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Quantifying the mechanical properties of nanomaterials is chal-
lenged by its small size, difficulty of manipulation, lack of reliable
measurement techniques, and grossly varying measurement con-
ditions and environment. A recently proposed approach is to
estimate the elastic modulus from a force-deflection physical
model based on the continuous bridged-deformation of a nano-
belt/nanowire using an atomic force microscope tip under different
contact forces. However, the nanobelt may have some initial
bending, surface roughness and imperfect physical boundary con-
ditions during measurement, leading to large systematic errors and
uncertainty in data quantification. In this article, a statistical
modeling technique, sequential profile adjustment by regression
(SPAR), is proposed to account for and eliminate the various
experimental errors and artifacts. SPAR can automatically detect
and remove the systematic errors and therefore gives more precise
estimation of the elastic modulus. This research presents an inno-
vative approach that can potentially have a broad impact in
quantitative nanomechanics and nanoelectronics.

model selection � nanomechanics � nanostructure � profile adjustment �
regression modeling

Nanotechnology has provided unprecedented understanding
and applications on materials and is impacting many fields

through the development of nanodevices and nanosystems that
exhibit superior performances. The fundamental building blocks in
constructing such devices and systems are 1-dimensional (1D)
nanomaterials, such as carbon nanotubes, semiconductor nanow-
ires, and oxide nanobelts. The mechanical behavior of 1D nano-
materials is one of most important properties dictating their appli-
cations in nanotechnology. Among the several developed methods
for measuring the elastic deformation properties of nanomaterials
(1–3), one approach to quantifying the elastic modulus of 1D
nanomaterials is based on the atomic force microscopy (AFM). A
common strategy is to deform a 1D nanostructure using an AFM
tip, which pushes the 1D nanostructure at some locations. Then the
elastic modulus is determined through quantifying the force-
displacement curve. The accuracy of this measurement is, however,
limited by noise factors such as the size of the tip, the accuracy of
positioning the AFM tip on the object, the surface roughness of the
1D nanomaterials, and the stability of the structure during mea-
surements. New approaches are needed for analyzing the data
received from nano-scale measurements, so that the derived infor-
mation can be reliably used to characterize the mechanical prop-
erties of nanomaterials. The objective of this article is to propose a
new approach for quantitative nanomechanics through statistical
and physical modeling.

Recently, Mai and Wang (4) proposed a new approach for
quantifying the elastic deformation behavior of 1D nanostructures.
The approach is based on a continuous deformation/bending of a
Znic Oxide (ZnO) nanobelt/nanowire, which is supported at its two
ends by a trenched substrate, using an AFM tip in contact mode.
The AFM tip scans along the length of the nanobelt under a
constant applied force, and thus the segment across the trench is
deformed. A quantitative fitting of the force-deflection curve is
used for estimating the elastic modulus of the nanobelt. However,

the measured data are largely affected by the imperfect shape of the
nanobelt, its surface roughness, size and shape of the AFM tip, and
the instability of the measurement technique at such a small scale.
Moreover, the level of allowable tolerance on measurement errors
for the nanomaterials decreases because noise or error becomes
much larger compared with the small response signals from the
nanomaterials. The data analysis is complicated by a lack of
confidence in the assumed physical model to accommodate the
uncertainty in the contact between the nanobelt and the supporting
trench. One possible physical model is the simply-supported beam
model (SSBM) (5). The SSBM is an ideal case that does not account
for the various experimental uncertainties and artifacts. In this
article, we use an empirical statistical modeling technique to
identify the effects of these artifacts and their influence on data
analysis. After filtering out such effects, we can accurately, reliably
and efficiently determine the elastic modulus based on the physical
law. Our study sets a good and early example for quantitative
nanomechanics. The proposed methodology can be extended to
other fields in nanotechnology such as nanoelectronics and
nanomeasurements.

Existing Method
Mai and Wang (4) used a physical vapor deposition method to
synthesize the ZnO nanobelts with a rectangular cross-section. A
silicon substrate was prepared with long and parallel trenches
carved at its surface by nanofabrication. The trenches are �200 nm
deep and 1.25 �m wide. They manipulated the long ZnO nanobelts
across the trenches over many periods. A scanning electron mi-
croscopy (SEM) and AFM were used to capture the morphology
and dimensions of the nanobelt. The length and width of the
nanobelt are captured by the SEM image and the thickness of the
nanobelt is obtained from AFM image. In the mechanical mea-
surement, an AFM tip scanned the nanobelt along its length
direction in contact mode at a constant applied force. By changing
the magnitude of the contact force from low to high, they obtained
a series of bending profiles of the nanobelt.

The profiles of a suspended nanobelt along the length direction
under different contact forces are shown in Fig. 1A. As shown in Fig.
1A, the image profiles of a nanobelt (denoted by NB) recorded the
deflection of all of the points along its length under different
applied forces. Each curve was obtained by averaging 10 consec-
utive measurements along its length under the same loading force.
The curves in Fig. 1A are not smooth because of a small surface
roughness (�1 nm) of the nanobelt. In addition, the as-attached
nanobelt on the trenches is not perfectly straight, possibly because
of initial bending during the sample manipulation. Fig. 1A indicates
that there are some noise factors affecting the deflection curves. To
eliminate the effect of the surface roughness and initial bending of
the nanobelt (collectively referred to as initial bias), Mai and Wang
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(4) proposed to calibrate the deflection curves by subtracting the
initial profile (i.e., the profile measured under the lowest applied
force of 78 nN) from those measured at higher applied forces. The
normalized AFM image profiles are shown in Fig. 1B. A normalized
force is obtained by subtracting 78 nN from the applied forces (see
Fig. 1B Inset).

Mai and Wang (4) suggested the simply-supported beam model
(SSBM) to quantify the elastic deflection (which they called the
free-free beam model). The diagram of the SSBM is shown in Fig.
2. When a concentrated load force F is applied at the contact point
x of the AFM tip away from the end A, the deflection of nanobelt
at x is determined by

� � �
Fx2�L � x�2

3EIL
, [1]

where E is the elastic modulus, L is the width of trench, and I is the
moment of inertia given by wh3/12 for the rectangular beam, where
w and h are respectively the width and thickness of nanobelt. The
notation in Eq. 1 is slightly different from that in Mai and Wang (4).
Fig. 3 shows an illustrative example of the SSBM profiles, which are
symmetric and perfectly smooth but do not account for the noise
factors in the measurements. The elastic modulus E is estimated by
fitting the normalized AFM image profiles to the SSBM. Hereafter,
we denote the method by Mai and Wang as the MW method.

The elastic beam model for the bridged nanowire configuration
is widely accepted in nanomechanics (see refs. 6–8). The current
nanobelt experiment is in a linear elastic deflection region because
the nanobelt has a maximum deflection change �10 nm under the
largest load force during the experiment, which is �1% deflection
comparing to the length of the nanobelt (1250 nm). This approach
has also been effectively used elsewhere such as Paulo et al. (9). The

simply-supported boundary assumption is validated in Mai and
Wang (4), which showed that SSBM fits the data better than the
clamped-clamped beam model. It is also confirmed experimentally
in their work.

Problem with the MW Method
By subtracting the profile acquired at 78 nN from the data, the
shape of the normalized AFM image profiles in Fig. 1B looks closer
to the SSBM than that of the original profiles in Fig. 1A. This should
give a better estimate of the elastic modulus E. However, if the
initial profile behaves poorly, then subtracting this profile to
normalize the data can result in poor estimation of E from the
SSBM.

Recall that the deflection v in the SSBM in Eq. 1 is a linear
function of the applied force F given the distance x. The reason for
normalizing the data by subtracting the initial profile is to eliminate
the initial bias. However, if some systematic errors due to imperfect
boundary conditions and other unknown factors (collectively re-
ferred to as systematic bias) occurred during the experiment,
normalizing the data may not be enough for obtaining a good fitting
based on the SSBM. For example, in Fig. 1A the deflection profiles
under the applied force F � 235, 248 and 261 nN lie above those
under the lower force F � 209 and 222 nN. This is inconsistent with
the model equation in Eq. 1 because the deflection is expected to
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Fig. 1. NB profiles. (A) The AFM image profiles of the suspended NB under different load forces in contact mode. (B) The normalized AFM image profile by
subtracting the profile acquired at 78 nN from the profiles in A
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Fig. 2. The schematic diagram of the simply-supported beam model (SSBM).
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Fig. 3. An example of SSBM calculated profiles.
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increase with force. The SSBM itself cannot explain this phenom-
enon. One possible explanation is the change of the boundary
conditions, which can be nonlinear and irreversible during the
measurement. This pattern still persists in the normalized profiles
in Fig. 1B. Therefore, the MW method cannot be used to fit the
profile data properly. It requires a more general model to identify
other factors besides the initial bias.

To overcome these problems, we propose a physical-statistical
model that integrates SSBM with a regression model. The regres-
sion model captures the initial bias and potential systematic biases
introduced during measurement. We use model selection to iden-
tify terms associated with the systematic biases and adjust the

profiles by subtracting these terms from the original profiles. This
provides a better estimate of the elastic modulus E. We call the
method sequential profile adjustment by regression (SPAR).

General Model and Model Selection
General Model. As shown in Fig. 1A, suppose there are K image
profiles, i.e., the nanobelt is scanned sequentially under K different
applied forces F1, F2, , FK. The experimenter usually changes the
magnitude of applied force F from low to high, i.e., F1 � F2 � ��� �
FK. Each profile contains n points, which are recorded at the
distances of x1, x2, , xn. We denote the deflection at the distance x under
the applied force F as v(x, F). Then the SSBM can be written as
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Fig. 4. Forward model selection using RMSE and BIC on the NB data.
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Fig. 5. Illustration of the adjusted deflection profiles under applied force from F11 � 209 nN to F15 � 261 nN.
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��x, F� � ��x�F, [2]

where �(x) � x2(L � x)2/(�3EIL). Let �0(x) be the initial bias and
�k(x) for k � 1 be the systematic bias introduced when an AFM tip
scans the NB along its length at the applied force Fk. The initial bias
can be due to the surface roughness and initial bending. The
systematic biases can be due to the uncertainty of boundary
conditions, causing the occasional stick-slip events that occur at the
ends of the nanobelt. The wear and tear of AFM tip and the
nanobelt surface, the lateral shifting and sliding, and other artifacts
can also be the causes. Such causes can occur at any stage of the
experiment. These random causes cannot be effectively captured
using deterministic mechanistic models, whereas they can be easily
incorporated using statistical models. Thus, we propose to model
the deflection at x scanned under the kth applied force Fk as

��x, Fk� � ��x�Fk � �0�x� � �1�x�1�k 	 1�

� · · · � �k�1�x�I�k 	 K � 1� � 
�x, Fk�, [3]

where I(�) is an indicator function and 
(x, Fk) is the error term.
Note that the indicator function is to model the sequential nature
of the experiment. Specifically, when the force Fk is applied to make
the AFM tip in contact with the nanobelt, the proposed approach
models the deflection as v(x, Fk) � �(x)Fk � �0(x) � �1(x) � ��� �
�k�1(x) � 
(x, Fk). In reality, there may or may not be a bias at stage
k, i.e., some of the �k values may be zero. We therefore use a model
selection technique to identify the significant �k values and include
only them in the final model.

Model Selection. The general model Eq. 3 considers all potential
bias factors. In reality, it is likely that only a few of them contribute
toward the deflection on the nanobelt. So it is important to find
significant �k values and build an appropriate model. Given the
distance xi, the model Eq. 3 is a linear regression with K � 1
parameters 1/E, �0(xi), �1(xi), . . . , �K�1(xi), i.e.,

�
v�xi, F1�
v�xi, F2�···
v�xi, FK�

� � �
��xi�F1 1 0 . . . 0
��xi�F2 1 1 . . . 0

···
···

···
···

��xi�FK 1 1 . . . 1
� �

1/E
�0···

�K�1�xi�
� [4]

where �(x) � x2(L � x)2/(�3IL) incorporates the knowledge of the
SSBM. In the error vector 
i � (
(xi, F1), , 
(xi, FK))T, 
(xi, Fk)
represents the error occurred at distance xi under applied force Fk.
The model Eq. 3 considering all xi is an over-parameterized linear

model with parameters 1/E, �0(x), �1(x), , �K�1(x), where x � (x1,
x2, , xn), �k(x) � (�k(x1), , �k(xn)) for k � 0, , K � 1. To find a proper
model, we need a model selection strategy. In our situation,
however, it is not appropriate to implement variable selection
among all nK � 1 covariates associated with the parameters 1/E,
�0(x), �1(x), , �K�1(x). Recall that �0(x) is interpreted as the initial
bias effect and �k(x) is the systematic bias effect. It is thus more
reasonable to keep each �k(x) as a whole parameter set in model
selection. It can make the selected model more interpretable from
the physical perspective.

Starting with the model including only the SSBM, we use the
forward selection to add one �k(x) at a time. To begin with, we
assume that the errors 
(xi, Fk) are independent with a normal
distribution N(0, �2). Then the estimation of the parameters can be
easily calculated by the maximum likelihood estimation (MLE). In
each step of the forward selection, we select �k(x) that has the
smallest root mean square error (RMSE) of the corresponding
model, where

RMSE � � � i�1
n � k�1

K �v�xi, Fk� � v̂ �xi, Fk��
2/df� 1/2

[5]

and df is the degrees of freedom in the corresponding model.
Alternatively, we can use the Bayesian information criterion (BIC)
to select �k(x) into the model at each step of the selection, where
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Fig. 6. Estimates of �12(x) and �10(x) from the selected model of NB.
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Fig. 7. The image profiles for the adjusted deflection of NB.
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BIC � �i�1
n �k�1

K �v�xi, Fk� � v̂�xi, Fk��
2/�2 � plog N. [6]

Here, p is the number of parameters, and N is the number of
observations in the corresponding regression model. If �2 in Eq. 6
is not available, an estimate �̂2 can be obtained from the replicates.
The R code for implementing the SPAR method is available from
the authors upon request.

Example. In the image profiles of the nanobelt, the deflection is
recorded at n � 161 points along the length of the nanobelt under
K � 15 different applied forces. The length of NB is L � 1,252 nm
and the moment of inertia in the SSBM is I � 8,216,510 nm4. Fig.
4 shows the model selection results obtained using the proposed
method. The �k(x) is sequentially selected into the model in the
following order: �0(x), �12(x), �10(x), �8(x), �9(x), �6(x), and �2(x). It
can be seen that after adding 3 or 4 terms, the decrease of RMSE
starts to level off whereas the corresponding BIC value starts to
increase. By considering both criteria, we take three �k terms to
build the final model. Thus, the chosen model is

v�x, Fk� � ��x�Fk � �0�x� � �10�x�I�k 	 10�

� �12�x�I�k 	 12� � 
�x , Fk� . [7]

Here, not only the initial bias �0(x) is significant, the systematic
biases �10(x) and �12(x) also play an important role in modeling the
data. To get more insights for the selected �k values in Eq. 7, at each
stage of the selection, we define an adjusted deflection v(xi, F)adj as
v(xi, F) minus the selected �k values. For example, at stage 2, v(xi,
F)adj � v(xi, F)-�0(x)-�12(x)I(k�12). Note that the systematic bias
�12(x) introduces the deflection into the image profiles starting from
F13, i.e., the profiles at F � 235, 248, and 261 nN. Similarly, �10(x)
only brings in bias on the profiles under applied force F11 to F15. Fig.
5 shows the changes of 5 adjusted deflection profiles under applied
forces F11 to F15 as the three �k terms are sequentially selected into
the model.

The original 5 profiles are shown in Fig. 5A. When �0(x) is
selected into the model at stage 1 of selection, it adjusts the initial
bias among the 5 image profiles. In Fig. 5B, the adjusted deflection

v(xi, F)adj � v(xi, F) � �0(x) looks closer to the SSBM, but the
inconsistent pattern shown in Fig. 1 still remains. Note that the
inconsistent pattern appears between the profiles under F11 � 209
nN and F12 � 222 nN and those under F13 � 235 nN, F14 � 248 nN,
and F15 � 261 nN. At stage 2 of the selection, �12(x) is selected into
the model. It further adjusts the profiles under the applied force F13,
F14, and F15. From Fig. 5C, we can see that the adjusted deflection
v(xi, F)adj � v(xi, F) � �0(x) � �12(x)I(k � 12) is to push the profiles
under the applied force F13, F14, and F15 to lie below those obtained
at force F11 and F12. The inconsistency no longer exists in Fig. 5C.
Therefore, adding �12(x) can remove the inconsistent pattern.

At stage 3 of the selection, �10(x) is chosen into the model. It can
again adjust the 5 image profiles at the applied forces from F11 �
209 nN to F15 � 261 nN. As shown in Fig. 5B, to adjust the
inconsistency among these 5 profiles, it is likely that the adjusted
deflections have been pushed downwards too much. From Fig. 5D,
we can see that adding �10(x) into the model is to pull all 5 profiles
upwards and make the adjusted deflection v(xi, F)adj � v(xi, F) �
�0(x) � �12(x)I(k � 12) � �10(x)I(k � 10) a better fit to the SSBM
(see Fig. 6).

We also compute R2 to check the goodness-of-fit at each stage of
model selection. The R2 of fitting the SSBM is 85.88%, meaning
that fitting the SSBM alone accounts for 85.88% of the total
experimental variations. It shows that the SSBM fits the data
reasonably well in one statistical sense. However, the original curves
(see Fig. 1) do not look like the theoretical shape of the SSBM (see
Fig. 3). SPAR can identify and filter out, term by term, the observed
deviations from the SSBM. The SSBM plus the initial bias term �0
fits the data better with R2 � 94.35%. The fit is further enhanced
by adding 2 terms �12 and �10 with R2 increased to 98.81%. The
improvement due to the addition of these 3 terms is also evidenced
from the profiles of the adjusted deflection v(x,F)adj based on the
selected model shown in Fig. 7. It is more consistent with the
theoretical shape (see Fig. 3) of the SSBM. Therefore, the selected
model Eq. 7 can provide more reliable and precise estimation of the
elastic modulus E.

To gauge the performance of the selected model, using SPAR,
we compare it with the MW method. The residual plots from these
two approaches are shown in Fig. 8. The residuals from the MW
method show some systematic patterns, which indicates that the
model needs improvement. No systematic pattern is observed in the
residuals based on SPAR. Clearly, the selected model performs
better. It removes the inconsistent pattern discussed above, whereas
the MW method does not recognize this pattern. The residuals from
the SPAR method are also much smaller.
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Fig. 8. Comparison of 2 methods on the NB data.

Table 1. Comparison of estimates with the NB data

RMSE 1/ˆE se(1/E) Ê, GPa se(E)

MW method 0.86 1.06	10�2 1.77	10�4 94.34 1.58
SPAR 0.37 9.85	10�3 7.63	10�5 101.52 0.79
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Table 1 summarizes the estimation results obtained using the two
methods. Clearly SPAR gives a more precise estimate of the elastic
modulus E. The standard error of E, se(E), is reduced by 50%. The
95% confidence interval of E from SPAR is (99.97, 103.07), and
that from the MW method is (91.24, 97.44). The nonoverlapping of
intervals suggests that one of the estimates can be misleading or
wrong. Because SPAR incorporates the initial bias and adjusts the
inconsistent pattern in the profiles, it is expected to provide more
accurate determination of the elastic modulus than the MW
method. To further verify this point, we perform SPAR, using only
half of the profiles of NB, i.e., the 8 profiles under the applied force
F � 78, 105, 131, 157, 183, 209, 235, and 261 nN. The estimate of
the elastic modulus Ê � 102.67 GPa and the 95% confidence
interval (100.55, 104.79) are similar to those using SPAR with all of
the 15 profiles of NB. This shows that SPAR can give a more
reliable estimate even with half of the profiles. Note that the
confidence interval length for half profiles using SPAR is compa-
rable with the corresponding length for full profiles using the MW
method, thus confirming the 50% reduction in se(E).

Because the inconsistent pattern occurs for the last 5 image
profiles, a simple alternative to SPAR, which the experimenter may
favor, is to discard the last 5 profiles and apply the MW method to
the first 10 profiles. The resulting estimate of the elastic modulus is
96.23 GPa. The standard error is 1.51, which is almost twice as large
as the standard error from applying SPAR to the 15 profiles. This
shows that adjusting the inconsistent patterns and using the com-
plete data are better than using only the profiles with consistent
pattern for estimation.

Discussion and Conclusions
In this article, we describe a method called SPAR that more
precisely determines the elastic modulus of a nanobelt through
statistical modeling and analysis of experimental data. It can
automatically remove the initial bias and adjust the systematic
artifacts and errors introduced during measurement and, thus, can
give a more precise and reliable estimate of the elastic modulus.

Because of the small size of nanomaterials, the noise from the
uncertainty of complex boundary conditions, instrumental insta-
bility, and the measurement environment becomes relatively large
compared with the actual scale of nanomaterials. It would be
difficult to conceive a physical model that can anticipate and
incorporate all these sources of noise. Because the occurrence of
these noises can vary from experiment to experiment, a catch-all
model will be unwieldy for practical use. Statistical modeling is a
more flexible and nimble alternative that can capture the noises
that actually occur in an experiment. However, a purely statistical
approach lacks prediction power because the identified effects in
one experiment may not carry over to another. In contrast, a
mechanics model with better physics can describe the intrinsic
underlying properties and is thus more predictive. By avoiding the
pitfalls of either approach, the proposed physical-empirical mod-
eling approach can be a powerful tool. More discussions on this
modeling and estimation technique can be found in Joseph and
Melkote (10) and the references therein.

The SPAR method is proposed and its performance studied for
a specific experiment on nanobelts. It can, however, have broad
applications in the quantification of the mechanical properties of
1D nanomaterials. For example, San Paulo et al. (9) studied the
mechanical elasticity of single and double clamped nanowires. The
deflection of nanowires is measured by the controlled application
of different normal forces with AFM. There is an initial variation
in the growth of nanowires. Systematic bias can occur during the
measurement under different applied forces. Therefore, SPAR can
be used to get a better estimate of the elastic modulus. This new
development demonstrates a statistical approach for quantifying
the mechanical properties of 1D nanomaterials by comprehensively
analyzing the acquired data and filtering out systematic artifacts.

The demonstrated methodology can be extended to other fields
in nanotechnology. In the electrical measurements of nanodevices
in a current range of �1 pA (10�12 A), a precise identification of
weak signals from the noise is essential for the reliable operation of
chemical and biochemical sensors to avoid false alarms. For quan-
tum devices and single electron transistors, the measured signal may
be complicated by instrumental instability and noise as well as
measurement environment. In the application of piezoelectric
nanowires for converting mechanical energy into electricity, the
voltage generated from a nanowire depends on its dimension, the
degree of its mechanical deformation, and the effectiveness of
the charge output (11). A statistical evaluation of the magnitude of
the output voltage is essential for understanding the efficiency
of the energy conversion. For all these applications, the demon-
strated methodology can be effectively applied to filter out artifacts
so that the operation of the devices can be more reliable and
accurate. This research can serve as an example of a new cross-
interdisciplinary effort between statistics and nanotechnology.

Materials and Methods
Materials. The ZnO NBs were synthesized by a high temperature physical vapor
deposition method inside a tube furnace (12). The NBs have a rectangular
cross-section generally with 30–200 nm in width and thickness and 3–30 �m in
length when controlling experimental parameters.

SEM imaging. A commercial scanning electron microscope (LEO 1530) was used
to determine the morphology of ZnO NBs and the lateral dimensions of NBs and
trenches.

AFM imaging and force measurement. A commercial atomic force microscope
(Asylum Research MFP3D) was used for imaging and force measurement. AFM
image provided a reliable measurement of the thickness of the NBs. The force
measurement was made by scanning the NB along its length direction, using an
AFM tip in contact mode at a constant applied force. A series of bending images
of the NB were recorded by increasing the magnitude of the contact force. The
AC240 cantilevers (spring constant of �2 N/m) from Asylum Research were used
in our research, and each cantilever was carefully calibrated so that the AFM
contact forces can be calculated.
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