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ABSTRACT
Estimation of a precision matrix (i.e. inverse covariance matrix) is
widely used to exploit conditional independence among continu-
ous variables. The influence of abnormal observations is exacerbated
in a high dimensional setting as the dimensionality increases. In
this work, we propose robust estimation of the inverse covariance
matrix based on an l1 regularised objective function with a weighted
sample covariance matrix. The robustness of the proposed objec-
tive function can be justified by a nonparametric technique of the
integrated squared error criterion. To address the non-convexity of
the objective function, we develop an efficient algorithm in a sim-
ilar spirit of majorisation-minimisation. Asymptotic consistency of
the proposed estimator is also established. The performance of the
proposed method is compared with several existing approaches via
numerical simulations. We further demonstrate the merits of the
proposed method with application in genetic network inference.
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1. Introduction

Estimation of the inverse covariance matrix has attracted wide attention in various appli-
cations such as genetic network inference. Under the assumption of Gaussian distribu-
tion, it is well known that the estimation of undirected Gaussian graphs is equivalent
to the estimation of inverse covariance matrices (Whittaker 1990; Lauritzen 1996). Let
x = (X(1), . . . ,X(p))T ∼ Np(μ,�) be a p-dimensional Gaussian random vector withmean
μ and covariance matrix �. The inverse covariance matrix � = �−1 ≡ (cij)1≤i,j≤p con-
tains information related to the conditional dependency between variables, which are
referred to as nodes in a graph representation. Each off-diagonal entry of � represents
an edge of two nodes in the corresponding graph. If cij = cji = 0, then X(i) and X(j) are
conditionally independent given the other variables X(k), k �= i, j; otherwise, X(i) and X(j)

are conditionally dependent.
Various estimation methods for a sparse inverse covariance matrix have been proposed

in the literature. One direction is to exploit the connections between entries of the inverse
covariance matrix and coefficients of the corresponding multivariate linear regressions
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(Pourahmadi 2000; Huang, Liu, Pourahmadi, and Liu 2006). For example, Meinshausen
and Bühlmann (2006) applied a neighbourhood selection scheme by regressing each vari-
able on the remaining variables. Recently, regularised likelihood-based approaches have
been proposed by different researchers, see Banerjee, El Ghaoui, and Georges (2006), Yuan
and Lin (2007), Friedman, Hastie, and Tibshirani (2008), Lam and Fan (2009), Deng and
Yuan (2009), and Kang and Deng (2020), among many others. These methods identify
zeros in the inverse covariance matrix through the penalised log-likelihood functions.
Rather than directly using the likelihood function, Cai, Liu, and Luo (2011) investigated
a constrained l1 minimisation method to estimate the sparse inverse covariance matrix as
well as its convergence properties.

The aforementioned approaches often can work effectively when there are no outliers
in the observations. However, when abnormal observations contaminate the data, the esti-
mation of inverse covariance matrix can be sensitive to the presence of outliers. Especially
in the high-dimensional setting, where dimension p is relatively large compared to the
sample size n, it is non-trivial to check whether the observations follow the underlying
model assumptions. Several methods were proposed to address this concern. Peńa and
Prieto (2001) presented a robust estimator for the covariance matrix based on the analysis
of the projected data.Miyamura andKano (2006) introduced a robustified likelihood func-
tion to estimate the inverse covariance matrix, and they also proposed corresponding test
statistics associated with the robustified estimators. The above two methods did not con-
sider the sparsity in the estimates. Later, Finegold and Drton (2011) proposed a so-called
tlasso method by adopting multivariate t-distribution for robust inferences of graphical
models. Sun andLi (2012) developed an l1 regularisation procedure based ondensity power
divergence and used coordinate descent algorithms for robust estimation of the inverse
covariance matrix. Other robust approaches (Öllerer and Croux 2015; Tarr, Müller, and
Weber 2016; Loh and Tan 2018) consider to use a robust estimate of the covariance matrix
to replace the sample covariance matrix in solving the glasso (Friedman et al. 2008).

In this work, we propose robust estimation of a sparse precision matrix via maximising
an l1 regularised objective function with weighted sample covariance matrix. The robust-
ness of our proposed method can be justified from a nonparametric perspective. Specifi-
cally, the proposed loss function can be viewed as approximation of the integrated squared
error (ISE) criterion, which aims at minimising the L2 distance between the probability
densities using the estimated and true inverse covariance matrices. This property natu-
rally enables the proposed estimatemore resistent to outliers compared to likelihood-based
approaches. Moreover, we encourage the sparsity by adding an l1 penalty in the objec-
tive function, in a similar spirit as the Lasso (Tibshirani 1996) for sparse regression. Note
that the proposed objective function is not convex and thus can be computationally ineffi-
cient. To address this challenge, we develop an efficient algorithm from the majorisation-
minimisation (Hunter and Lange 2004) aspects to find an upper bound for the original
objective function. Consequently, the estimation problem can be transformed into an iter-
ative estimation procedure in the content of graphical lasso (Friedman et al. 2008) with an
appropriate weighting scheme on observations. The sequence of weights in each iteration
is adaptively updated to automatically account for potential abnormal observations. We
call the proposed method ‘weighted Graphical Lasso’ (WGLasso).

The rest of the work is organised as follows. In Section 2, we introduce the robust
inverse covariance matrix estimate and develop a computationally efficient algorithm for
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it. Section 3 provides a series of simulations to evaluate the performance of the proposed
method. We continue in Section 4 with a real application using the proposed robust esti-
mate. Adiscussion and concluding remarks are given in Section 5. The proof of the theorem
is deferred to Appendix.

2. Robust estimation for sparse precisionmatrix

In this section, we describe in details the proposed robust estimator of the sparse inverse
covariance matrix. Suppose that x1, . . . , xn are a random sample of n observations on
x = (X(1), . . . ,X(p))T , each of which follows a multivariate normal distribution Np(μ,�)

with mean μ and nonsingular covariance matrix �. Without loss of generality, we assume
that μ = 0.

2.1. Proposedweighted graphical lasso

To estimate the inverse covariance matrix Ω = �−1 ≡ (cij)p×p, we consider a minimisa-
tion problem as

min
Ω

[− log |Ω| + tr[ΩS∗] + ρ‖Ω‖1
]
, (1)

where ρ ≥ 0 is a tuning parameter, which is to balance the goodness of fit and the sparsity
of the estimate. Note that S∗ = S∗(Ω(0)) ≡ 1

n
∑n

i=1 wixixTi can be viewed as a weighted
sample covariance matrix given an initial estimate Ω(0). Here the weight wi can be written
as

wi = wi(Ω
(0)) ≡ exp(− 1

2x
T
i Ω(0)xi)

1
n
∑n

j=1 exp(− 1
2x

T
j Ω(0)xj)

. (2)

The form of the objective function in (1) is similar to the negative log-likelihood function
but with a weighted sample covariance matrix. The optimisation of (1) can be efficiently
solved using the glasso algorithm developed by Friedman et al. (2008). Therefore, we refer
to the solution of (1) as the weighted Graphical Lasso (WGLasso). It is worth pointing
out that the derived objective function in (1) bears some similarity to the objective func-
tion in the M-step of the EM algorithm of the tlasso method (Finegold and Drton 2011).
The tlasso considered the weighted sample covariance with the weights derived based on
the EM algorithm, whereas the proposed method provides a weighted Graphical Lasso
algorithmwith the weights derived based on the ISE criterion (Rudemo 1982) as discussed
in Section 2.2.

The weight in (2) also has a meaningful interpretation. One can see that the weights
wi can be rewritten as wi = f (xi)/[ 1n

∑n
j=1 f (xj)], where f (xi) is the probability density

function (pdf) ofNp(0, (�(0))−1)when x = xi. The form of S∗ assigns different weights to
the observations xi based on the ratio of its pdf value relative to the average density. If an
observation is an outlier from the underlying distribution, its pdf value tends to be smaller
compared to that of the average; thus its assigned weight would be smaller. This helps us
to reduce the influence from outliers on the proposed estimate.

Note that the expression in (1) depends on the initial estimate�(0) in order to calculate
the weights and corresponding S∗. We iteratively minimise the objective function (1) to
obtain the estimate of �. The detailed description of the iterative algorithm is as follows:
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Algorithm 2.1:
Step 1: Obtain an initial estimate Ω(0), a positive definite matrix, and set the stopping

threshold δ = 10−6.
Step 2: Compute wi according to (2) and obtain S∗ = 1

n
∑n

i=1 wixixTi .
Step 3: Estimate Ω by minimising (1), i.e.

Ω̂ = argmin
Ω

[− log |Ω| + tr[ΩS∗] + ρ‖Ω‖1
]
.

Step 4: Stop if the Frobenius norm ‖Ω̂ − Ω(0)‖2F ≤ δ; otherwise, setΩ(0) = Ω̂ and go back
to Step 2.

We generally take the inverse of the sample covariancematrix as an initial estimateΩ(0).
If p>n, the sample covariance matrix is singular, and we add a small perturbation to its
diagonal elements.

2.2. Justification of robustness via integrated squared error

In this section, we provide some justification of robustness for the proposed estimate from
the scope of using the ISE as a loss function. The ISE criterion (Rudemo 1982) is tomeasure
the L2 distance between the estimated probability density function and the true density.
Scott (2001) investigated various parametric statistical models by using this criterion as a
theoretical and practical estimation tool. The key idea in Scott (2001) is to apply nonpara-
metric techniques to parametric models for the robustness of the estimation. Based on the
ISE as a loss function, one can consider the following minimisation for the estimation of
the inverse covariance matrix.∫

(f (x|Ω) − f (x|Ω∗))2 dx =
∫

f 2(x|Ω) dx − 2
∫

f (x|Ω)f (x|Ω∗) dx +
∫

f 2(x|Ω∗) dx,

(3)

where f (x | Ω) is the pdf of the normal distribution Np(0,Ω−1) and Ω∗ is the true but
unknown inverse covariance matrix. Note that the third term on the right hand side of (3)
does not depend onΩ. Additionally, the second integral in (3) can be viewed asE(f (x | Ω))

with respect to x. With the observed data available, one can approximateE(f (x | Ω)) by the
empirical mean 1

n
∑n

i=1 f (xi | Ω) (Scott 2001; Chi and Scott 2014). Nowwe reformulate the
ISE as

Ln(Ω) ≡
∫

f 2(x | Ω) dx − 2
∫

f (x | Ω)f (x | Ω∗) dx

≈
∫

f 2(x | Ω) dx − 2
n

n∑
i=1

f (xi | Ω)

= 1
2p/2

|Ω|1/2 − 2
n
|Ω|1/2

n∑
i=1

exp
(

−1
2
xTi Ωxi

)
, (4)

up to constant (2π)−p/2. To encourage the sparsity in the estimate, one can consider the l1
regularisation for estimating Ω as

Ln,ρ(Ω) ≡ Ln(Ω) + ρ‖Ω‖1
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∝ −2
n
|Ω|1/2

n∑
i=1

exp
(

−1
2
xTi Ωxi

)
+ τ |Ω|1/2 + ρ‖Ω‖1, (5)

where ‖Ω‖1 = ∑
i,j |cij| is the l1 penalty for Ω = (cij)p×p. Here τ = 2−p/2.

It is also feasible to convert the problem into a constrained optimisation by the use of
Lagrange multiplier. That is, we can reformulate the above optimisation in (5) as

min
Ω

− 2
n
|Ω|1/2

n∑
i=1

exp
(

−1
2
xTi Ωxi

)
,

s.t. |Ω|1/2 ≤ M1,

‖Ω‖1 ≤ M2. (6)

The following lemma provides an inequality between the matrix determinant and its l1
norm.

Lemma 2.1: For a positive definite matrix Ω with dimension p, the relationship between its
determinant value and l1 norm can be described in the following inequality

|Ω|1/2 ≤
(‖Ω‖1

p

)p/2
.

The proof of Lemma 2.1 is based on Gershgorin’s circle theorem (Horn and John-
son 1996). Using Lemma 2.1, we can transform the nonlinear constraint on matrix
determinant to a linear constraint. Specifically, the minimisation under consideration
becomes

min
Ω

− 2
n
|Ω|1/2

n∑
i=1

exp
(

−1
2
xTi Ωxi

)
,

s.t.
(‖Ω‖1

p

)p/2
≤ M1,

‖Ω‖1 ≤ M2, (7)

where M1 ≥ 0 and M2 ≥ 0. This is a commonly used technique in optimisation for for-
mulating the constraints (Boyd and Vandenberghe 2004). The optimisation in (7) can be
written as

min
Ω

− 2
n
|Ω|1/2

n∑
i=1

exp
(

−1
2
xTi Ωxi

)
,

s.t. ‖Ω‖1 ≤ M∗, (8)

whereM∗ = min{M−p/2
1 ,M2} is a tuning parameter, which will be determined by proper

cross-validation as described in Section 2.4. We remark that the problems (5) and (8) are
not equivalent since the matrix determinant constraint in (6) is approximated by the linear
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constraint via the use of Lemma 1. The underlying reasoning for approximating (5) by (8)
is to mitigate the nonlinear constraint of the matrix determinant term.

From the fact that the logarithm is a monotonically increasing function, solving (8) is
equivalent to minimising the objective function in (9) as

min
Ω

− log

[
|Ω|1/2 × 1

n

n∑
i=1

exp
(

−1
2
xTi Ωxi

)]

s.t. ‖Ω‖1 ≤ M∗. (9)

Note that the objective function (9) is to take logarithm of the objective function in (8) up
to some constant. Here the l1 constraint is to encourage the sparsity for inverse covariance
matrix estimate (Tibshirani 1996; Yuan and Lin 2007).

To shed some lights on the robustness of the proposed method, we note that since the
pdf of a normal distribution is proportional to |Ω|1/2 exp(− 1

2x
TΩx) up to some constant,

the proposedmethod by solving (9) essentially attempts tomaximise the summation of the
probabilities. In contrast, the traditional likelihood-based approach attempts to maximise
the product of the probabilities. As an objective function, the summation of probabilities
can be more resistant than the product to outliers.

Converting the constraint in (9) to a penalty term in the minimisation, we have

min
Ω

[
−1
2
log |Ω| − log

[
1
n

n∑
i=1

exp
(

−1
2
xTi Ωxi

)]
+ ρ‖Ω‖1

]
. (10)

To further facilitate the computational advantage of the proposed method, we adopt
a first-order approximation (Zou and Li 2008) to the second term in (10), denoted
as g(Ω), with respect to the initial estimate �(0). Taking the first-order Taylor expan-
sion on g(Ω) leads to g(Ω) = g(Ω(0)) + 1

2n
∑n

i=1 wixTi Ωxi − 1
2n
∑n

i=1 wixTi Ω(0)xi. Such
an approximation strategy leads us to the WGLasso optimisation problem (1).

2.3. Asymptotic property

We derive an asymptotic property of the proposed estimator, which is analogous to the
property for the likelihood-based estimator with l1 penalty in Yuan and Lin (2007). For
simplicity as in Yuan and Lin (2007), we assume that p is fixed as the sample size n → ∞.

Theorem 2.1: Let �̂ denote the final output of Algorithm 2.1 with an initial estimator Ω(0)

which is a consistent estimator of �. If
√
nρ → ρ0 ≥ 0 as n → ∞,

√
n(Ω̂ − Ω) →d argmin

U
V(U),

where V(U) = tr(U�U�) + tr(UQ) + ρ0
∑

i,j{uij sign(cij)I(cij �= 0) + |uij|I(cij = 0)},
where Q is a random symmetric p × p matrix such that vec(Q) ∼ N(0,�), and � is such
that cov(qij, qi′j′) = ( 2√

3
)pcov(X(i)X(j),X(i′)X(j′)).

Theorem 2.1 implies the
√
n-consistency of �̂. The proof of Theorem 2.1 is provided in

Appendix 1.We remark that there can be other ways to prove the above result. For instance,
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the above asymptotic property can be achieved by using a similar technique as that of Lam
and Fan (2009).

It is also worth to pointing out that, due to the non-convexity of the objective func-
tion in (1), there would be multiple local optima. Different settings of initial estimate or
threshold value δ could potentially lead to the algorithm numerically converging to differ-
ent estimates or local optima. The asymptotic result here is established for a certain local
optimum.

2.4. Selection of tuning parameter

Note that ρ is a tuning parameter in the proposed method. Common methods for tuning
parameter selection include cross-validation (Finegold and Drton 2011), a validation-
set approach (Levina, Rothman, and Zhu 2008) and information-based criteria such as
the Bayesian information criterion (Yuan and Lin 2007). Since the proposed method is
based on a nonparametric criterion, the cross-validation or validation-set approaches are
more appropriate in our situation. However, the conventional cross-validation assumes
data in every fold follow the same distribution. This assumption may no longer be valid
with outliers presented in the data. When randomly partitioning the data into k folds for
cross-validation, outlier observations may not be uniformly allocated into each fold.

To address this issue, we adopt a revised cross-validation so that the observations in
every fold aremore likely to be uniformly distributedwith respect to the likelihood. Specifi-
cally, we sort the observations based on the values of their likelihood functions with respect
toΩ. Suppose that there are n observations for k-fold cross-validation. The ordered obser-
vations are grouped into �n/k� blocks, each of which contains k observations. Then every
fold for cross validations is formed by randomly drawing one observation from each block
without replacement. Consequently, the data points in each fold tend to be uniformly dis-
tributed in terms of the likelihood values. For the cross-validation score, the values of
ISE in (4) are used for the proposed method. The optimal tuning parameter is the one
associated with the smallest ISE value.

3. Simulation

To assess the performance of the proposed method, we conduct a set of simulation studies
to compare the proposed method with several existing methods for estimating the inverse
covariancematrix. In particular, we compare the proposed estimateswith the LWestimator
(Ledoit and Wolf 2004), glasso (Friedman et al. 2008), tlasso (Finegold and Drton 2011),
spearman (Öllerer and Croux 2015) and cellweise (Tarr et al. 2016).

Ledoit and Wolf (2004) proposed to estimate � by a linear combination of the sample
covariance matrix S and the identity matrix I, i.e.

�̂LW = ντS + (1 − ν)I,

where the optimal values of τ and ν are obtained by minimising the expected quadratic
loss E(‖�̂LW − �‖2). The corresponding estimator of � is Ω̂LW = �̂

−1
LW . Here we include

the LW estimator in comparison because it is not a likelihood-based approach; therefore,
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it can be robust to the model assumption. The glasso estimates Ω by solving

min
Ω

− log |Ω| + tr[ΩS] + λ
∑
i�=j

|vij|,

where Ω = (vij)p×p and λ is a tuning parameter. The tlasso estimates Ω by modelling the
data with a multivariate t-distribution and solving

min
Ω

n
2
log |Ω| − 1

2
tr

(
Ω

n∑
i=1

τiyiy
T
i

)
+ μTΩ

n∑
i=1

τiyi −
1
2
μTΩμ

n∑
i=1

τi,

where yi’s are observed data following amultivariate t-distribution tp,ν(μ,�−1) and τi’s are
an associated sequence of hidden gamma random variables assigned to the observations.
An EMalgorithm is applied tominimise the objective function to obtain the estimator. The
tuning parameters in glasso and tlasso are selected using cross-validation. The R codes of
tlasso are provided by the authors of tlasso (Finegold and Drton 2011).

Another widely studied class of robust and sparse precision matrix estimator (Liu, Han,
Yuan, Lafferty, and Larry Wasserman 2012; Öllerer and Croux 2015; Tarr et al. 2016) is
to take a robust correlation/covaraince matrix as an initial, such as spearman correlation
matrix, to convert into robust and sparse precisionmatrix via regularisation routines, such
as the graphical lasso, QUIC and CLIME.

We evaluate and compare the performance of the proposed method and existing meth-
ods via (i) selection accuracy measured by F1 score (F1), and (ii) estimation accuracy
measured by Frobenius norm (Fnorm) and Kullback-Leibler loss (KL). Specifically, the F1
score, a measure of selection accuracy of �, is defined as

F1 = 2PR
P + R

,

where P = tp/(tp + fp) is the precision and R = tp/(tp + fn) is the recall. The larger F1
score implies more selection accuracy for the estimate. Here tp is the true positive, fp is the
false positive, and fn is the false negative (Davis andGoadrich 2006). The Fnorm is ametric
to measure the distance between the estimated and true inverse covariance matrices, and
is defined as

Fnorm = ‖Ω̂ − Ω‖F =
√∑

i,j
(ĉij − cij)2,

whereΩ = (cij)p×p. TheKL loss is a likelihood-basedmeasurement for the accuracy of the
estimate, and is defined as

KL = − log(|Ω̂|) + tr(Ω̂Ω−1) − (− log(|Ω̂|) + p).

Clearly, smaller Fnorm and KL loss indicate better estimation accuracy for the estimate.

3.1. Estimation accuracy evaluation

In this simulation, we consider that observations with sample size n1 are generated from a
multivariate normalNp(0,Ω−1) but they are contaminated by n2 outlier observations gen-
erated from Np(μ, I). That is, the total sample size of the data set is n = n1 + n2. Here we
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fix n1 = 50 and vary the outlier-to-signal ratios γ ≡ n2
n1 = 0%, 6%, and 10%. Two different

cases of the dimensionality p are considered: p = 55 and p = 100. Moreover, we investi-
gate the performance of the proposedmethod under two different scenarios ofmean shifts:
μ = 2 and 5. Three inverse covariance matrices for Ω are considered as follows.

Model 1. Identity matrix, i.e. Ω = I. Denote by M1-I and M1-II the models under the
mean shifts of μ = 2 and μ = 5, respectively.

Model 2. Autoregressive covariance AR(1), i.e. Ω = (cij)p×p with cii = 1, ci+1,i =
ci,i+1 = 0.2, cij = 0, where |i − j| > 1. Denote by M2-I and M2-II the models
under the mean shifts of μ = 2 and μ = 5, respectively.

Model 3. Randomly permuted AR(1), i.e. Ω = QMQT , where M is the inverse covari-
ance matrix defined in Model 2, andQ is a p × pmatrix obtained by randomly
permuting the rows of a p × p identity matrix. Denote by M3-I and M3-II the
models under the mean shifts of μ = 2 and μ = 5, respectively.

The numerical results based on 100 simulation runs are reported in Tables 1–3, cor-
responding to 0%, 6%, and 10% outlier-to-signal ratios, respectively. The standard errors
are in parentheses. Overall, the simulation results show that our proposed method outper-
forms the other five methods in most cases when outliers are present.

Table 1 reports the situation of no-outlier observations. From the results in Table 1, it
can be seen that the performance of our proposed method is comparable to the glasso
method in terms of the selection accuracy and estimation accuracy. Compared with the
LW method, the proposed method gives better selection accuracy, while the LW method

Table 1. Simulation results under outlier-to-signal ratio= 0%

Model 1 Model 2 Model 3

p Method F1 Fnorm KL F1 Fnorm KL F1 Fnorm KL

WGLasso 0.31 8.52 6.11 0.31 8.59 6.13 0.38 4.03 3.81
(0.04) (0.62) (0.35) (0.03) (0.66) (0.39) (0.07) (0.64) (0.40)

glasso 0.32 7.16 3.94 0.33 7.48 4.04 0.27 3.24 2.04
(0.07) (0.92) (0.56) (0.07) (1.41) (0.80) (0.11) (0.84) (0.45)

55 tlasso 0.53 40.10 59.54 0.44 45.10 60.89 0.45 45.13 60.93
(0.07) (0.36) (1.09) (0.04) (0.43) (1.30) (0.03) (0.32) (1.07)

LW 0.10 4.30 2.34 0.10 4.31 2.35 0.04 0.27 0.13
(0.00) (0.19) (0.11) (0.00) (0.16) (0.11) (0.00) (0.23) (0.11)

spearman 0.56 4.40 3.00 0.45 7.03 3.56 0.47 7.24 3.63
(0.13) (0.80) (0.59) (0.04) (0.69) (0.32) (0.04) (0.67) (0.31)

cellwise 0.52 4.92 3.34 0.45 11.21 5.88 0.45 11.10 5.81
(0.14) (0.86) (0.62) (0.05) (1.15) (0.68) (0.05) (1.09) (0.65)

Proposed 0.24 15.96 10.66 0.25 16.04 10.70 0.30 7.06 6.62
(0.04) (1.42) (0.79) (0.04) (1.12) (0.64) (0.06) (0.92) (0.81)

glasso 0.29 14.03 7.46 0.29 13.95 7.48 0.29 5.76 3.80
(0.06) (1.23) (0.56) (0.07) (1.12) (0.49) (0.10) (0.75) (0.52)

100 tlasso 0.51 84.95 164.60 0.50 95.44 178.20 0.50 95.45 178.23
(0.24) (1.67) (10.81) (0.02) (0.13) (1.07) (0.02) (0.13) (1.12)

LW 0.06 8.16 4.44 0.06 8.15 4.43 0.06 0.45 0.22
(0.00) (0.23) (0.16) (0.00) (0.24) (0.16) (0.19) (0.33) (0.16)

spearman 0.57 8.74 5.96 0.44 14.07 6.98 0.44 14.19 7.04
(0.10) (1.21) (0.92) (0.03) (1.06) (0.52) (0.03) (1.03) (0.51)

cellwise 0.66 12.77 8.90 0.45 25.40 13.26 0.46 24.58 13.37
(0.10) (1.25) (0.97) (0.03) (1.59) (1.14) (0.03) (1.40) (0.99)
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Table 2. Simulation results under outlier-to-signal ratio= 6%.

M1-I M2-I M3-I

p Method F1 Fnorm KL F1 Fnorm KL F1 Fnorm KL

WGLasso 0.31 8.78 6.26 0.31 8.72 6.24 0.39 4.10 3.92
(0.03) (1.10) (0.58) (0.04) (0.85) (0.49) (0.06) (0.76) (0.48)

glasso 0.16 10.21 6.62 0.16 9.93 6.41 0.12 5.61 4.43
(0.01) (1.37) (0.80) (0.01) (0.77) (0.52) (0.01) (1.21) (0.51)

55 tlasso 0.28 40.11 61.37 0.22 45.02 63.06 0.21 44.68 62.24
(0.02) (0.10) (0.28) (0.01) (0.11) (0.31) (0.01) (0.13) (0.31)

LW 0.10 8.81 5.76 0.10 8.80 5.74 0.04 8.19 4.89
(0.00) (0.76) (0.51) (0.00) (0.77) (0.50) (0.00) (1.63) (0.68)

spearman 0.12 9.16 4.29 0.16 20.80 9.92 0.16 21.06 10.06
(0.01) (4.56) (1.47) (0.01) (6.01) (2.22) (0.01) (5.63) (2.08)

cellwise 0.11 6.42 5.04 0.16 11.83 7.77 0.16 11.49 7.55
(0.01) (1.13) (0.61) (0.01) (2.68) (1.49) (0.01) (2.49) (1.42)

WGLasso 0.25 16.10 10.80 0.25 16.20 10.80 0.30 7.10 6.50
(0.04) (1.27) (0.68) (0.04) (1.31) (0.73) (0.06) (1.36) (0.77)

glasso 0.12 17.90 11.41 0.12 17.83 11.38 0.10 9.21 7.52
(0.01) (0.86) (0.36) (0.01) (0.88) (0.35) (0.01) (1.25) (0.56)

100 tlasso 0.61 87.25 180.61 0.41 95.76 180.87 0.41 95.75 180.94
(0.02) (0.04) (0.19) (0.01) (0.02) (0.11) (0.01) (0.02) (0.12)

LW 0.06 20.95 14.06 0.06 20.75 13.92 0.02 23.14 12.55
(0.00) (1.91) (1.03) (0.00) (2.10) (1.20) (0.00) (3.33) (1.18)

spearman 0.09 16.80 8.25 0.12 26.13 14.44 0.12 26.21 14.47
(0.00) (1.47) (0.54) (0.00) (1.06) (0.44) (0.00) (1.12) (0.45)

cellwise 0.10 12.21 9.98 0.13 21.67 13.69 0.13 21.66 13.68
(0.00) (0.71) (0.60) (0.00) (0.85) (0.57) (0.00) (0.86) (0.56)

M1-II M2-II M3-II

F1 Fnorm KL F1 Fnorm KL F1 Fnorm KL

WGLasso 0.30 9.67 6.86 0.30 9.69 6.87 0.37 4.49 4.50
(0.03) (1.15) (0.76) (0.04) (1.09) (0.71) (0.07) (0.78) (0.74)

glasso 0.13 10.95 8.98 0.13 10.74 8.82 0.10 6.44 6.76
(0.02) (1.27) (0.66) (0.02) (0.75) (0.42) (0.01) (1.35) (0.50)

55 tlasso 0.12 38.72 61.27 0.16 43.49 62.36 0.15 43.48 62.30
(0.02) (0.20) (0.51) (0.00) (0.22) (0.50) (0.01) (0.21) (0.50)

LW 0.10 11.28 9.83 0.10 11.25 9.79 0.04 8.64 8.56
(0.00) (0.25) (0.18) (0.00) (0.30) (0.22) (0.00) (0.20) (0.19)

spearman 0.10 20.52 7. 63 0.15 31.20 13.71 0.15 31.98 13.98
(0.01) (6.50) (1.96) (0.01) (3.16) (1.04) (0.01) (2.26) (0.68)

cellwise 0.11 6.92 5.81 0.16 11.81 8.02 0.16 11.94 8.03
(0.01) (0.48) (0.43) (0.01) (0.77) (0.56) (0.01) (0.99) (0.66)

WGLasso 0.25 17.60 11.60 0.25 17.94 11.90 0.29 8.02 7.49
(0.03) (1.98) (52.38) (0.04) (2.10) (1.30) (0.06) (1.40) (1.21)

glasso 0.10 18.73 14.14 0.10 18.91 14.19 0.09 10.15 10.18
(0.01) (1.00) (0.58) (0.01) (1.00) (0.50) (0.01) (1.30) (0.59)

100 tlasso 0.10 85.69 178.39 0.12 94.55 182.42 0.12 94.49 182.01
(0.01) (0.17) (0.90) (0.00) (0.15) (0.77) (0.01) (0.16) (0.79)

LW 0.06 23.60 19.90 0.06 23.55 19.90 0.02 20.23 17.14
(0.00) (0.57) (0.22) (0.00) (0.56) (0.22) (0.00) (0.73) (0.22)

spearman 0.09 22.47 9.60 0.11 37.55 18.81 0.11 36.56 18.54
(0.00) (1.25) (0.36) (0.00) (12.86) (4.08) (0.00) (10.32) (3.26)

cellwsie 0.10 14.45 12.16 0.13 25.20 16.39 0.12 25.03 16.29
(0.00) (0.80) (0.73) (0.00) (1.56) (0.91) (0.00) (1.55) (0.88)

provides best estimation accuracy in Fnorm and KL loss among all methods. The tlasso
method performs well in selection accuracy but worst in estimation accuracy among all
methods. The two robust initialisation methods (spearman and cellwise) have highest
selection accuracy in most cases.
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Table 3. Simulation results under outlier-to-signal ratio= 10%.

M1-I M2-I M3-I

p Method F1 Fnorm KL F1 Fnorm KL F1 Fnorm KL

wGLasso 0.30 9.01 6.42 0.31 9.03 6.46 0.35 4.44 4.27
(0.03) (0.84) (0.53) (0.03) (0.88) (0.55) (0.06) (1.28) (0.86)

glasso 0.14 10.44 7.12 0.14 10.27 7.05 0.11 5.99 5.06
(0.01) (1.18) (0.64) (0.01) (0.64) (0.36) (0.02) (1.73) (0.65)

55 tlasso 0.10 39.26 60.82 0.15 44.14 61.91 0.15 43.99 61.61
(0.01) (1.50) (3.79) (0.01) (1.47) (3.52) (0.01) (1.55) (3.66)

LW 0.10 21.49 11.61 0.10 21.34 11.57 0.04 27.88 11.65
(0.00) (2.76) (0.87) (0.00) (3.16) (1.06) (0.00) (4.56) (1.10)

spearman 0.10 19.91 7.50 0.15 31.26 13.79 0.15 31.05 13.73
(0.01) (6.53) (1.96) (0.01) (2.16) (0.64) (0.01) (1.99) (0.63)

cellwise 0.11 6.57 5.67 0.15 11.74 8.10 0.15 11.79 8.10
(0.00) (0.49) (0.35) (0.01) (1.74) (1.09) (0.01) (1.83) (1.07)

WGLasso 0.27 11.27 8.12 0.26 11.71 8.45 0.25 6.46 6.47
(0.03) (1.84) (1.43) (0.03) (2.21) (1.98) (0.05) (2.22) (2.52)

glasso 0.13 10.75 9.26 0.13 10.67 9.24 0.10 6.39 7.19
(0.02) (0.90) (0.46) (0.01) (0.60) (0.33) (0.01) (1.52) (0.54)

100 tlasso 0.09 86.88 182.64 0.12 95.25 183.38 0.12 95.32 183.78
(0.01) (0.60) (3.33) (0.01) (0.59) (3.16) (0.01) (0.36) (1.96)

LW 0.10 18.23 13.51 0.10 18.24 13.52 0.04 17.73 12.26
(0.00) (0.82) (0.28) (0.00) (0.79) (0.28) (0.00) (0.86) (0.22)

spearman 0.09 22.14 9.48 0.11 35.74 18.24 0.11 35.52 18.14
(0.00) (1.41) (0.42) (0.00) (10.56) (3.39) (0.00) (10.48) (3.32)

cellwise 0.09 13.52 11.69 0.11 23.74 15.65 0.11 23.99 15.75
(0.00) (0.58) (0.55) (0.00) (1.50) (0.86) (0.00) (1.47) (0.81)

M1-II M2-II M3-II

F1 Fnorm KL F1 Fnorm KL F1 Fnorm KL

WGLasso 0.23 20.99 13.95 0.24 16.69 11.11 0.29 7.47 6.95
(0.03) (3.10) (2.09) (0.04) (1.72) (0.98) (0.03) (1.05) (0.95)

glasso 0.10 19.21 14.76 0.11 18.33 12.21 0.09 9.58 8.37
(0.01) (3.17) (1.55) (0.01) (1.08) (0.56) (0.01) (0.87) (0.56)

55 tlasso 0.09 38.89 62.09 0.14 44.13 64.11 0.15 43.83 63.42
(0.01) (1.86) (4.88) (0.01) (1.62) (4.00) (0.01) (1.77) (4.35)

LW 0.06 54.61 32.67 0.06 68.18 32.22 0.02 93.64 33.23
(0.00) (2.18) (0.52) (0.00) (8.17) (2.40) (0.00) (11.11) (2.40)

spearman 0.11 40.12 12.74 0.12 52.21 20.41 0.12 52.24 20.39
(0.00) (3.02) (0.69) (0.00) (3.51) (0.96) (0.00) (3.54) (0.96)

cellwise 0.11 8.66 7.78 0.15 13.89 9.78 0.15 13.88 9.87
(0.00) (0.62) (0.51) (0.00) (1.00) (0.62) (0.01) (1.04) (0.61)

WGLasso 0.24 21.23 14.06 0.23 21.10 14.02 0.26 10.91 10.06
(0.03) (2.69) (1.86) (0.03) (3.13) (2.09) (0.03) (2.03) (1.68)

glasso 0.10 18.87 14.59 0.10 19.16 14.73 0.09 9.99 10.55
(0.01) (1.14) (0.64) (0.01) (3.20) (1.55) (0.01) (0.90) (0.55)

100 tlasso 0.09 86.84 185.19 0.11 95.32 186.51 0.11 95.50 187.43
(0.01) (1.07) (6.01) (0.01) (0.82) (4.32) (0.01) (0.37) (2.02)

LW 0.06 54.46 32.63 0.06 54.62 32.67 0.02 56.82 29.25
(0.00) (2.09) (0.49) (0.00) (2.18) (0.52) (0.00) (2.40) (0.44)

spearman 0.08 87.42 26.51 0.10 109.95 41.27 0.11 110.50 41.37
(0.00) (6.71) (1.63) (0.00) (4.86) (1.32) (0.00) (4.89) (1.31)

cellwise 0.09 18.61 16.37 0.11 29.27 20.22 0.11 29.35 20.29
(0.00) (1.25) (1.02) (0.00) (1.29) (0.99) (0.00) (1.43) (1.09)

Table 2 shows the results for the 6% outlier-to-signal ratio case. When the dimension is
p = 55 and the mean shift is μ = 2, the proposed method has comparable performance
to the LW method in terms of KL loss for Models 1 and 2. However, the F1 score of the
proposed method is much larger than that of the LWmethod, indicating its superiority in
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terms of selection accuracy. When the dimension p increases, as in the case of p = 100,
the tlasso method has larger F1 scores than the other five methods, but worst prediction
accuracy indicted by the Fnorm and KL loss values. Our proposed method has highest
prediction accuracy for M2 andM3 while the two robust initialisationmethods, spearman
and cellwise, perform best in prediction accuracy for M1. For the case of large mean shift,
i.e.μ = 5, the proposedmethod in general outperforms all othermethods in both selection
and prediction accuracy except for M1 where two robust initialisation methods perform
best in prediction accuracy.

As an example of which abnormal observations become more significant, the results
of the 10% outlier-to-signal ratio case are reported in Table 3. In this case, the proposed
method always yields the largest F1 score among the six methods under comparison. For
M1model, the values ofKL loss and Fnorm of our method are close to the cellwise method
for p = 100 but the cellwisemethod performs better when p = 55. ForM2 andM3models,
the overall prediction accuracy of our proposed method is superior to other competing
methods.

To further validate our method, we also checked whether the final weights of outliers
are much smaller than the weights of the normal observations. Under the Model 2 setting
with p = 55 and 6% outliers, the average of final weights of the normal observations and
outliers were 1.06 and 7.10 × 10−3, respectively, over 100 iterations. This indicates that the
normal observations dominate the fitting procedure.

3.2. Numerical study of convergence

The proposed WGLasso objective function in (1) is nonconvex and nonsmooth, and the
weights are a complicated function of the observations and the inverse covariance matrix.
To confirm the asymptotic properties derived in Section 2.3, we use Monte Carlo sim-
ulations to investigate the convergence performance of the proposed estimator. In the
meantime, we also compare the proposed method with the glasso method, of which the
objective function is convex and known to converge.We utilise our previous three numeri-
cal simulation settings inwhich the true inverse covariancematrices are the identitymatrix,
banded-structured matrix, and random banded-structured matrix. We consider a lower
dimension p = 55 and a higher dimension p = 100 under three outlier-to-signal ratios
0%, 6% and 10%, where the mean of the outliers is μ = 5.

To study the performance of the two methods as the total sample size n increases, we
increase the sample size nwhile fixing the outlier-to-signal ratio. As expected in the asymp-
totic situations, the sample size nwill becomemuch larger than the dimension p eventually.
Here we set the largest sample size n to be roughly at the scale of p2. In particular, for the
lower dimension p = 55, the value of n ranges from 20 to 2500; for the higher dimension
p = 100, the value of n ranges from 30 to 10,000. Tomeasure the distance between the esti-
mate and the true inverse covariance matrix, we use the matrix Frobenius norm (Fnorm)
as the metric. All the results are based on 100 independent replications.

Figures 1–3 depict the convergence performance results of the proposed method and
the glasso methods under three numerical models, respectively. It is seen that as the total
sample size n increases, the Fnorm distances of the two estimates from the true inverse
covariance matrix decrease gradually and become stable in the later stages. Under the no-
outlier situation, the glasso method yields a smaller distance to the true inverse covariance
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Figure 1. Convergence of the WGLasso and glasso under the Model 1 setting.
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Figure 2. Convergence of the WGLasso and glasso under the Model 2 setting.
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Figure 3. Convergence of the WGLasso and glasso under the Model 3 setting.



16 P. TANG ET AL.

matrix than theWGLasso does. In the cases of positive outlier-to-signal ratios, the average
distance between the WGLasso estimate and the true inverse covariance matrix is smaller
than that of the glasso estimate. This suggests that the WGLasso estimate converges to a
better position in the neighbourhood of the true inverse covariance matrix when the data
are noisy. The glasso estimate has a sharper decrease in the Fnorm value than theWGLasso
estimate, especially at the beginning stages where the total sample size n is much smaller
than the dimension p. This illustrates the robustness of theWGLasso in a high-dimensional
situation.

From the above Monte Carlo simulations and in comparison with the glasso estimate,
it appears that the estimate from the proposed method converges a bit more slowly to the
true inverse covariance matrix, and has a smaller Fnorm distance to the true one when
outliers are present.

3.3. Numerical study on initial estimators

For the proposed method and other robust methods using adaptive weighting, an initial
estimator can play an important role in the final solution for both computation convergence
and estimation and selection performances. Note that for the proposed method, we take
the inverse of the sample covariance matrix as an initial estimator. When p>n, the sample
covariance matrix is singular, and we add a small perturbation to its diagonal elements.

To evaluate the role of the initial estimator for the proposed method, we consider two
alternatives of initial estimators. The first one, denoted as ‘robust initial’, uses the robust
covariancematrix inÖllerer andCroux (2015) as an initial estimator for ourAlgorithm2.1.
The second one, denoted as ‘one-step further’, considers using the estimator from currently
proposed method as an initial estimator for Algorithm 2.1 (i.e. re-conducting the itera-
tively weighted graphical lasso method). Table 4 reports the performance results under the
setting of 8% outliers and p = 80 based on 100 simulations. The standard errors are in
parentheses.

Table 4. Simulation results for the proposedmethod under different initial estimators under outlier-to-
signal ratio= 8%.

M1-I M2-I M3-I

p Method F1 Fnorm KL F1 Fnorm KL F1 Fnorm KL

Proposed 0.41 6.65 6.31 0.33 14.03 9.39 0.33 13.44 9.10
(0.05) (0.79) (0.74) (0.03) (1.03) (0.57) (0.03) (1.18) (0.72)

80 robust initial 0.35 6.96 6.76 0.29 15.31 10.38 0.30 14.81 9.96
(0.05) (1.29) (1.14) (0.03) (2.22) (1.62) (0.03) (1.83) (1.17)

one step further 0.45 6.69 6.41 0.31 14.72 9.85 0.32 14.43 9.67
(0.07) (0.83) (0.62) (0.03) (1.51) (0.91) (0.03) (1.10) (0.63)

M1-II M2-II M3-II

F1 Fnorm KL F1 Fnorm KL F1 Fnorm KL

Proposed 0.41 7.87 7.52 0.34 16.03 10.71 0.33 15.94 10.68
(0.05) (1.44) (1.16) (0.03) (1.77) (1.11) (0.03) (1.13) (0.87)

80 robust initial 0.35 8.44 8.16 0.30 18.19 12.31 0.30 18.23 12.42
(0.07) (1.48) (1.26) (0.03) (2.07) (1.53) (0.03) (2.57) (1.82)

one step further 0.41 8.65 8.07 0.33 16.90 11.35 0.32 17.55 11.80
(0.03) (2.05) (1.65) (0.03) (1.61) (0.99) (0.02) (2.10) (1.42)
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From the results (i.e. the mean value and standard error of performance measures) in
the table, it is seen that the proposedmethod under robust initial estimators generally have
a comparable performancewith the original proposedmethod using the sample covariance
matrix as an initial estimator.

4. Case study

In this section, we illustrate the merits of the proposed method through a real-world
application on gene network inference for breast cancer data.

The estimation of inverse covariancematrix is widely used in gene network applications
to identify important relationships among genes. Here we adopt the gene expression data
provided by Hess et al. (2006) to perform inference on the genetic networks. This data
set contains 133 patients with stage I–III breast cancer, who were treated with chemother-
apy. Two clusters are defined based on the patient responses to the treatment: pathologic
complete response (pCR) and residual disease (not-pCR). Hess et al. (2006) and Natowicz
et al. (2008) identified 26 key genes important for the treatment. A detailed description of
these genes is listed in Appendix 2. As suggested by Ambroise, Chiquet, andMatias (2009),
cases from the two classes of pCR (34 patients) and not-pCR (99 patients) do not have the
same distribution since they were treated under different experimental conditions. Thus
we apply the proposed inverse covariancematrix estimation procedure on each cluster sep-
arately. The proposed method of estimating Ω is compared with the glasso and the tlasso
methods. Here the LWmethod is not included for comparison since it would not produce
a sparse graph for the gene network. The hub genes, those with most connected edeges are
potentially most significant for breast cancer and would be emphasised in a further genetic
study.

Figure 4 shows the inferred networks of the three methods for studying pCR and not-
pCR classes. The penalty values are chosen by the revised cross-validation discussed in
Section 2.4. The results of the proposed WGLasso method indicate that the structure of
the not-pCR network is more centred than that of the pCR-network. All the edges in the
network from not-pCR connect with SCUBE2, which implies its significant role in the
study. The network for the pCR case involves more genes and the pairwise relations are
discovered between BTG3, METRN andMELK, also among BTG3, SCUBE2 and IGFBP4,
to name a few. Our findings confirm the results in Ambroise et al. (2009), where SCUBE2
is also identified as a hub gene for the not-pCR class and the cluster structure is discovered
for the pCR class. In contrast, results from the glasso and the tlasso methods tend to give
less sparse structures, wheremore gene connections are identified in either the pCR or not-
pCR networks. Moreover, in this case study, we have an example of a mixed data set with
non-pCR class as the majority portion (more than 75%) of the data. To verify whether our
proposedmethod can bewell suited to identify the largest portion of the data that ‘matches’
the model, we tried our method on the complete data (both pCP and non-pCR classes) as
well. As expected, it successfully recovered the same findings as we applied our method to
non-pCR class only, i.e. SCUBE2 was identified as the hub gene.

To further elaborate the usefulness of the proposed method in exploring the gene net-
work structure, we report in Figure 5 the estimated gene networks under low (ρ = 0.1),
middle (ρ = 0.6) and high-level (ρ = 0.9) values of the tuning parameter ρ for both pCR
and non-pCR. For the pCR cluster, gene BTG3 consistently shows its importance to the
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Figure 4. Results of three methods in breast cancer gene expressions data.

network for all levels of penalty values. This further validates the significance of BTG3,
as indicated in Ambroise et al. (2009). For the non-pCR cluster, we observe that genes
MAPT, METRN, and MELK tend to be more significant in the low and middle penalised
networks, and gene SCUBE2 is identified as the key one in the high level network. Thismay
provide additional information on potentially important genes when further investigating
the network structure of the two classes.

5. Discussion

In this work, we proposed robust estimation for sparse precision matrix by maximising an
l1 regularised objective function with weighted sample covariance matrix. The robustness
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Figure 5. Results of proposed WGLasso in gene expressions data under three levels of penalty values.

of our proposed objective function can be justified from a nonparametric perspective of
the ISE criterion. Adopting a majorisation-minimisation technique, we solved a relaxed
optimisation problem and developed an iteratively weighted graphical lasso estimation
procedure. Under such a formulation, the weights can be updated automatically in each
iteration, which effectively reduces the influence of potential abnormal observations. This
opens up a new possibility to better infer graphical models. Note that we adopt the l1
penalty on the objective function to pursue the sparse structure of the graphical model.
Other penalties can also be considered into the proposed method, such as the elastic net
(Zou and Hastie 2005), which is a mixture of l1 and l2 penalties.

We show that the proposed estimator is asymptotically consistent, which is confirmed
in the numerical experiments. Additionally, an extensive simulation study is conducted to
show that the proposed estimate is robust to abnormal observations in comparison with
conventional methods. In terms of computational efficiency, our simulation experience is
that the computation time of the proposed algorithm is similar to that of the glassomethod,
but much faster than the tlasso method. Note that the tlasso method appears to require
more computational time because it uses the EM algorithm.

Finally, the current theoretical results are not very surprising since the approximated
objective function can be considered as likelihood based weighted graphical lasso. How-
ever, the original optimisation problem is not a likelihood based function as it considers
the summation of probabilities. The theoretical investigation will be much more challeng-
ing. A possible direction is to connect the summation of probabilities to the density power
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divergence (Basu, Harris, Hjort, and Jones 1998). It will be also interesting to investigate
asymptotic results on the direction of characterising the break-down behaviour of the esti-
mator as in Öllerer and Croux (2015). However, in ourmethod of weighted graphical lasso,
weights keep changing over iterations, which requires some new tools for investigating the
break-down properties. Loh and Tan (2018) has investigated the break-down behaviour of
a one-step robust graphical lasso. Their theoretical techniques could be helpful for further
investigating theoretical properties of our proposed method.
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Appendices

Appendix 1. The Proof of Theorem 2.1

To prove Theorem 2.1, we first establish the asymptotic property of the solution of the objective
function in (1) as in Lemma A.1 below.

Lemma A.1: Let Ω̃ denote the solution of the objective function in (1) with an initial estimator �(0)

which is a consistent estimator of �. If
√
nρ → ρ0 ≥ 0 as n → ∞,

√
n(Ω̃ − Ω) →d argmin

U=UT
V(U),

where V(U) = tr(U�U�) + tr(UQ) + ρ0
∑

i,j{uij sign(cij)I(cij �= 0) + |uij|I(cij = 0)}, where Q is a
random symmetric p × p matrix such that vec(Q) ∼ N(0,�), and � is such that cov(qij, qi′j′) =
( 2√

3
)pcov(X(i)X(j),X(i′)X(j′)).

Proof: Define Vn(U) as

Vn(U) = − log
∣∣∣∣Ω + U√

n

∣∣∣∣+ tr
{(

Ω + U√
n

)
S∗
}

+ ρ

∥∥∥∥Ω + U√
n

∥∥∥∥
1

+ log |Ω| − tr(ΩS∗) − ρ‖Ω‖1.
Note that argminVn(U) = √

n(Ω̃ − �). Using similar arguments as in the proof of Theorem 1 in
Yuan and Lin (2007), it follows that

log
∣∣∣∣Ω + U√

n

∣∣∣∣− log |Ω| = tr(U�)√
n

− tr(U�U�)

n
+ o

(
1
n

)
, (A1)

tr
{(

Ω + U√
n

)
S∗
}

− tr(ΩS∗) = tr
(
US∗
√
n

)
= tr(U�)√

n
+ tr{U(S∗ − �)}√

n
, (A2)

and

ρ

∥∥∥∥Ω + U√
n

∥∥∥∥
1
− ρ‖Ω‖1 = ρ

∑
i,j

(∣∣∣∣cij + uij√
n

∣∣∣∣− |cij|
)

= ρ√
n

∑
i,j

{uij sign(cij)I(cij �= 0) + |uij|I(cij = 0)}, (A3)

where cij is the (i, j)th entry of �. Note that equation (A3) holds only when n is sufficiently large.
Then, combining (A1), (A2), and (A3), we have

nVn(U) = tr(U�U�) + tr(UQn) + √
nρ
∑
i,j

{uij sign(cij)I(cij �= 0) + |uij|I(cij = 0)} + o(1),

whereQn = √
n(S∗ − �). Let qn,ij denote the element of the matrixQn. Then,

cov(qn,ij, qn,i′j′) =
∑n

k=1 w
2
k

n
cov(X(i)X(j),X(i′)X(j′)),

where
∑n

k=1 w
2
k

n → ( 2√
3
)p as n → ∞ due to Lemma A.2 below. Also note that E(S∗) = �. There-

fore, Qn →d N(0,�) by the central limit theorem, and thus nVn(U) →d V(U). Since nVn(U) and
V(U) are both convex and V(U) has a unique minimum, argmin nVn(U) →d argmin V(U). Since
argmin Vn(U) = √

n(Ω̃ − �), it follows that
√
n(�̂ − �) →d argmin V(U). �

A careful examination of the proof of Lemma A.1 shows that the required condition to gener-
alise the result for solving a single WGLasso problem in (1) to a sequence of WGLasso problems in
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Algorithm 2.1 is the consistency of Ω̂ in Step 3. The proof of the consistency of Ω̂ is straightforward
from the result of Lemma A.1.

Lemma A.2: With an initial estimator Ω(0) which is a consistent estimator of �, we have

1
n

n∑
i=1

w2
i →

(
2√
3

)p
as n → ∞,

where wi = f (xi)/[ 1n
∑n

j=1 f (xj)], where f (xi) is the pdf of Np(0,Ω(0)−1
) when x = xi.

Proof:

1
n

n∑
i=1

w2
i = 1

n

n∑
i=1

(f (xi))2

[ 1n
∑n

j=1 f (xj)]2
= 1

[ 1n
∑n

j=1 f (xj)]2

(
1
n

n∑
i=1

(f (xi))2
)
.

By the law of large numbers and Ω(0) → Ω,

1
n

n∑
j=1

f (xj) → Ef (x | Ω) =
∫

Rp
[f (x)]2 dx = 2−pπ−p/2|�|−1/2

and
1
n

n∑
i=1

(f (xi))2 → E(f (x) | Ω)2 =
∫

Rp
[f (x)]3 dx = 2−p 3−p/2π−p|�|−1.

Therefore,

1
n

n∑
i=1

w2
i → (2−pπ−p/2|�|−1/2)−2 2−p 3−p/2π−p|�|−1 = 2p 3−p/2 =

(
2√
3

)p
.

�

Appendix 2. The 26 key genes used in Section 4.1

Gene symbol Gene name

AMFR Autocrine motility factor receptor
BBS4 Bardet-Biedl syndrome 4
BECN1 Beclin 1 (coiled-coil, myosin-like BCL2 interacting protein)
BTG3 BTG family, member 3
CA12 Carbonic anhydrase XII
CTNND2 Catenin, delta 2
E2F3 E2F transcription factor 3
ERBB4 Verba erythroblastic leukemia viral oncogene homolog 4(avian)
FGFR1OP FGFR1 oncogene partner
FLJ10916 Hypothetical protein FLJ10916
FLJ12650 Hypothetical protein FLJ12650
GAMT Guanidinoacetate N-methyl transferase
GFRA1 GDNF family receptor 1
IGFBP4 Insulin-like growth factor binding protein 4
JMJD2B Jumonji domain containing 2B
KIAA1467 KIAA1467 protein
MAPT Microtubule-associated protein
MBTP-S1 Hypothetical protein
MELK Maternal embryonic leucine zipper kinase
MTRN Meteorin, glial cell differentiation regulator
PDGFRA Human clone 23, 948 mRNA sequence
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Gene symbol Gene name

RAMP1 Receptor (calcitonin) activity modifying protein 1
RRM2 Ribonucleotide reductase M2 polypeptide
SCUBE2 Signal peptide, CUB domain EGF-like 2
THRAP2 Thyroid hormone receptor associated protein 2
ZNF552 Zinc finger protein 552
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