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Efficient estimation and selection for regularized dynamic logistic regression
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ABSTRACT 
In various data science applications, the relationship between predictor variables and the response 
is dynamic in the sense that the corresponding model parameters are varying coefficients. 
Estimation and variable selection for such dynamic models are challenging with a large number of 
parameters and complex optimization. In this work, we propose a regularized dynamic logistic 
regression for efficient variable selection and model estimation. The proposed method considers a 
combination of fused and group regularization to estimate varying effects of important predictors 
on responses in the presence of irrelevant predictors. Specifically, we select the important variable 
with dynamic impact on responses through the selection of the entire group of piecewise con
stant functions for parameters, which can characterize dynamic impacts of predictor variables. 
Moreover, we develop an efficient algorithm based on the alternating direction method of multi
pliers for parameter estimation. The performance of the proposed method is evaluated by both 
simulations and real case studies.
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1. Introduction

Advances in technology and computation have provided 
opportunities to explore large and high-dimensional data
sets. The collected high-dimensional dataset presents a var
iety of details for problems of interest, but frequently 
contains irrelevant or redundant information. To extract 
important predictors relevant to responses and estimate their 
effects for statistical inference, variable selection techniques, 
such as the best subset selection, the non-negative garrote 
(Breiman, 1995; Yuan and Lin 2007; Xiong, 2010), and the 
LASSO (Tibshirani, 1996), have become popular in many 
applications. Variable selection supervises model complexity 
and produces sparse interpretable models. Studies of variable 
selection are often conducted for the regression model due 
to its well-established properties. However, the relationship 
between predictor variables and the response can be 
dynamic in the sense that the corresponding model parame
ters are varying coefficients. It is challenging to estimate and 
select key predictor variables with dynamic effects when 
irrelevant variables are present.

Studies of variable selection for varying coefficient models 
have not attracted full attention. The Varying Coefficient 
Model (VCM) is an important tool for studying the dynamic 
impacts of predictors on responses (Cleveland et al., 2017; 
Hastie and Tibshirani, 1993) with broad applications 
(Aguilar and West, 2000; Cai et al., 2000; Beaulieu et al., 
2012; Hong et al., 2015). Our work is motivated by the crys
tal growth manufacturing problem (Zhang et al., 2014; Sun 
et al., 2016; Jin et al., 2019). In order to produce high- 

quality crystal ingots, the major procedure in crystal growth 
manufacturing is to pull the crystal ingot out of the melted 
polycrystalline silicon upwards and rotate simultaneously 
and slowly. This process typically lasts more than 20 hours. 
During the crystal growth, many process variables, such as 
the pulling speed and the power of the heater, affect the 
quality of the crystal ingots. These effects of process varia
bles on the quality variable (i.e., the diameter of the ingot) 
are dynamic, due to the different growth phases and the 
inevitable equipment degradation. Considering the impact of 
different process variables at different process phases or 
equipment status during the crystal growth, it is more sens
ible to model these dynamic effects in a VCM framework.

The VCM investigates dynamic patterns of variables by 
allowing the coefficient of variables to be functional coeffi
cients. In the literature, the VCM is linear in terms of pre
dictor variables, of which the coefficients are dependent on 
other variables. The dependency has been characterized by 
various coefficient formats, such as the polynomial splines 
(Hastie and Tibshirani, 1993; Fan and Zhang, 1999) and the 
smoothing splines (Hoover et al., 1998; Fan and Zhang, 
2008). The functional coefficients of the VCM provide great 
flexibility in modeling, but are frequently implicit and com
plicated. Moreover, the applications of the VCM were con
strained by the assumption that coefficients vary in the 
forms of smoothing functions. In other words, the func
tional coefficients of the VCM may not be suited for hand
ling discontinuities or abrupt structural changes in dynamic 
predictor variables.
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To address the limitations of implicit smoothing func
tional coefficients, works based on penalized likelihood esti
mation have been developed to estimate varying coefficient 
structures. Along this direction, the sparse graphical regres
sion model with parameter fusion was developed to recover 
temporal structures in time-varying Markov random field 
networks (Ahmed and Xing, 2009). The multinomial fused 
LASSO regression model was presented to solve longitudinal 
classification problems (Adhikari et al., 2019). The varying- 
coefficient varying-structure model incorporating the fused 
LASSO and the LASSO penalty was introduced to illustrate 
dynamic coefficient structures (Kolar et al., 2009). The 
dynamic quality-process model was proposed to describe the 
dynamic effects of variables with piecewise linear functions 
(Jin et al., 2019). The main idea is to apply the penalty term 
to the magnitude of jumps in coefficients to encourage con
secutive segments in coefficients to have similar estimation 
values (Yao, 1988; Lavielle, 2005; Tibshirani et al., 2005). 
However, these works did not address the issue of selecting 
important predictor variables with dynamic effects in the 
presence of irrelevant variables. The correct identification of 
key predictor variables with dynamic coefficients can 
enhance the model interpretability and improve the compu
tation efficiency.

In this work, we propose a regularized Dynamic Logistic 
Regression (rDLR) model for variable selection and estima
tion of the varying effects of key predictor variables in the 
presence of irrelevant variables. The proposed method uses 
a set of piecewise constant functions as an entire group to 
characterize the dynamic effects of each predictor variable. 
Under such a formulation, the selection of each predictor 
variable with dynamic effects is equivalent to the selection 
of the entire group of piecewise constant functions. We pro
pose an appropriate regularization to select important pre
dictor variables at the level of individual predictors while 
allowing dynamic effects for predictor variables. The devel
opment is described in detail in Section 2. To efficiently esti
mate coefficient parameters, we develop an algorithm based 
on the Alternating Direction Method of Multipliers 
(ADMM, Boyd et al., 2011) coupled with the Newton– 
Raphson method. The proposed model has three key advan
tages. First, the proposed method can yield sparse and inter
pretable models with predictor variables in high-dimensional 
data sets. Second, the dynamic effects of variables are repre
sented by a set of piecewise constant coefficients. The piece
wise constant functions are adaptable and able to 
accommodate multiple changes in coefficient structures. 
Last, the developed ADMM-based method for parameter 
estimation is applicable to generalized LASSO penalties in 
the generalized linear model framework and is effective for 
dealing with large-scale data sets. We used simulation stud
ies and two real case studies (crystal growth manufacturing 
and a Hong Kong environmental study) to demonstrate that 
it is beneficial to consider both the VCM structure and the 
selection of variables with dynamic effects when addressing 
these problems.

It is worth pointing out that there are several different 
aspects of the proposed method in comparison with other 

related methods described in Christoffersen (2021), which 
includes the static logistic regression model, the generalized 
additive model, the time varying effects Cox model, and the 
dynamic hazard method with a logistic link function. 
Compared with the static logistic regression model, our pro
posed method studies the varying effects of variables. The 
generalized additive model uses cubic regression splines with 
knots spread evenly through the covariate values, whereas 
our proposed method performs variable selection and esti
mation of dynamic effects by a set of piecewise constant 
coefficients to accommodate multiple changes in coefficient 
structures. The response of interest in the time-varying 
effects Cox-model is the natural log of the hazard ratio 
whereas our proposed method considers the natural log of 
the odds ratio.

The remainder of this article is organized as follows. In 
Section 2, we detail the proposed regularized dynamic logis
tic regression model. In Section 3, we describe the estima
tion method based on ADMM. In Sections 4 and 5, we 
present the simulations and real case studies. We conclude 
this work with discussion in Section 6.

2. Regularized dynamic logistic regression

Let yt denote the binary response at time t, yt 2 f0, 1g, t ¼
1, :::, n, and xt denote the data point at time t, xt ¼

ðxt, 1, :::, xt, pÞ
T , p � 1: Without loss of generality, we assume 

that the p variables are continuous variables with measure
ments at n time points. We denote pðxtÞ ¼ Prðyt ¼ 1jxtÞ:

That is, we consider

ytjxt ¼
1, w:p: pðxtÞ,
0, w:p: 1 − pðxtÞ:

�

The conditional probability pðxtÞ with the logistic regres
sion model log ðpðxtÞ=ð1 − pðxtÞÞÞ ¼ xT

t bt with bt ¼

ðbt, 1, :::, bt, pÞ
T
: Moreover, we consider each data point xt has 

its own coefficient parameters bt at each time point. In 
other words, the coefficient parameter bt is allowed to vary 
over time. Thus, there are np parameters in the proposed 
model. It is over-parameterized since the number of 
unknown coefficient parameters exceeds the sample size n. 
Therefore, we need to consider appropriate penalties in the 
estimation procedure to enable variable selection and parsi
monious model.

It is challenging to estimate the over-parameterized 
model without additional constraints on parameters. To 
address the estimation problem, we consider a regularized 
dynamic logistic regression model, which is expressed as

logitðxtÞ ¼ log
pðxtÞ

1 − pðxtÞ
¼ xT

t bt , t ¼ 1, :::, n

s:t:
Xp

j¼1

Xn

t¼2
jbt, j − bt−1, jj � M1,

Xp

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
1, j þ � � � þ b2

n, j

q

� M2,

(1) 

where M1 � 0 and M2 � 0 are the tuning parameters for 
the l1-norm fused LASSO and l2-norm group LASSO 
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penalties, respectively. Both penalty terms are beneficial to 
reduce the number of unknown parameters in the proposed 
model. The l1-norm fused LASSO penalty on the consecutive 
coefficient parameters, 

Pp
j¼1
Pn

t¼2 jbt, j − bt−1, jj, encourages 
that the adjacent coefficient parameters to have similar val
ues than the distant coefficient parameters. In other words, 
the l1-norm fused LASSO penalty favors piecewise constant 
functional coefficients to approximate the dynamic coeffi
cients. This idea of parameter fusion is comparable to those 
presented by Kolar et al. (2009) and Ahmed and Xing 
(2009). Moreover, the data-driven detection of numbers and 
magnitudes of change-points in piecewise constant functions 
is flexible enough to estimate dynamic coefficients even 
when abrupt structural changes in coefficients exist. In real 
situations, such a formulation implies an overall dynamic 
model structure while a static model within a short period 
of time.

The l2-norm group LASSO penalty, 
Pp

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1, j þ � � � þ b2
n, j

q
, takes into account the coefficient 

parameters for the jth predictor variable as a group. 
Selecting an important variable is essentially equivalent to 
selecting the entire group. Note that the group LASSO pen
alty is reduced to the LASSO when b1, j ¼ � � � ¼ bn, j: The 
variable selection via the group LASSO penalty yields a 
sparse and interpretable model, revealing the relationship 
between the response and the important predictors in the 
presence of irrelevant variables. It is worthwhile to differen
tiate the variable selection feature of the proposed method 
from that of previous works (Kolar et al., 2009; Adhikari 
et al., 2019). The use of the l1-norm LASSO penalty in their 
methods results in a sparse structure in the coefficient 
parameters but selects no important predictor variables.

The combination of the l1-norm fused LASSO penalty 
and the l2-norm group LASSO penalty yields models that 
are sparse at the variable level and fused within each impor
tant variable. This combination allows simultaneously the 
selection of important variables and the incorporation of 
dynamic effects of variables. This idea is similar to the 
sparse group LASSO (Friedman et al., 2010; Simon et al., 
2013), which yields the group-wise sparsity and the within- 
group sparsity. Note that the idea of combining LASSO, 
fused LASSO, and group LASSO have been used in linear 
and logistic regression models (Meier et al., 2008; Zhou 
et al., 2012; Lee et al., 2014) with the focus on fixed parame
ters for predictors. In contrast, the proposed method focuses 
on dynamic parameters by appropriately using a combin
ation of fused LASSO and group LASSO. Moreover, we 
develop an efficient ADMM algorithm for parameter estima
tion as described in the next section.

We remark that the proposed method is different from 
methods in McCormick et al. (2012) and Fahrmeir (1992), 
which uses a combination of state-space model and Markov 
chain model to allow parameters to vary over time. Their 
parameter transition equation assumes a dependency 
between the current value and its previous value. Thus, the 
transition equation suggests gradual changes in parameter 
effects. In addition, our proposed method enables the 

automatic variable selection through the penalization in the 
parameter estimation. Furthermore, the Bayesian approach 
in McCormick et al. (2012) considered different models hav
ing the highest posterior probability at different times. The 
final obtained model coefficients are dynamic in the sense 
that they are not only dynamic within each candidate model, 
but also due to the model selection at different stages. In 
contrast, the output in our proposed method is a model 
with selected variables allowing dynamic effects.

3. Efficient model estimation

To estimate the parameter matrix B ¼ ðb1, :::, bnÞ
T of size n 

� p, we minimize the logistic regression loss function com
bined with the l1-norm fused LASSO penalty and the l2- 
norm group LASSO penalty. That is,

minimize
B

−lðBÞ þ c1

Xp

j¼1

Xn

t¼2
jbt, j − bt−1, jj

þ c2

Xp

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
1, j þ � � � þ b2

n, j

q

(2) 

with

lðBÞ ¼ log
Yn

t¼1
pðxtÞ

yt ð1 − pðxtÞÞ
1−yt

� �
( )

¼
Xn

t¼1
fytxT

t bt − log ð1þ exp ðxT
t btÞÞg,

(3) 

where c1 � 0 and c2 � 0 are tuning parameters. Note that 
we implicitly assume the data points are independent in the 
log-likelihood function, which is commonly used in works 
such as Kolar et al. (2009), Gibberd and Nelson (2017), and 
Adhikari et al. (2019).

The objective function in (2) is convex, but the two pen
alties are not separable in B: That is, both the associated l1- 
norm fused LASSO penalty and the l2-norm group LASSO 
penalty contain the parameter matrix B: It is well-studied to 
optimize a convex objective function associated with either 
l1-norm fused LASSO penalty or the l2-norm group LASSO 
penalty. However, it is challenging to optimize the objective 
function directly with the presence of both the l1-norm 
fused LASSO penalty and the l2-norm group LASSO penalty. 
To address this challenge, we consider an algorithm based 
on ADMM (Boyd et al., 2011). The ADMM method has 
been successfully implemented and applied to the general
ized LASSO problems (Wahlberg et al., 2012; Zhu, 2017). 
The main idea is to convert the objective function so that 
we can deal with the two penalties separately. To update 
variables in an alternative way, we rewrite the problem (2)
in an equivalent form as

minimize
B

lc1, c2ðBÞ¢ − lðBÞ þ c1

Xp

j¼1
jjZð1Þj jj1 þ c2

Xp

j¼1
jjZð2Þj jj2,

subject to FBj − Zð1Þj ¼ 0,
Bj − Zð2Þj ¼ 0, j ¼ 1, :::, p,

(4) 
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where jj � jj1 is the l1-norm, jj � jj2 is the l2-norm, Zð1Þj and 
Zð2Þj are the jth columns in the matrix Zð1Þ of size ðn − 1Þ �
p and the matrix Zð2Þ of size n � p respectively. Bj is the jth 
column in the matrix B, and F is the first-order difference 
matrix of size ðn − 1Þ � n, written as

F ¼

1 −1 0 0 0 0 ::: 0 0 0
0 1 −1 0 0 0 ::: 0 0 0
0 0 1 −1 0 0 ::: 0 0 0

::::::::::::

0 0 0 0 0 0 ::: 0 1 −1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

:

The optimization in (4) is different from the original 
problem in (2) due to the fact that the penalty terms now 
involve Zð1Þ and Zð2Þ, which are completely decoupled. 
Therefore, we can solve the optimization by alternating 
minimization of Zð1Þ and Zð2Þ: The augmented Lagrangian 
for the problem (4) is as follows:

lalðBÞ¢lc1, c2ðBÞþ
Xp

j¼1

~k
ð1Þ, T
j ðFBj − Zð1Þj Þ þ

Xp

j¼1

~k
ð2Þ, T
j ðBj − Zð2Þj Þ

þ
q1
2

Xp

j¼1
jjFBj − Zð1Þj jj

2
2 þ

q2
2

Xp

j¼1
jjBj − Zð2Þj jj

2
2   

¼ lc1, c2ðBÞþ

q1
2

Xp

j¼1
jjFbj − Zð1Þj þ uð1Þj jj

2
2 þ

q2
2

Xp

j¼1
jjbj − Zð2Þj   

þuð2Þj jj
2
2 −

q1
2

Xp

j¼1
jjuð1Þj jj

2
2 −

q2
2

Xp

j¼1
jjuð2Þj jj

2
2, 

where l
ð1Þ
j ¼

~k
ð1Þ
j
q1 

and l
ð2Þ
j ¼

~k
ð2Þ
j
q2
: Here, q1 and q2 are the 

augmented Lagrangian parameters for the l2-norm group 
LASSO penalty and the l1-norm fused LASSO penalty, 
respectively, and ~k

ð1Þ
j and ~k

ð2Þ
j are the Lagrangian 

multipliers.
Then we can obtain the iterative updating scheme as

bkþ1 ¼ argmin
B

−lðBÞ þ
qk

1
2

Xp

j¼1
jjFbj − Zð1Þj þ uð1Þj jj

2
2Þ

0

@

þ
qk

2
2

Xp

j¼1
jjbj − Zð2Þj þ l

ð2Þ
j jj

2
2

!

,   

Zð2Þ, kþ1
j ¼ fssðBkþ1

j þ uð2Þ, k
j , c2=q

k
2Þ, j ¼ 1, :::, p;

Zð1Þ, kþ1
j ¼ fssðFBkþ1

j þ uð1Þ, k
j , c1=q

k
1Þ, j ¼ 1, :::, p;

uð2Þ, kþ1
j ¼ uð2Þ, k

j þ Bkþ1
j − Zð2Þ, kþ1

j , j ¼ 1, :::, p;

uð1Þ, kþ1
j ¼ uð1Þ, k

j þ FBkþ1
j − Zð1Þ, kþ1

j , j ¼ 1, :::, p, (5) 

with the soft-shrinkage function fss given as

fssða, bÞ ¼ signðaÞmaxððjaj − bÞ, 0Þ, 

where qk
1 and qk

2 are the augmented Lagrangian parameters 
for the fused LASSO penalty and the group penalty at iter
ation k, respectively.

Given that updating the dual variables, uð1Þj and uð2Þj , and 
the primal variables, Zð1Þj and Zð2Þj , is straightforward, the 
efficiency of developed algorithm depends on the minimiza
tion of B in (5), which is essentially the minimization prob
lem of the classic logistic regression with two additional 
quadratic terms. It is well known that no analytical solution 
exists for the classic logistic regression problem of B. Thus, 
we apply the Newton–Raphson method to solve the mini
mization problem. Specifically, we approximate lðBÞ with its 
second-order Taylor series as

lðBÞ �
Xn

t¼1
lðbð0Þt Þ þ

@lðbtÞ

@bt
ðb
ð0Þ
t Þ

� �T

ðbt − b
ð0Þ
t Þ

"

þ
1
2
ðbt − b

ð0Þ
t Þ

T @2lðbtÞ

@bt@
Tbt
ðb
ð0Þ
t Þðbt − b

ð0Þ
t Þ

�

, 

where

@lðbtÞ

@bt
ðb
ð0Þ
t Þ ¼ xt ðyt − pðxtÞÞ,

pðxtÞ ¼
exp ðxT

t btÞ

1þ exp ðxT
t btÞ

,

@2lðbtÞ

@bt@
Tbt
ðb
ð0Þ
t Þ ¼ −

Xn

t¼1
xtxT

t pðxtÞð1 − pðxtÞÞ:

We apply the standard ADMM stopping criterion based 
on primal and dual residuals, which are defined at iteration 
kþ 1 (Boyd et al., 2011) as:

rð2Þ, kþ1
j ¼ Bkþ1

j − Zð2Þ, kþ1
j ,

sð2Þ, kþ1
j ¼ qk

grðZ
ð2Þ, kþ1
j − Zð2Þ, k

j Þ,

rð1Þ, kþ1
j ¼ FBkþ1

j − Zð1Þ, kþ1
j ,

sð1Þ, kþ1
j ¼ qk

fuseFTðZð1Þ, kþ1
j − Zð1Þ, k

j Þ, 

where rðiÞj and sðiÞj are the jth columns in the n � p matrices 
rðiÞ and sðiÞ, respectively, i¼ 1, 2. The suggested termination 
criterion is that the primal and dual residuals must be small 
as the ADMM algorithm proceeds, i.e.,

jjrðiÞ, k
vec jj2 � �ðiÞ, pri and jjsðiÞ, k

vec jj2 � �
ðiÞ, dual, i ¼ 1, 2 

with

�ð2Þ, pri ¼
ffiffiffiffiffinpp
�abs þ �rel max jjvecðBkÞjj2, jjZð2Þ, k

vec jj2

� �

,

�ð2Þ, dual ¼
ffiffiffiffiffinpp
�abs þ �reljjvecðqk

2uð2Þ, kÞjj2,

�ð1Þ, pri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − 1Þp

p
�abs þ �rel max jjvecðFBkÞjj2, jjZð1Þ, k

vec jj2

� �

,

�ð1Þ, dual ¼
ffiffiffiffiffinpp
�abs þ �reljjvecðqk

1FTuð1Þ, kÞjj2, 

where Zð1Þvec ¼ ðZ
ð1Þ, T
1 , :::, Zð1Þ, T

p , Þ
T , Zð2Þvec ¼ ðZ

ð2Þ, T
1 , :::, Zð2Þ, T

p , Þ
T , 

rð1Þvec ¼ ðrð1Þ, T
1 , :::, rð1Þ, T

p , Þ
T , rð2Þvec ¼ ðrð2Þ, T

1 , :::, rð2Þ, T
p Þ

T , vec(�) is 
an operator for the vectorization of a matrix, �abs is the 
absolute tolerance, and �abs is the relative tolerance.
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Algorithm 1 summarizes the developed computational 
algorithm for parameter estimation of the proposed method.

Algorithm 1 An ADMM-based algorithm for parameter 
estimation

Input: X, y, c1 and c2
Initialize B, Zð1Þ, Zð2Þ, and uð1Þ, uð2Þ ¼ 0:
for iteration k do

B-update
Compute the @2L

@B@BT and @L
@B :

Find appropriate step size gs by the backtracking 
line search strategy.
Bkþ1 ¼ Bk þ gs �½− @2L

@B@BT

� �−1
@L
@B].

Zð2Þ- and Zð1Þ-update in (5).
Uð2Þ- and Uð1Þ-update in (5).
if jjrjjðgÞ2 � �

ðgÞ, priÙjjsjjðgÞ2 � �
ðgÞ, dual, g¼ 1,2 then stop.

end if
end for
Return Zð2Þ:

We would like to point out that the convergence rate is 
highly dependent on the selection of the augmented 
Lagrangian parameters q1 and q2. Zhu (2017) proposed a 
strategy of varying penalties for updating the parameter q. 
That is,

qkþ1 ¼

gqk if krk
veck2=�

pri � lksk
veck2=�

dual,
g−1qk if ksk

veck2=�
dual � lkrk

veck2=�
pri,

qk otherwise;

8
<

:

where q denotes either q1 or q2, g and l are suggested to be 
2 and 10, respectively (Boyd et al., 2011). This strategy aims 
to improve the algorithm convergence when primal and 
dual feasibilities are on different scales.

The ADMM algorithm has been demonstrated to be 
applicable to a wide variety of large-scale statistical estima
tion problems (Boyd et al., 2011). Ye and Xie (2011) devel
oped a split Bregman method, which is essentially equivalent 
to ADMM, for large-scale fused LASSO problems. In add
ition, the ADMM method is flexible to extend the fused 
LASSO problem to higher-order trend filtering problems 
(Ramdas and Tibshirani, 2016) or other types of LASSO 
penalties. Note that in the iterative estimation procedure of 
Algorithm 1, we use the the Newton–Raphson algorithm for 
the predictor parameters. To scale-up the proposed method 
for big data, one can consider other methods such as the 
Limited-memory BFGS (LBFGS), Newton with Conjugate 
Gradient (Newton-CG) and Coordinate Descent (CD) algo
rithms for more efficient computation.

We would like to remark that it will be very valuable to 
conduct the post-selection inference on the estimated 
parameters. In the literature, the post-selection inferences 
have been conducted mainly on the l1 regularization. For 
example, Lee et al. (2016) derived a truncated normal distri
bution for the estimated coefficient under the LASSO. The 
approach proposed by Taylor and Tibshirani (2018) general
izes the post-selection framework in Lee et al. (2016) with 
p-values and confidence intervals. Although the approaches 
in Taylor and Tibshirani (2018) can be applied for the 

l1-regularized logistic regression, it is not straightforward to 
extend their approach to dynamic logistic regression with 
both fused LASSO and group LASSO. Alternatively, one 
may use the non-parametric bootstrap method to estimate 
the distribution of estimated coefficients for inference, which 
is known to be computationally expensive.

3.1. Selection of regularization parameters

The regularization parameters, (c1, c2), are determined over 
a search grid using the structured K-fold cross-validation 
technique (Arnold and Tibshirani, 2016). That is, the data 
set is ordered (for example, by time) and divided into k 
folds such that every kth point is in the same fold. We train 
the proposed model on all data points except those in the 
kth fold, and compute the Mean Squared Cross-Validation 
(MSCV) error defined as

MSCV ¼
1
K

XK

k¼1

1
nk

X

i2Fk

ðyi − ŷi, −kÞ
2

" #

, 

where nk is the number of data points in the kth fold Fk and 
ŷi, −k is the prediction at the ith point. In particular, ŷi, −k is 
obtained as the weighted average of the fitted values at the 
i-1 and iþ 1 positions in this study. In our numerical stud
ies, we use K¼ 5 for cross validation.

3.2. Convergence property of the estimator

Note that the proposed estimation procedure is within the 
framework of ADMM (Boyd et al., 2011). Under the regu
larized dynamic logistic models, the objective and the dual 
variable under the ADMM will converge to the optimal val
ues when satisfying the following two conditions. First, the 
loss function in the logistic regression and the norm-based 
penalty terms are closed, proper, and convex. Second, the 
loss function in the logistic regression with penalty terms 
has a minima point. Clearly, the loss function in proposed 
method (i.e., the negative log-likelihood function) satisfies 
these two conditions and thus the following update

bkþ1 ¼ argmin
B

 

− lðBÞ þ
qk

1
2

Xp

j¼1
jjFbj − Zð1Þj þ uð1Þj jj

2
2Þ

þ
qk

2
2

Xp

j¼1
jjbj − Zð2Þj þ l

ð2Þ
j jj

2
2

!

converges in the sense that the primal objective function 
along the sequence of primal variable converges to the opti
mal value:

−lðBkÞ þ c1

Xp

j¼1
jjFBk

j jj1 þ c2

Xp

j¼1
jjBk

j jj2

! inf
B

−lðBÞ þ c1

Xp

j¼1
jjFBjjj1 þ c2

Xp

j¼1
jjBjjj2

8
<

:

9
=

;
:

Next, we can also establish the following properties to 
study the estimator from the proposed method.
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Theorem 1. Let b̂t be the estimator from the minimization 
of the penalized loss function in (2). Denote Hðbð0Þt Þ to be the 
Hessian matrix of the negative log likelihood function in 
the logistic regression at b

ð0Þ
t . Here the logistic regression is 

in the form of log ðpðxtÞ=ð1 − pðxtÞÞÞ ¼ xT
t bt with bt ¼

ðbt, 1, :::, bt, pÞ
T. We assume xt is fixed and x2

t, j � 1 for t ¼
1, :::, n and j ¼ 1, :::, p. Then the obtained estimator b̂t is con
sistent in probability to the true estimator value bð0Þt . That is,

1
n

Xn

t¼1
ðb̂t − b

ð0Þ
t Þ

THðbð0Þt Þðb̂t − b
ð0Þ
t Þ

� 6r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log ðenp=dÞ

n2

r
Xn

t¼1
jjb
ð0Þ
t jj1 

with probability at least 1-d. Here r is the upper bound 
of rt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðxtÞð1 − pðxtÞÞ

p
:

The estimator for the minimization of the penalized loss 
function is used so that we can apply the property of opti
mality. The Hessian matrix is used because we used the 
second-order Taylor expansion as its approximation. 
Typically one would like to consider xt as fixed, and x2

t, j � 1 
so that one can have the upper bound in the standard max
imal inequality for the Gaussian distribution. Such condi
tions are widely used in studying the properties of 
estimators from the penalized methods (Greenshtein, 2006; 
Candes and Plan, 2009). The detailed proof can be found in 
Appendix B.

4. Simulation

In this section, we conduct the simulation studies to evalu
ate the performance of the proposed regularized dynamic 
logistic regression model. The response, yt, follows a 
Bernoulli distribution with the conditional probability 
Prðyt ¼ 1jxtÞ: We assume that the underlying model is logit 
ðxtÞ ¼ xT

t bt: We fix the number of significant variables with 
a nonzero coefficient to five. The remaining insignificant 
variables are noise variables used for high-dimensional set
tings. In the simulation, we consider two scenarios for gen
erating predictor variables Xj: In scenario 1 (S1), the 
predictor matrix X follows a multivariate normal distribu
tion Nð0, RÞ, where R is a covariance matrix of size p � p. 
We take the absolute value of Xj such that the probability 
Prðyt ¼ 1jxtÞ is greater than 0.5 when the sign of coefficient 
bt is positive. Note that Xj is independent over time. In 
scenario 2 (S2), the predictor variable Xj is an autocorrelated 
sequence over time. The instance xt, j is generated from the 
AR(1) model xtþ1, j ¼ 0:7xt, j þ wt, j, where t ¼ 1, :::, n − 1, 
x1, j ¼ 0. and W ¼ ðwt, jÞn�p follows a multivariate normal 
distribution Nð0, RÞ: Note that R in both scenarios are equal 
to ðqji−jjÞp�p with qji−jj as the element in the ith row and jth 
column in R and the correlation parameter q � 0:

To conduct a comprehensive simulation study, we vary a 
number of settings, including the sample size, the correla
tions of predictor variables, and the patterns of coefficients 
over time. Specifically, we consider five different sample 
sizes, n¼ 100, 200, 300, 400, and 500; two different scen
arios, S1 and S2; three different correlations, q¼ 0, 0.35, and 

0.7; and four different cases in Figure 1 for the coefficients 
of significant variables: (a) piecewise constant coefficients 
over time segments, (b) smooth functional coefficients, (c) 
constant coefficients, and (d) a mix of smooth functional 
coefficients and constant coefficients. Specially, in case (a), 
the magnitudes of bt follow a uniform distribution. The sign 
of bt alternates between adjacent segments. In order to gen
erate the piecewise constant bt , we first partition the time 
interval into segments of pre-defined lengths. Then, from 
the uniform distribution U(0, 1) we sample values for bt, j in 
each segment. Clearly, the coefficient bt, j is piecewise con
stant over time. Note that the coefficients have alternating 
signs in adjacent segments. In case (b), the smooth functions 
for the five significant variables are f ðtÞ ¼ exp ð−2t þ
1Þ, f ðtÞ ¼ 4tð1 − tÞ, f ðtÞ ¼ 2 sin 2ð2ptÞ, f ðtÞ ¼ 2 sin ð2ptÞ, 
and f ðtÞ ¼ 2 cos ðptÞ þ 1: In case (c), the constant magni
tudes of bt follow a uniform distribution. The sign of bt 
alternates between adjacent segments. In case (d), the first 
three of five significant variables are identical to those in 
case (b), and the remaining two significant variables have 
constant magnitudes following a uniform distribution and 
alternating signs. The number of variables p is fixed at 20. 
For each simulation setting, we perform 30 replications.

The proposed rDLR is compared with five benchmark 
models, which are: (i) Least Absolute Shrinkage and 
Selection Operator (LASSO), (ii) Multivariate Adaptive 
Regression Splines (MARS), (iii) Varying Coefficient Model 
with smoothing splines basis (VCM1), (iv) Varying 
Coefficient Model with a polynomial of degree � 2 basis 
(VCM2), and (v) dynamic logistic regression with fused 
LASSO penalty (FUSE). These benchmark methods focus on 
different strategies for formulating coefficients within a vary
ing coefficient model framework.

The LASSO is an l1-norm regularized method that is 
widely used in high-dimensional problems where the stand
ard linear regression fails (Tibshirani, 1996). The LASSO 
tends to produce an interpretable model with a certain 
sparsity structure. The LASSO solves the following optimiza
tion problem as follows:

minimize
h2Rp

−lðX, hÞ þ kjjhjj1, 

where lðX, hÞ¼
Pn

t¼1 yth
Txt − log ð1þ ehT xt Þ is the log-like

lihood function of the logistic regression with response 
being either zero or one, k � 0 is the tuning parameter, and 
jjhjj1 is the l1-norm penalty on the coefficient vector h ¼

ðh1, :::, hpÞ
T
: Note that we consider the main effects only in 

the logistic regression model.
The MARS is a piecewise linear regression model and 

allows flexible fitting by the automatic selection of spline 
basis functions and knots (Friedman, 1991). The MARS sol
ves the regression problem as follows:

log
pðxtÞ

1 − pðxtÞ
¼
Xp

j¼1

XMj

m¼1
Bm, jðXjÞam, j, 

where Bm, jðXjÞ is the basis function for the predictor 
Xj, am, j is the mth coefficient of the basis function 
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Bm, jðXjÞ, and Mj is the number of knots determined for the 
predictor Xj:

The VCM1 solves the regression problem as follows:

log
pðxtÞ

1 − pðxtÞ
¼
Xp

j¼1
fjðtÞxj, s:t:

ð

f 00ðuÞ2du � k, 

where f is represented by the smoothing spline basis. In con
trast with the VCM1, the VCM2 uses a polynomial basis 
with degree less than two and solves the regression problem 
as follows:

log
pðxtÞ

1 − pðxtÞ
¼
Xp

j¼1
fjðtÞxj:

The FUSE solves the optimization problem as follows:

minimize
B

−lðBÞ þ k
Xp

j¼1
jjFBjjj1, j ¼ 1, :::, p:

Compared to the proposed rDLR, the FUSE lacks the l2- 
norm group penalty term.

Figure 1. Illustrative plots for the simulated dynamic coefficients of the five significant variables when n¼ 300: (from top to bottom) the piecewise constant coeffi
cients in case (a), the smooth functional coefficients in case (b), the constant coefficients in case (c), and a mix of smooth functional coefficients and constant coeffi
cients in case (d).
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To evaluate the performance of model prediction and 
parameter estimation, we employ two sets of evaluation met
rics: prediction metrics and parameter estimation metrics. 
The prediction metrics are DViance (DEV) and 
Misclassification Error Rate (MER). The DEV and MER are 
computed in the 5-fold cross-validation. Specifically, the 
data set is divided into five folds, among which four folds 
are used to train the model, while the remaining portion is 
used to test the model and compute the metrics DEV and 
MER. Note that there are two types of Cross-Validation 
(CV) mechanisms used in this study: the normal random 
CV and the structured CV. The normal random CV divides 
the partitions by random sampling. The structured CV is 
described in detail in Section 3. We apply the normal ran
dom CV to the LASSO and MARS, and the structured CV 
to the rDLR, VCM1, VCM2 and FUSE.

The DEV measures the prediction performance and it is 
defined in terms of the difference between the negative log- 
likelihood of the model (nll1) and the negative log-likelihood 
of the saturated model (nll2):

DEV ¼
2� ðnll1 − nll2Þ

m
, 

where m is the number of data points used to compute nll1. 
The saturated model has a free parameter for each data 
point. The MER provides an overview of the method’s 
accuracy. MER is defined as the proportion of incorrectly- 
classified data points to the total number of data points:

MER ¼ 1 −
TPþ TN

n
, 

where TP is the number of true positives and TN is the 
number of true negatives. The smaller the DEV and MER 
values, the higher the prediction accuracy.

The parameter estimation metrics are Performance 
Measurement (PM), correctly identified coefficient rate 
(CICR), number of Non-Zeros (NZ), and F1 score. The PM 
evaluates the estimation accuracy of estimated b̂t, j relative to 
the true b�t, j: The PM is defined as

PM ¼
Pn

t¼1
Pp

j¼1jb̂t, j − b�t, jj

p
Pn

t¼1
Pp

j¼1jb
�
t, jj

, 

The smaller the PM, the higher the estimation accuracy 
of coefficient parameters. The CICR, evaluating the ability 
to identify correct variables, is defined as the ratio of the 
total number of correctly identified zero and non-zero coef
ficients to the total number of coefficients. The larger the 
CICR, the better the correct variables are identified. The NZ 
measures the number of estimated coefficients with non- 
zero values. For LASSO, the NZ is equal to the model size. 
For rDLR, VCM1, VCM2, and FUSE, the NZ is an approxi
mation of the model size after normalization with respect to 
the number of data points. The F1 score evaluates the ability 
of parameter identification. The F1 score is defined as

F1 ¼
2TP

2TP þ FN þ FP
, 

where FN is the number of false negatives and FP is the 
number of false positives. Note that all TP, TN, FP, and FN 
are normalized by the total number of data points in the 
methods rDLR and FUSE. The greater the F1 score, the 
more accurate the identification of variables. The perfect F1 
score is one.

We compare the performance of the proposed rDLR 
method and benchmark methods in DEV (Table 1) and in 
MER (Table 2). The proposed rDLR has the smallest DEV 
and MER values in cases (a), (b), and (d) in both S1 and S2. 
The proposed rDLR considers dynamic impacts of predictor 
variables and can characterize coefficients in the form of 
piecewise constant functions, outperforming the LASSO and 
the MARS which assume constant coefficients. While the 
FUSE assumes predictors with dynamic coefficients as well, 
the lack of variable selection features negatively affects their 
performances. The variable selection functionality reduces 
model complexity and drops noisy variables, which might 
explain why the rDLR outperformed the VCM1 and VCM2. 
The rDLR has a similar performance in DEV and MER as the 
LASSO in case (c) where the coefficients are constant. The 
variable selection capability of the rDLR and the LASSO con
tributes to their superior performance in comparison with 
the other benchmarks that do not perform variable selection. 
The sample size can affect the performance of the rDLR in 
DEV and MER. The larger the sample sizes, the smaller the 
DEV and MER values. The simulation results for the other 
settings are quite similar to those in Table 1 and Table 2, and 
are available in the supplemental materials.

Figure 2 compares the coefficient-estimation performance 
of methods when the correlation q is 0.35, the scenario is S2, 
and the dimension p is 20. In all cases, the rDLR and the 
LASSO have the smallest PM values, suggesting the highest 
accuracy in coefficient estimation. The VCM1 and VCM2 
have the worst PM performance. The rDLR has the highest 
F1 values in case (a) while the LASSO has the highest F1 val
ues in cases (b), (c) and (d). The FUSE, VCM1, and VCM2 
have constant F1 values because these methods selected all 
variables. The rDLR has smaller CICR values than the 
LASSO, which is primarily because the rDLR selects more 
variables than the LASSO, indicated by the nonzero values. 
Note that the method MARS is not included because it does 
not compute the estimates of coefficients for the original 
variables.

5. Case studies

In this section, we evaluate the model performance of the 
proposed rDLR model by analyzing two real case problems: 
the crystal growth manufacturing (Jin et al., 2019) and the 
Hong Kong environmental study (Fan and Chen, 1999; Cai 
et al., 2000).

5.1. Crystal growth manufacturing

The quality of the silicon ingot produced from crystal 
growth manufacturing is fundamental to its downstream 
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Table 1. Performance comparisons of models in terms of deviance (DEV) in the simulation study when the correlation q is 0.35 and the number of variables p is 
20 for two scenarios, S1 and S2, at four different cases of underlying functional coefficients, (a), (b), (c), (d), from 30 simulation replications (mean and standard 
errors (in parenthesis)).

S1 S2

Method n (a) (b) (c) (d) (a) (b) (c) (d)

rDLR 100 1.36 (0.04) 1.05 (0.11) 1.27 (0.12) 1.06 (0.10) 1.30 (0.07) 0.97 (0.15) 1.07 (0.14) 1.01 (0.13)
200 1.28 (0.06) 0.96 (0.08) 1.26 (0.09) 0.99 (0.08) 1.23 (0.07) 0.83 (0.09) 1.04 (0.14) 0.94 (0.09)
300 1.25 (0.06) 0.90 (0.07) 1.26 (0.07) 0.96 (0.07) 1.20 (0.08) 0.79 (0.08) 1.05 (0.15) 0.91 (0.07)
400 1.22 (0.08) 0.88 (0.04) 1.21 (0.07) 0.97 (0.06) 1.18 (0.07) 0.78 (0.06) 1.02 (0.09) 0.92 (0.06)
500 1.21 (0.06) 0.87 (0.04) 1.22 (0.07) 0.95 (0.05) 1.15 (0.06) 0.78 (0.05) 1.01 (0.11) 0.86 (0.08)

FUSE 100 1.91 (0.17) 1.78 (0.26) 1.94 (0.33) 2.69 (1.81) 1.86 (0.24) 1.97 (0.91) 2.33 (1.13) 2.39 (1.18)
200 1.52 (0.07) 1.23 (0.15) 1.39 (0.09) 1.17 (0.09) 1.44 (0.08) 1.21 (0.14) 1.16 (0.15) 1.09 (0.09)
300 1.43 (0.05) 1.11 (0.19) 1.32 (0.08) 1.04 (0.07) 1.38 (0.08) 1.13 (0.25) 1.11 (0.14) 1.00 (0.09)
400 1.37 (0.08) 1.10 (0.23) 1.25 (0.07) 1.04 (0.07) 1.30 (0.07) 1.07 (0.28) 1.06 (0.09) 0.99 (0.05)
500 1.34 (0.07) 0.95 (0.15) 1.24 (0.07) 1.00 (0.06) 1.23 (0.07) 0.96 (0.25) 1.04 (0.11) 0.93 (0.08)

LASSO 100 1.40 (0.04) 1.26 (0.09) 1.28 (0.12) 1.10 (0.10) 1.36 (0.05) 1.14 (0.13) 1.10 (0.14) 1.05 (0.13)
200 1.39 (0.03) 1.20 (0.07) 1.26 (0.09) 1.01 (0.08) 1.36 (0.04) 1.13 (0.09) 1.06 (0.14) 0.97 (0.09)
300 1.38 (0.02) 1.18 (0.06) 1.26 (0.07) 1.00 (0.06) 1.37 (0.02) 1.13 (0.06) 1.06 (0.14) 0.97 (0.09)
400 1.38 (0.01) 1.17 (0.05) 1.21 (0.08) 1.01 (0.06) 1.35 (0.03) 1.15 (0.06) 1.03 (0.08) 0.98 (0.07)
500 1.38 (0.02) 1.18 (0.03) 1.22 (0.06) 0.99 (0.06) 1.37 (0.02) 1.15 (0.07) 1.01 (0.11) 0.94 (0.09)

MARS 100 3.15 (1.75) 4.00 (3.02) 3.56 (2.59) 3.80 (2.30) 4.15 (2.88) 5.71 (4.42) 3.98 (2.62) 4.36 (3.52)
200 1.80 (0.20) 1.69 (0.32) 1.74 (0.25) 1.46 (0.29) 1.81 (0.21) 1.68 (0.30) 1.53 (0.26) 1.45 (0.28)
300 1.70 (0.13) 1.45 (0.11) 1.49 (0.15) 1.26 (0.14) 1.62 (0.13) 1.40 (0.14) 1.29 (0.16) 1.20 (0.16)
400 1.56 (0.08) 1.34 (0.09) 1.36 (0.09) 1.17 (0.09) 1.53 (0.13) 1.36 (0.12) 1.21 (0.12) 1.15 (0.10)
500 1.50 (0.05) 1.32 (0.11) 1.35 (0.10) 1.12 (0.10) 1.50 (0.05) 1.28 (0.09) 1.16 (0.13) 1.09 (0.13)

VCM1 100 2.38 (0.32) 2.14 (0.42) 2.41 (0.38) 2.34 (0.40) 2.06 (0.24) 1.87 (0.31) 2.16 (0.36) 2.06 (0.25)
200 1.62 (0.11) 1.52 (0.13) 1.73 (0.11) 1.69 (0.09) 1.52 (0.13) 1.27 (0.15) 1.52 (0.12) 1.47 (0.11)
300 1.49 (0.07) 1.33 (0.09) 1.58 (0.06) 1.55 (0.05) 1.41 (0.08) 1.18 (0.09) 1.51 (0.08) 1.40 (0.07)
400 1.43 (0.05) 1.30 (0.06) 1.52 (0.04) 1.48 (0.04) 1.35 (0.05) 1.12 (0.08) 1.44 (0.04) 1.37 (0.06)
500 1.40 (0.04) 1.26 (0.05) 1.49 (0.03) 1.46 (0.03) 1.31 (0.06) 1.10 (0.08) 1.40 (0.05) 1.33 (0.05)

VCM2 100 4.77 (1.11) 4.89 (1.57) 4.98 (1.06) 5.25 (1.25) 4.00 (0.96) 3.36 (1.57) 4.37 (1.26) 3.78 (1.18)
200 1.91 (0.13) 1.92 (0.18) 2.02 (0.15) 2.00 (0.12) 1.81 (0.16) 1.69 (0.21) 1.80 (0.13) 1.78 (0.13)
300 1.62 (0.08) 1.50 (0.12) 1.71 (0.08) 1.69 (0.07) 1.52 (0.09) 1.34 (0.10) 1.61 (0.07) 1.53 (0.08)
400 1.52 (0.05) 1.40 (0.07) 1.59 (0.04) 1.57 (0.04) 1.44 (0.04) 1.23 (0.09) 1.50 (0.04) 1.44 (0.06)
500 1.48 (0.04) 1.33 (0.05) 1.54 (0.04) 1.52 (0.04) 1.38 (0.06) 1.18 (0.08) 1.45 (0.04) 1.40 (0.04)

Table 2. Performance comparisons of models in terms of misclassification error rate (MER) in the simulation study when the correlation q is 0.35 and the num
ber of variables p is 20 for two scenarios, S1 and S2, at four different cases of underlying functional coefficients, (a), (b), (c), (d), from 30 simulation replications 
(mean and standard errors (in parenthesis)).

S1 S2

Method n (a) (b) (c) (d) (a) (b) (c) (d)

rDLR 100 0.38 (0.04) 0.24 (0.04) 0.33 (0.06) 0.22 (0.04) 0.33 (0.04) 0.21 (0.05) 0.25 (0.05) 0.21 (0.05)
200 0.34 (0.05) 0.22 (0.03) 0.34 (0.05) 0.22 (0.03) 0.32 (0.04) 0.18 (0.03) 0.25 (0.05) 0.21 (0.03)
300 0.34 (0.04) 0.20 (0.02) 0.34 (0.04) 0.21 (0.02) 0.31 (0.03) 0.17 (0.03) 0.26 (0.06) 0.20 (0.02)
400 0.33 (0.04) 0.20 (0.02) 0.32 (0.04) 0.22 (0.02) 0.30 (0.03) 0.17 (0.02) 0.25 (0.03) 0.21 (0.02)
500 0.31 (0.04) 0.19 (0.02) 0.32 (0.04) 0.22 (0.02) 0.29 (0.03) 0.17 (0.02) 0.24 (0.04) 0.19 (0.02)

FUSE 100 0.48 (0.06) 0.37 (0.04) 0.38 (0.06) 0.30 (0.05) 0.42 (0.07) 0.30 (0.06) 0.31 (0.06) 0.27 (0.05)
200 0.45 (0.05) 0.34 (0.10) 0.37 (0.04) 0.27 (0.04) 0.39 (0.06) 0.35 (0.12) 0.28 (0.06) 0.25 (0.04)
300 0.44 (0.04) 0.31 (0.13) 0.36 (0.05) 0.24 (0.02) 0.39 (0.06) 0.35 (0.16) 0.28 (0.06) 0.24 (0.03)
400 0.41 (0.05) 0.33 (0.14) 0.33 (0.04) 0.24 (0.02) 0.36 (0.04) 0.32 (0.15) 0.26 (0.03) 0.23 (0.02)
500 0.41 (0.05) 0.24 (0.08) 0.33 (0.04) 0.24 (0.02) 0.33 (0.03) 0.27 (0.16) 0.26 (0.04) 0.21 (0.03)

LASSO 100 0.45 (0.05) 0.33 (0.05) 0.33 (0.06) 0.25 (0.04) 0.38 (0.05) 0.27 (0.05) 0.27 (0.06) 0.24 (0.04)
200 0.45 (0.05) 0.30 (0.03) 0.34 (0.05) 0.23 (0.03) 0.41 (0.04) 0.28 (0.04) 0.25 (0.06) 0.23 (0.03)
300 0.45 (0.03) 0.31 (0.03) 0.34 (0.04) 0.23 (0.02) 0.41 (0.04) 0.28 (0.03) 0.26 (0.06) 0.23 (0.03)
400 0.45 (0.03) 0.30 (0.03) 0.32 (0.04) 0.23 (0.02) 0.42 (0.03) 0.29 (0.03) 0.25 (0.03) 0.23 (0.03)
500 0.46 (0.03) 0.30 (0.02) 0.32 (0.03) 0.23 (0.02) 0.43 (0.03) 0.30 (0.03) 0.24 (0.04) 0.21 (0.03)

MARS 100 0.51 (0.06) 0.42 (0.05) 0.41 (0.06) 0.34 (0.07) 0.47 (0.06) 0.35 (0.08) 0.35 (0.08) 0.30 (0.06)
200 0.50 (0.05) 0.36 (0.05) 0.39 (0.06) 0.29 (0.05) 0.44 (0.05) 0.32 (0.05) 0.32 (0.05) 0.28 (0.04)
300 0.49 (0.03) 0.35 (0.04) 0.39 (0.05) 0.27 (0.02) 0.44 (0.04) 0.32 (0.03) 0.30 (0.06) 0.25 (0.04)
400 0.49 (0.03) 0.33 (0.04) 0.36 (0.04) 0.27 (0.03) 0.44 (0.03) 0.32 (0.03) 0.28 (0.04) 0.26 (0.02)
500 0.48 (0.04) 0.33 (0.02) 0.35 (0.04) 0.26 (0.02) 0.45 (0.03) 0.32 (0.03) 0.27 (0.05) 0.24 (0.03)

VCM1 100 0.49 (0.06) 0.34 (0.07) 0.49 (0.07) 0.44 (0.06) 0.40 (0.06) 0.27 (0.07) 0.39 (0.08) 0.36 (0.06)
200 0.43 (0.03) 0.35 (0.04) 0.49 (0.04) 0.46 (0.04) 0.38 (0.05) 0.26 (0.04) 0.38 (0.06) 0.34 (0.04)
300 0.43 (0.03) 0.33 (0.04) 0.49 (0.04) 0.45 (0.03) 0.37 (0.04) 0.27 (0.03) 0.42 (0.04) 0.36 (0.04)
400 0.42 (0.03) 0.33 (0.02) 0.49 (0.03) 0.44 (0.03) 0.36 (0.03) 0.26 (0.03) 0.41 (0.04) 0.36 (0.04)
500 0.42 (0.03) 0.32 (0.02) 0.48 (0.03) 0.45 (0.03) 0.35 (0.03) 0.26 (0.03) 0.41 (0.04) 0.36 (0.03)

VCM2 100 0.49 (0.08) 0.36 (0.10) 0.48 (0.07) 0.46 (0.08) 0.41 (0.08) 0.26 (0.10) 0.39 (0.11) 0.35 (0.10)
200 0.45 (0.04) 0.38 (0.04) 0.50 (0.04) 0.47 (0.04) 0.42 (0.05) 0.29 (0.04) 0.41 (0.05) 0.38 (0.05)
300 0.46 (0.03) 0.34 (0.04) 0.50 (0.04) 0.46 (0.03) 0.41 (0.04) 0.29 (0.04) 0.45 (0.04) 0.40 (0.04)
400 0.45 (0.03) 0.35 (0.03) 0.50 (0.03) 0.46 (0.03) 0.41 (0.03) 0.28 (0.04) 0.44 (0.04) 0.39 (0.03)
500 0.45 (0.04) 0.33 (0.02) 0.49 (0.03) 0.46 (0.04) 0.40 (0.03) 0.28 (0.03) 0.44 (0.04) 0.39 (0.03)
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products such as wafers and solar cells. The goal of this 
study is to identify key process variables and characterize 
the dynamic effects of those process variables on the binary 
quality response during the body growth stage in the crystal 
growth manufacturing. In this study, the binary response is 
defined as one when the continuous ingot diameter over 

time falls within the lower and upper specification limits 
and as zero otherwise. In total, there are 15 process variables 
labeled U1 through U15, including the power and the tem
perature of the heater, the pulling speed, and the rotation 
speed. The process variables are positive continuous and 
normalized between zero and one. The number of total data 

Figure 2. Performance comparison of models in the coefficient estimation for the simulation cases (from top to bottom) (a), (b), (c), and (d) when the correlation q 

is 0.35, the scenario is S2, and the number of variables p is 20.
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points exceeds 1600. The process variables and response are 
measured and aligned at each time instance.

In Table 3, we compare the prediction performance of 
the rDLR, FUSE, VCM1, VCM2, and LASSO in terms of 
DEV, MER, and model size. The rDLR has the smallest 
DEV and MER values. This may be explained by the fact 
that the effects of important process variables are stage-wise 
during the manufacturing. The fused LASSO penalty in the 
rDLR allows the dynamic coefficients at different process 

stages. The piecewise constant formulation of dynamic coef
ficient effects in the rDLR improves its prediction perform
ance in comparison with the LASSO, VCM1, and VCM2. 
The group LASSO penalty in the rDLR provides the variable 
selection functionality, resulting in a smaller model size and 
better prediction performance in comparison with the 
FUSE. For dynamic models, model size is defined as the 
number of predictor variables that have at least one nonzero 
estimated coefficient at any data point.

Figure 3 shows the estimated coefficients over time for 
each process variable in the rDLR. It is evident that the esti
mated coefficients from the rDLR vary over time. At differ
ent time intervals, different sets of process variables 
contribute together to the crystal growth of the ingot. At the 
beginning, the variables U5, U7, and U11 have large esti
mated coefficients, but their effects diminish to zero as the 
growth progresses. The variables U1, U10, and U14, which 

Table 3. Prediction performance of models in the crystal growth 
manufacturing.

DEV sd MER sd Size

rDLR 0.132 0.011 0.016 0.003 14
FUSE 0.675 0.014 0.133 0.005 15
VCM1 0.599 0.011 0.108 0.003 15
VCM2 0.543 0.009 0.096 0.006 15
LASSO 0.651 0.035 0.133 0.011 14

Figure 3. The estimated coefficients from the proposed regularized dynamic logistic regression model (rDLR) with fused LASSO penalty and group LASSO penalty 
and the response (bottom right) for the crystal growth manufacturing.
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have small impacts at the beginning, have large coefficient 
estimators by the end. On the contrary, the variables U4 
and U11 contribute to the crystal growth throughout the 
duration of the process. The varying impacts of process vari
ables can be explained by different growth phases and the 
degradation of equipment (Jin et al., 2019). Taking the pro
cess variable pulling speed as an example, from the engin
eering knowledge we learn that the faster the pulling speed, 
the greater the shrinkage effect on the ingot’s diameter. At 
the early stage of the growth, the ingot is short and can be 
easily shrunk by increasing the pulling speed. However, at 
the late stage when the ingot is nearly fully grown, the effect 
of the pulling speed is limited and it becomes hard to effect
ively shrink the ingot’s diameter. The estimated coefficients 
of the variable U15 are zero, indicating that the variable 
U15 is irrelevant to the response. In summary, the proposed 
rDLR method reveals the dynamic effects of the predictor 
variables with the estimated varying coefficients in the pres
ence of irrelevant variables.

We also note that there are some estimated coefficients 
having spikes and back to a stable value. A possible explan
ation is because of the control of the process. There can be 
abrupt changes of the process conditions due to the stochas
tic nature of the crystal growth physical process. Process 
control is implemented to optimize the objectives to target 

and adapt to the stochastic process in manufacturing. 
Therefore, there can be frequent changes of the underlying 
model coefficients due to frequent control. During the tran
sition stage of the changes, the effect of the model coeffi
cients can be different from the stable condition.

5.2. Hong Kong environmental study

The primary objective of the Hong Kong environmental study 
is to understand the relationship between the levels of pollu
tants and the number of daily hospital admissions for circula
tion and respiration problems. Cai et al. (2000) reported that 
the relationship between the number of hospital admissions 
and the pollutant levels varies over time. In this work, the 
response is binary and is defined as one when the number of 
hospital admission is greater than the median number of daily 
hospital admission during each whole calendar year and as 
zero otherwise. The predictors are levels of pollutants includ
ing the sulfur dioxide (SO2) and nitrogen dioxide (NO2) in 
Hong Kong between January 1, 1994, and December 31, 1995. 
Both the SO2 and NO2 are positive. In addition, 12 additional 
noise variables denoted as V1 through V12, are simulated and 
included in the data set. Six of these variables follow the nor
mal distribution N(0, 1) and the others follow the AR(1) 
model. The total number of data points is 730.

Table 4 compares the prediction performance of models 
including the rDLR, FUSE, VCM1, VCM2, and LASSO. The 
rDLR has the smallest DEV and MER values, suggesting 
that the piecewise constant formulation of dynamic variables 
impacts the model performance. Figure 4 shows the esti
mated coefficients over time for each variable in the rDLR. 
The rDLR is able to select the significant variables SO2 and 
NO2. Moreover, the rDLR identifies more than five abrupt 

Table 4. Performance comparison of models in the Hong Kong environmental 
study.

DEV sd MER sd Size

rDLR 1.237 0.042 0.319 0.043 14
FUSE 1.345 0.048 0.385 0.027 14
VCM1 1.394 0.029 0.464 0.026 14
VCM2 1.401 0.047 0.462 0.028 14
LASSO 1.340 0.008 0.414 0.022 10

Figure 4. The estimated coefficients from the regularized dynamic logistic regression model with fused LASSO penalty and group LASSO penalty (rDLR) and the 
response (bottom right) for the Hong Kong environmental study.
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changes in their structures of estimated dynamic effects, 
resulting in coefficient with opposite signs at different time 
windows. However, variables NO2 and SO2 concurrently 
have the same direction of coefficients. This is in agreement 
with the knowledge that both SO2 and NO2 are hazards to 
respiratory health. A closer examination of the estimated 
functional coefficient curves (Cai et al., 2000) shows that the 
coefficient signs of NO2 and SO2 from their model are 
opposite at some time points. The noise variables are identi
fied with their estimated coefficients.

6. Discussion

Variable selection plays a key role in extracting important 
predictor variables relevant to responses in high-dimensional 
statistical inference, but studies of variable selection are 
often conducted in the context of regression models. 
Motivated by crystal growth manufacturing, we propose a 
rDLR model in the framework of a varying coefficient 
model. The proposed method considers a combination of 
fused and group regularization to estimate varying effects of 
key predictors on responses in the presence of irrelevant 
variables. The fused LASSO encourages functional coeffi
cients to be piecewise constant functions to approximate the 
dynamic coefficients. The group LASSO considers the coeffi
cient parameters for one particular variable as an entire 
group. The proposed framework is extensible to accommo
date other penalties, such as the generalized fused LASSO, 
the adaptive LASSO, and the zero-order fused LASSO pen
alty (Land and Friedman, 1997). The proposed method can 
also be extended to other types of the response (e.g., count
ing type) under the generalized linear models. A brief 
description of a regularized dynamic Poisson regression 
model can be found in the Appendix A.

It is possible to use some continuous function (such as 
natural cubic splines and smoothing splines) approximation 
methods to re-estimate parameters after the variable selec
tion, especially when the domain knowledge suggest that 
continuous functions are preferred. For the future work, it 
will be interesting to investigate the spline-based methods 
combined with proper regularization for variable selection 
and accommodation of multiple changes in coefficient 
structures.

We also would like to remark that the computational 
bottleneck of the proposed ADMM algorithm is in estimat
ing parameters in (5), which is essentially the minimization 
problem of the classic logistic regression with ridge-type 
regularization. For the large-scale problem, one can consider 
using recent techniques for fast logistic regression to 
enhance the scalability of the proposed algorithm. For 
example, the batching L-BFGS method (Bollapragada et al., 
2018) for fast computation in the logistic regression appears 
to be one promising direction. Another possibility is to con
sider the optimal subsampling strategy to handle logistic 
regression with large sample size (Wang et al., 2018).

Note that the proposed model assumes that the response 
at any given time point is only affected by important 

variables at the current time. Responses are likely affected 
by past values of important variables as well. That is, both 
current and past values of important variables contribute to 
the current response values. Future work will focus on 
determining the order of lags in variables in the dynamic 
regression model. For variable selection, currently we con
sider all coefficient parameters of one variable as a group 
and use the group LASSO penalty. In the applications with 
unknown and changing groups, the proposed algorithm 
needs to be extended with more complex penalties (Chu 
et al., 2021). One may also consider possible nonlinear 
effects in the model, which will make the variable selection 
more challenging.
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Appendix 

A. Brief description of regularized dynamic 
Poisson regression

The conditional probability pðxtÞ ¼ PrðytjxtÞ ¼ exp ð−ktÞk
yt
t =yt! with 

the Poisson regression model ln kðxtÞ ¼ xT
t bt with bt ¼ ðbt, 1, :::, bt, pÞ

T
:

A regularized dynamic Poisson regression model is expressed as

ln kðxtÞ ¼ xT
t bt , t ¼ 1, :::, n

s:t:
Xp

j¼1

Xn

t¼2
jbt, j − bt−1, jj � M1,

Xp

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
1, j þ � � � þ b2

n, j

q

� M2, 

where M1 � 0 and M2 � 0 are the tuning parameters for the l1-norm 
fused LASSO and l2-norm group LASSO penalties, respectively.

To estimate the parameter matrix B ¼ ðb1, :::, bnÞ
T of size n � p, 

we minimize the Poisson regression loss function combined with the 
l1-norm fused LASSO penalty and the l2-norm group LASSO penalty. 
That is,

minimize
B

−lðBÞ þ c1

Xp

j¼1

Xn

t¼2
jbt, j − bt−1, jj þ c2

Xp

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
1, j þ � � � þ b2

n, j

q

with

lðBÞ ¼ log
Yn

t¼1
exp ð−ktÞk

yt
t =yt!

� �
( )

¼
Xn

t¼1
f− exp ðxT

t btÞ þ ytxT
t bt − log ðyt!Þg, 

where c1 � 0 and c2 � 0 are tuning parameters. Similarly, we obtain 
the iterative updating scheme as

bkþ1 ¼ argmin
B

 

− lðBÞ þ
qk

1
2

Xp

j¼1
jjFbj − Zð1Þj þ uð1Þj jj

2
2Þ

þ
qk

2
2
Xp

j¼1
jjbj − Zð2Þj þ l

ð2Þ
j jj

2
2

!

,   

Zð2Þ, kþ1
j ¼ fssðBkþ1

j þ uð2Þ, k
j , c2=q

k
2Þ, j ¼ 1, :::, p;

Zð1Þ, kþ1
j ¼ fssðFBkþ1

j þ uð1Þ, k
j , c1=q

k
1Þ, j ¼ 1, :::, p;

uð2Þ, kþ1
j ¼ uð2Þ, k

j þ Bkþ1
j − Zð2Þ, kþ1

j , j ¼ 1, :::, p;

uð1Þ, kþ1
j ¼ uð1Þ, k

j þ FBkþ1
j − Zð1Þ, kþ1

j , j ¼ 1, :::, p, 

and we can apply the Newton–Raphson method to solve the minimiza
tion problem. Specifically, we approximate lðBÞ with its second-order 
Taylor series as

lðBÞ �
Xn

t¼1
lðbð0Þt Þ þ

@lðbtÞ

@bt
ðb
ð0Þ
t Þ

� �T

ðbt − b
ð0Þ
t Þ

"

þ
1
2
ðbt − b

ð0Þ
t Þ

T @2lðbtÞ

@bt@
Tbt
ðb
ð0Þ
t Þðbt − b

ð0Þ
t Þ�, 

where

@lðbtÞ

@bt
ðb
ð0Þ
t Þ ¼ xt ðyt − exp ðxT

t btÞÞ,

@2lðbtÞ

@bt@
Tbt
ðb
ð0Þ
t Þ ¼ −

Xn

t¼1
xtxT

t exp ðxT
t btÞÞ:

B. Proof of Theorem 1

Proof. Recall the objective function is

min
B

lðBÞ þ hðBÞ, 

where the negative log likelihood function lðBÞ, the penalty function 
hðBÞ, the first-order derivative �l, and the Hessian H are expressed 
as

lðBÞ ¼ −
Xn

t¼1
fytxT

t bt − log ð1þ exp ðxT
t btÞÞg,

hðBÞ ¼ c1

Xp

j¼1

Xn

t¼2
jbt, j − bt−1, jj þ c2

Xp

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
1, j þ � � � þ b2

n, j

q

,

�l ¼ −
Xn

t¼1
xt ðyt − pðxtÞÞ,

H ¼
Xn

t¼1
xtxT

t pðxtÞð1 − pðxtÞÞ:

With the Taylor series expansion for the negative log-likelihood 
function around Bð0Þ (with the tth row as bð0Þt ), and the nature of opti
mal estimator denoted as B̂ (with the tth row as b̂t), any other arbi
trary estimator denoted as B̂ðaÞ (with the tth row as b̂

ðaÞ
t ), we have

Xn

t¼1

 

lðbð0Þt Þ þ ðb̂t − b
ð0Þ
t Þ

T
�lðbð0Þt Þ þ

1
2
ðb̂t − b

ð0Þ
t Þ

THðbð0Þt Þðb̂t − b
ð0Þ
t Þ

� �

þ hðB̂Þ

�
Xn

t¼1

 

lðbð0Þt Þ þ ðb̂
ðaÞ
t − b

ð0Þ
t Þ

T
�lðbð0Þt Þ þ

1
2
ðb̂
ðaÞ
t − b

ð0Þ
t Þ

THðbð0Þt Þðb̂
ðaÞ
t − b

ð0Þ
t Þ

� �

þ hðB̂ðaÞÞ:

That is,

Xn

t¼1
ð�lðbð0Þt Þ

T
b̂t þ

1
2
jjHðbð0Þt Þ

1
2b̂t − Hðbð0Þt Þ

1
2b
ð0Þ
t jj

2
2Þ þ hðB̂Þ

�
Xn

t¼1
ð�lðbð0Þt Þ

T
b̂
ðaÞ
t þ

1
2
jjHðbð0Þt Þ

1
2b̂
ðaÞ
t − Hðbð0Þt Þ

1
2b
ð0Þ
t jj

2
2Þ þ hðB̂ðaÞÞ:

Note that

jjHðbð0Þt Þ
1
2b̂t − Hðbð0Þt Þ

1
2b
ð0Þ
t jj

2
2

¼ jjHðbð0Þt Þ
1
2b̂t − Hðbð0Þt Þ

1
2b̂
ðaÞ
t jj

2
2 þ jjHðb

ð0Þ
t Þ

1
2b̂
ðaÞ
t − Hðbð0Þt Þ

1
2b
ð0Þ
t jj

2
2

þ2ðHðbð0Þt Þ
1
2b̂t − Hðbð0Þt Þ

1
2b̂
ðaÞ
t Þ

T
ðHðbð0Þt Þ

1
2b̂
ðaÞ
t − Hðbð0Þt Þ

1
2b
ð0Þ
t Þ:
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After re-arrangements and algebra, we have
Xn

t¼1

�
1
2
jjHðbð0Þt Þ

1
2b̂t − Hðbð0Þt Þ

1
2b̂
ðaÞ
t jj

2
2

�

�
Xn

t¼1

�

�l
�
b
ð0Þ
t
�
þ H

�
b
ð0Þ
t
��

b̂
ðaÞ
t − b

ð0Þ
t
�

h iT�
b̂
ðaÞ
t − b̂tÞ

�
þ hðB̂ðaÞÞ − hðB̂Þ:

(A1) 
From the dual norm inequality, any two vectors w and b, we have 

jwTbj � jjwjj1jjbjj1: Then,
�
�
�
�
�

�lðbð0Þt Þ þ Hðbð0Þt Þðb̂
ðaÞ
t − b

ð0Þ
t Þ

h iT
ðb̂
ðaÞ
t − b̂tÞ

�
�
�
�
�

�

�
�
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�
�
� �lðbð0Þt Þ þ Hðbð0Þt Þðb̂
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t − b

ð0Þ
t Þ

h i�
�
�

�
�
�
1
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t − b̂tjj1

¼ jj − xt ðyt − pðxtÞÞ þHðbð0Þt Þðb̂
ðaÞ
t − b

ð0Þ
t Þjj1jjb̂
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t − b̂tjj1:

By taking b̂
ðaÞ
t ¼ b0

t , one has
�
�
�
�
�

�lðb0Þ þ Hðbð0Þt Þðb̂
ðaÞ
t − b

ð0Þ
t Þ

h iT
ðb̂
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t − b̂tÞ

�
�
�
�
�

� jj − xt ðyt − pðxtÞÞjj1jjb
ð0Þ
t − b̂tjj1:

For the studentized residuals, we have the approximation yt −pðxtÞ

rt
�

Nð0, 1Þ, and denote r to be the upper bound of rt. With the standard 
maximal inequality for the Gaussian distribution, we have

jj − xt ðyt − pðxtÞÞjj1 ¼ maxjjxt, jðyt − pðxtÞÞj � r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log ðenp=dÞ

p

with probability at least 1-d. Then we have
�
�
�
�
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h iT
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
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ð0Þ
t − b̂tjj1 

Thus in the inequality in (A1) becomes
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By using the triangle inequality and set the tuning parameters c01 
and c2 as r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log ðenp=dÞ

p
, we then have

1
n

Xn

t¼1
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1
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1
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t jj
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r
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with probability at least 1-d.                                                     w
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