementation.

4.2. SPEEDY model. In this section we study the performance of the proposed
EnKF-MC implementation. The experiments are performed using the atmospheric
general circulation model SPEEDY [17, 22]. SPEEDY is a hydrostatic, spectral coor-
dinate, spectral transform model in the vorticity-divergence form, with semi-implicit
treatment of gravity waves. The number of layers in the SPEEDY model is 8 and the
T-63 model resolution (192× 96 grids) is used for the horizontal space discretization
of each layer. Four model variables are part of the assimilation process: the temper-
ature (K), the zonal and the meridional wind components (m/s), and the specific
humidity (g/kg). The total number of model components is n = 589, 824. The num-
ber of ensemble members is Nens = 94 for all the scenarios. The model state space is
approximately 6,274 times larger than the number of ensemble members (n� Nens).

Starting with the state of the system xref
−3 at time t−3, the model solution xref

−3 is
propagated in time over one year:

xref
−2 =Mt−3→t−2

(
xref
−3
)
.

The reference solution xref
−2 is used to build a perturbed background solution:

x̂b
−2 = xref

−2 + εb−2, εb−2 ∼ N
(

0n, diag
{

(0.05 {xref
−2}i)2

})
.(30)

The perturbed background solution is propagated over another year to obtain the
background solution at time t−1:

xb
−1 =Mt−2→t−1

(
x̂b
−2
)
.(31)

This model propagation attenuates the random noise introduced in (30) and makes
the background state (31) consistent with the physics of the SPEEDY model. Then,
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(a) Nens = 20, α = 1.05.
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(b) Nens = 20, α = 1.05.
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(c) Nens = 60, α = 1.05.
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(d) Nens = 60, α = 1.05.

0 5 10 15 20

-4

-2

0

2

4

(e) Nens = 20, α = 1.09.
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(f) Nens = 20, α = 1.09.

0 5 10 15 20

-4

-2

0

2

4

(g) Nens = 60, α = 1.09.
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(h) Nens = 60, α = 1.09.

Fig. 2. Experimental results with the Lorenz-96 model (29). The time evolution of mean
analysis errors (first column) and their standard deviation (second column) across the 45 different
experimental configurations are reported.
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the background state (31) is utilized in order to build an ensemble of perturbed
background states:

x̂
b[i]
−1 = xb

−1 + εb−1, εb−1 ∼ N
(

0n, diag
i

{
(0.05 {xb

−1}i)2
})

, 1 ≤ i ≤ Nens,(32)

from which, after three months of model propagation, the initial ensemble is obtained
at time t0:

x
b[i]
0 =Mt−1→t0

(
x̂
b[i]
−1

)
.

Again, the model propagation of the perturbed ensemble ensures that the ensemble
members are consistent with the physics of the numerical model.

The experiments are performed over a period of 24 days, where observations are
taken every 2 days (M = 12). At time k synthetic observations are built as follows:

yk = Hk · xref
k + εk, εk ∼ N (0m, Rk) , Rk = diagi

{
(0.01 {Hk xref

k }i)2
}
.

The observation operators Hk are fixed throughout the time interval. We perform
experiments with several operators characterized by different proportions p of observed
components from the model state xref

k (m ≈ p · n). We consider five different values
for p: 1.00, 0.50, 0.12, 0.06, and 0.04 which represent 100%, 50%, 12%, 6%, and 4%
of the total number of model components, respectively. All observation networks are
uniformly distributed in space.

4.3. Results with dense observation networks. We first consider dense ob-
servational networks in which 100% and 50% of the model components are observed.
We vary the radius of influence ζ from 1 to 5 grid points. Figures 3(a) and 3(b) show
the RMSE values for the LETKF and EnKF-MC analyses for different values of ζ for
the specific humidity when 100% of model components are observed. When the radius
of influence is increased the quality of the LETKF results degrades due to spurious
correlations. This is expected since the local estimation of correlations in the context
of LETKF is the sample covariance matrix. For instance, for a radius of influence of
1, the total number of local components for each local box is 36 which matches the di-
mension of the local background error distribution. Now, when we compare it against
the ensemble size (96 ensemble members), sufficient degrees of freedom (95 degrees
of freedom) are available in order to estimate the local background error distribution
onto the ensemble space and, consequently, all directions of the local probability error
distribution are accounted for during the estimation and posterior assimilation. On
the other hand, when the radius of influence is 5, the local box sizes have dimension
484 (model components) which is approximately 5 times larger than the ensemble size.
Thus, when the analysis increments are computed onto the ensemble space, just part
of the local background error distribution is accounted for during the assimilation.
Consequently, the larger the local box, the more local background error information
cannot be represented in the ensemble space.

Figures 4(a) and 4(b) show that EnKF-MC analyses improve with increasing
radius of influence ζ. Since a dense observational network is considered during the
assimilation, when the radius of influence is increased, a better estimation of the state
of the system is obtained by the EnKF-MC. This can be seen clearly in Figure 4, where
the RMSE values within the assimilation window are shown for the LETKF and the
EnKF-MC solutions for the specific humidity variable and different values of ζ and
p. The quality of the EnKF-MC analysis for ζ = 5 is better than that of the LETKF
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(a) ζ = 2 and p = 100%. (b) ζ = 5 and p = 100%.

(c) ζ = 2 and p ∼ 4%. (d) ζ = 5 and p ∼ 4%.

Fig. 3. Experimental results with the SPEEDY model. RMSE of specific humidity analyses
with a dense observational network are reported. When the radius of influence ζ is increased the
performance of LETKF degrades.

with ζ = 1. Likewise, when a full observational network is considered (p = 100%),
the proposed implementation outperforms the LETKF implementation. EnKF-MC
is able to exploit the large amount of information contained in dense observational
networks by properly estimating the local background error correlations.

4.4. Results with sparse observation networks. We vary the values of ζ
from 1 to 5. Three sparse observational networks with p = 12%, 6%, and 4%, respec-
tively, are considered.

Figures 3(c) and 3(d) show the RMSE values of the specific humidity analyses
for different radii of influence and 4% of the model components being observed. The
best performance of the LETKF analyses is obtained when the radius of influence is
set to 2. Note that for ζ = 1 the LETKF performs poorly, which is expected since
during the assimilation most of the model components will not have observations in
their local boxes. For ζ ≥ 3 the effects of spurious correlations degrade the quality of
the LETKF analysis. On the other hand, the background error correlations estimated
by the modified Cholesky decomposition allows the EnKF-MC formulation to obtain
good analyses even for the largest radius of influence ζ = 5.

Figures 4(c) and 4(d) show the RMSE values of the LETKF and the EnKF-
MC implementations for different radii of influences and two sparse observational
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(a) p = 100%. (b) p = 50%.

(c) p = 6%. (d) p = 4%.

Fig. 4. Experimental results with the SPEEDY model. Analysis RMSEs for the specific hu-
midity variable are reported. The RMSE values of the assimilation window are shown for different
values of ζ and percentage of observed components p. When the local domain sizes are increased the
accuracy of the LETKF analysis degrades, while the accuracy of EnKF-MC analysis improves.

networks. Clearly, when the radius of influence is increased, in the LETKF context,
the analysis corrections are impacted by spurious correlations. On the other hand,
the quality of the results in the EnKF-MC case is considerably better. When data
error components are uncorrelated ζ can be seen as a free parameter and the choice
can be based on the “optimal performance of the filter.” For the largest radius of
influence ζ = 5 the RMSE values of the ENKF-MC and the LETKF implementations
differ by one order of magnitude. Hence, the estimation of background errors via
B̂ can reduce the impact of spurious correlations; the RMSE values of the EnKF-
MC analyses remain small at all assimilation times, from which we infer that the
background error correlations are properly estimated. On the other hand, the impact
of spurious correlations is evident in the context of LETKF. Since most of the model
components are unobserved, the background error correlations drive the quality of the
analysis, and spurious correlations lead to a poor performance of the filter at many
assimilation times. Figure 5 provides snapshots of the meridional and the zonal wind
components, respectively, at the first assimilation time. For this particular case the
percentage of observed model components is p = 4%. At this step, only the initial
observation has been assimilated in order to compute the analysis corrections by the
EnKF-MC and the LETKF methods. The background solution contains erroneous
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(a) Reference (b) Background.

(c) EnKF-MC (d) LETKF

Fig. 5. Experimental results with the SPEEDY model. Snapshots of the reference solution,
background state, and analysis fields from the EnKF-MC and LETKF for the second layer of the
zonal wind component (u) are shown.

waves for the zonal and the meridional wind components. For instance, for the umodel
variable, such waves are clearly present near the poles. After the first assimilation step,
the LETKF analysis solution dissipates the erroneous waves but the numerical values
of the wind components are slightly greater than those of the reference solutions. This
numerical difference increases at later times due to the highly nonlinear dynamics of
SPEEDY. On the other hand, the EnKF-MC implementation recovers the reference
shape, and the analysis values of the numerical model components are close to that
of the reference solution. This shows again that the use of the modified Cholesky
decomposition as the estimator of the background error correlations can mitigate the
impact of spurious error correlations.

5. Conclusions. This paper develops an efficient implementation of the EnKF,
named EnKF-MC, that is based on a modified Cholesky decomposition to estimate
the inverse background covariance matrix. This new approach has several advan-
tages over classical formulations. First, a predefined sparsity structure can be built
into the factors of the inverse covariance. This reflects the fact that if two distant
model components are uncorrelated then the corresponding entry in the inverse co-
variance matrix is zero; the only nonzero entries in the Cholesky factors correspond
to components of the model that are located in each other’s proximity. Therefore,
imposing a sparsity structure on the inverse background covariance matrix is a form
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of covariance localization. Second, the formulation allows for a rigorous theoretical
analysis; we prove the convergence of the covariance estimator for a number of en-
semble members that is proportional to the logarithm of the number of states of the
model; therefore, when Nens ≈ log n, the background error correlations can be well
estimated making use of the modified Cholesky decomposition.

We discuss different implementations of the new EnKF-MC, and asses their com-
putational effort. We show that domain decomposition can be used in order to de-
crease even more the computational effort of the proposed implementation. Numerical
experiments are carried out using the atmospheric general circulation model SPEEDY
reveal that the analyses obtained by EnKF-MC are better than those of the LETKF
in the root mean square sense when sparse observations are used in the analysis.
For dense observation grids the EnKF-MC solutions are improved when the radius
of influence increases, while the opposite holds true for LETKF analyses. (We stress
the fact that these conclusions are true for our implementation of the basic LETKF;
other implementations may incorporate advances that could make the filter perform
considerably better). The use of modified Cholesky decomposition can mitigate the
impact of spurious correlation during the assimilation of observations.
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