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ABSTRACT
In the pricing of customized products, it is challenging to accurately predict the purchase likelihood of
potential clients for each personalized request. The heterogeneity of customers and their responses to
the personalized products leads to very different purchase behavior. Thus, it is often not appropriate to
use a single model to analyze all the pricing data. There is a great need to construct distinctive models
for different data segments. In this work, we propose an adaptive convex clustering method to perform
data segmentation and model fitting simultaneously for generalized linear models. The proposed method
segments data points using the fused penalty to account for the similarity in model structures. It ensures
that the data points sharing the same model structure are grouped into the same segment. Accordingly, we
develop an efficient algorithm for parameter estimation and study its consistency properties in estimation
and clustering. The performance of our approach is evaluated by both numerical examples and case studies
of real business data.
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1. Introduction

In the precision marketing, companies offering highly cus-
tomized products/services encounter the challenge on how
to predict the purchase likelihood of potential clients for each
personalized request. To optimize the Request-for-Quote (RFQ)
pricing decision, it is essential to accurately predict the seller’s
win probability of any quotes. The win probability means the
likelihood that a prospective buyer will complete the purchase
after receiving the seller’s price offering for each RFQ. In
practice, a seller provides a variety of products for which a
customer can construct a personalized bundle (combination
of products) and submit the RFQ to the seller. With regard to
each RFQ, the seller will make a pricing decision to maximize
the expected revenue (or profit) based on the win probability
estimation.

Offering personalized bundles will give customers tremen-
dous opportunity to configure their customized RFQs. How-
ever, it also poses a big challenge to estimate the win probabil-
ity for almost unlimited number of possible product bundles.
Since the majority of the RFQs are configured in a distinctive
way, traditional segmentation and regression models are usually
not applicable. Xue, Wang, and Ettl (2015) proposed a top-
down and bottom-up method to decompose the bundles and
aggregate back for creating bundle features. In their method,
segmentation is conducted based on the seller’s pricing deci-
sions, while the win probability in each segment is estimated
in response to the customers’ purchase behavior. A potential
issue of this approach is the disparity between segmentation and
probability modeling when sellers’ pricing decision cannot fully
reflect customers’ purchase behavior. Our article proposes an

CONTACT Xinwei Deng xdeng@vt.edu Department of Statistics, Virginia Tech, Blacksburg, VA 24061.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/TECH.

approach that integrates the segmentation and predictive mod-
eling in a coherent framework that is purely based on customer
behaviors.

A variety of techniques on segmentation have been stud-
ied in the literature. Clustering is one of the most common
unsupervised learning techniques to explore data and group
similar objects together. The conventional k-means clustering
and hierarchical clustering (Johnson 1967; Hartigan and Wong
1979) group data points mainly based on the similarity of input
features or covariates, regardless of the modeling performance
on the responses. To cluster data points based on the simi-
larities of their model structures, one can conduct k-means
clustering based on model coefficients β , or model the data
via mixture models where latent variables are used to indicate
the clustering membership (Muthén 2001; Jung and Wickrama
2008).

While these clustering approaches mainly focus on the
similarity of either input features or modeling structures, one
growing interest is to identify clusters accounting for both
aspects. Region-specific linear models have been proposed in
the literature to partition the data based on the performance
of linear classifiers in each region of input features (Wang
and Saligrama 2012; Jose et al. 2013). One disadvantage of
this method arises from the nonconvex objective function
and lack of generalization error analysis (Oiwa and Fujimaki
2014). To overcome the challenges, Oiwa and Fujimaki
(2014) proposed the partition-wise linear models to achieve
partitions by means of convex structured regularizations. In
addition to the parametric methods, Qiu (2011) proposed a
nonparametric approach assuming the underlying regression
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function has jumps. When the number of jumps is unknown,
this method requires to identify all the possible candidate
jumps through a series of hypothesis tests, which could be
challenging.

Recently, the convex clustering method has received increas-
ing attentions on finding the groups of similar objects via
fused regularizer (Hocking et al. 2011; Lindsten, Ohlsson, and
Ljung 2011; Chen et al. 2015; Wang et al. 2016; Radchenko
and Mukherjee 2017). Convex clustering was introduced
by Hocking et al. (2011) and Lindsten, Ohlsson, and Ljung
(2011) as a convex relaxation of hierarchical clustering. Later,
Hallac, Leskovec, and Boyd (2015) extended it to a more
general convex optimization problem. By imposing a penalty
on the differences of model coefficient vectors, data points
sharing the same coefficient values are clustered into the same
segment automatically. Different from many existing clustering
algorithms which are greedy by nature (Chi and Lange 2015),
the convex clustering model can be solved efficiently with
a global optimum because of the convex objective function.
Moreover, it conducts model estimation and clustering at the
same time without prespecifying the number of clusters. A
sequence of clustering results can be obtained by varying the
regularization parameter.

However, the fused lasso based regularization in the convex
clustering model tends to inappropriately shrink model coeffi-
cient estimates, making the estimates’ absolute values smaller
than the actual. It could result in the biased estimation of model
parameters and produce suboptimal solutions in parameter esti-
mation (Meinshausen and Bühlmann 2006; Zou 2006; Chen
et al. 2015; Lange and Keys 2015; Wang and Wang 2014). More-
over, under the context of convex clustering for GLMs, the com-
monly used algorithms such as alternating direction method
of multipliers (ADMM) (Hallac, Leskovec, and Boyd 2015) are
likely to get stuck on local optimum for nonlinear objective
functions.

In this article, we propose an adaptive convex clustering
approach to conduct segmentation and model fitting in a
simultaneous fashion for GLMs. The proposed method aims
to address both the shrinkage issue in the model estimation
and the local convergence issue in the optimization. It focuses
on the convex clustering of both input features and modeling
structures under the generalized linear regression scenario,
where the optimization function could be nonlinear. The key
contributions of this work are summarized as follows.

First, we impose adaptive convex clustering penalties on the
differences of model coefficient vectors, encouraging homo-
geneity within each segment and heterogeneity across different
segments. Instead of assigning prespecified weights on the reg-
ularization parameter, we use the adaptive weights to alleviate
the shrinkage problems of model coefficients. More weights
will be assigned to data points that are likely coming from the
same cluster to push their coefficient estimates being exactly
the same. Meanwhile, less weight will be given to data points
from different clusters to achieve less biased and more accurate
coefficient estimation. A Bayesian interpretation on how to
assign the weights is also discussed.

Second, we develop an iteratively weighted least squares
(IWLS) based algorithm for efficient parameter estimation.
The key idea is to linearize the nonlinear objective functions

and update all parameters simultaneously at each iteration.
Compared with the ADMM-based algorithm, the proposed
IWLS-based algorithm shows the superior performance of
converging to the global optimum in the empirical study.

Finally, we investigate the asymptotic properties of the adap-
tive convex clustering in the context of GLMs. In the current
literature, Tan and Witten (2015) proved the close connection
between convex clustering and single linkage hierarchical clus-
tering, and provided a finite sample bound for the prediction
error of convex clustering. Radchenko and Mukherjee (2017)
studied theoretical properties of a problem closely related to
convex clustering. However, the asymptotic properties of adap-
tive convex clustering for GLMs have not yet been comprehen-
sively studied.

The rest of this article is organized as follows. After a brief lit-
erature review in Section 2, we detail the proposed adaptive con-
vex clustering model for GLMs in Section 3, where a Bayesian
interpretation and asymptotic properties are presented. The
IWLS-based algorithm for parameter estimation is developed in
Section 4. Section 5 demonstrates the performance of proposed
method via several numerical examples. A real application to
the RFQ pricing is analyzed in Section 6. Section 7 concludes
our work with further discussion.

2. Review of Convex Clustering Approach

The convex clustering was originally developed as a convex
relaxation of the hierarchal clustering (Hocking et al. 2011).
Denote the N data observations by x1, . . . , xN in a data matrix
X ∈ R

N×p, where each row denotes a data point, and p is
the number of covariates. The convex clustering optimization
problem (Hocking et al. 2011; Lindsten, Ohlsson, and Ljung
2011; Radchenko and Mukherjee 2017) is formulated through
clustering the rows as follows,

minimize
1
2

N∑
i=1

||xi − ci||22 + λ
∑
i<j

wij||ci − cj||q, (1)

where λ is a positive tuning parameter, and wij ≥ 0 is a prespec-
ified weight to incorporate the prior information of clustering.
Here ci ∈ R

p is denoted as the cluster center attached to the
data point xi. Different norms on the differences ci − cj were
considered in the literature. For example, q = {1, 2, ∞} were
analyzed in Hocking et al. (2011).

Hallac, Leskovec, and Boyd (2015) extended the objective
function of the convex clustering to a large variety of convex
functions. They proposed to cluster the data points based on
the similarity of their corresponding model coefficients by gen-
eralizing group lasso to a network setting. Both the number of
clusters and the model coefficients are unknown parameters and
estimated simultaneously during the model estimation proce-
dure. Denote the complete set of observations by (ui, yi), i =
1, . . . , N, where yi is the variable in response to ui. Further-
more, the vector ui is an union of model predictors xi and
the clustering features vi. The model predictors xi contain p
covariates used in the regression model, while the clustering
features vi could either be chosen from xi or totally different
from it.
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Let E be the set of pairwise indices between two data points,
whose model coefficients are regularized. Thus, E = |E | is the
total number of pairs to be regularized in the model. Note that
each observation i can have another observation j such that
(i, j) ∈ E , and j �= i. Then the convex optimization problem
is defined as follows,

minimize
N∑

i=1
fi(β i; yi, xi) + λ

∑
(j,k)∈E

wjk||β j − βk||2, (2)

where β1, . . . , βN ∈ R
p+1 are unknown coefficient vectors at

N observations. The fi(·) is the loss function defined for each
observation i.

The penalty term on model coefficients ‖β j − βk‖, for any
(j, k) ∈ E , aims to cluster data that share similar model coeffi-
cients into the same segment. The segments are automatically
formed according to the coefficient values related to each obser-
vation. Clearly, the overall regularization parameter λ controls
the amount of penalization. Here a prespecified weight wjk
between data points j and k is used to incorporate the prior
knowledge on how likely the data points j and k belong to the
same segment based on the distance of clustering features. For
example, we can specify the weight as wjk ∝ 1

‖vj−vk‖ . By using
this weight, the data with similar clustering features tend to be
grouped into the same segment.

3. The Proposed Adaptive Convex Clustering

3.1. Shrinkage Problem in Convex Clustering

In the convex clustering model in (2), a global shrinkage param-
eter λ controls the overall penalization, and the wjk is prespeci-
fied by the clustering features. Thus, the overall penalty weight
λwjk is unchanged throughout the model optimization, which
may cause inappropriate shrinkage for the coefficient estimates,
especially when the paired observations uj, uk ((j, k) ∈ E)
actually come from different segments.

Let us take a simple example to elaborate this point. Suppose
that a dataset, as shown in Figure 1, contains two true clusters
in the space spanned by the clustering features, vj = (

u1j, u2j
)′.

Each cluster has its own set of coefficients (β0, β1) correspond-
ing to the logistic regression with a single covariant xj = u3j. The

Figure 1. Simulated data with two clusters in the space spanned by clustering
feature of V1, V2.

Table 1. Estimated model coefficients of the convex clustering method.

Segment True GLM-refit Convex clustering

1 β01 −1 −0.646 −0.601
β11 2.5 1.901 1.414

2 β02 1.5 1.365 0.719
β12 −3.5 −3.504 −1.798

binary responses are simulated separately in each cluster. The
true coefficients of two clusters and the corresponding estimates
from the convex clustering in (2) are listed in Table 1. The
number of clusters in the convex clustering can be determined
by tuning the regularization parameter λ. More details can be
found in Section 5. To demonstrate the shrinkage problem in
the convex clustering, we refit the logistic regression for each
obtained cluster from the convex clustering model. The GLM-
refitted estimates of coefficients in Table 1 thus serve as the
benchmark with no shrinkage issues. From Table 1, it is clearly
seen that the absolute values of convex clustering estimates are
always smaller than those in the GLM-refit. It indicates that the
coefficients are highly shrunk during the estimation procedure
in the convex clustering method.

Note that the prespecified weight can be calculated as wjk ∝
1

‖vj−vk‖ . Two observations uj, uk are paired (i.e., (j, k) ∈ E)
based on the similarity measures between vj and vk, regardless of
whether they truly belong to the same segment. Thus, “wrong”
pairs are inevitably created, especially for data points near the
boundary of clusters (the blue curve shown in Figure 1). For
two observations uj, uk with similar measures, if the underlying
truth is that they are in the same segment, then λwjk will
correctly push ||β j − βk||2 toward zero. On the other hand, if
uj, uk belong to different segments, the value of ||β j − βk||2 is
supposed to be nonzero. However, they are still pushed toward
zero incorrectly to minimize the overall penalty term. As a
result, the absolute values of β j and βk are seriously shrunk. This
inappropriate shrinkage would result in the biased coefficient
estimates for paired observations from different segments and
induce suboptimal estimation risk (Zou 2006). Meinshausen
and Bühlmann (2006) also showed the disagreement of optimal
prediction and the accurate estimation of the true model in the
context of penalized regressions.

The model coefficients play an essential role in the estimation
of purchase likelihood prediction since both data segmentation
and model prediction are highly influenced by the estimation
accuracy of model coefficients. To alleviate the shrinkage prob-
lem, we develop an adaptive convex clustering model in Sec-
tion 3.2, where an adaptive shrinkage parameter λ

(t)
jk is intro-

duced to penalize coefficient differences ||β j−βk||2 at iterative t.

3.2. The Adaptive Convex Clustering

As discussed in Section 3.1, the shrinkage problem in the convex
clustering is mainly caused by the prespecified penalization of
coefficient differences ||β j−βk||2. Inspired by the adaptive lasso
in Zou (2006), a simple and effective remedy is to assign adaptive
weights to different coefficient pairs. The proposed adaptive
convex clustering model can be considered as a generalization of
the conventional convex clustering. Specifically, we update the
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regularization parameter λ
(t+1)

jk in each iteration according to
||β(t)

j − β
(t)
k ||2. If ||β(t)

j − β
(t)
k ||2 is large, (uj, uk) are more likely

from the same cluster and we penalize them less in next iteration
(t + 1). Thus at iteration (t + 1), the estimation problem in (2)
becomes,

β(t+1) = argmin
β

N∑
i=1

fi(β i; yi, xi)+
∑

(j,k)∈E
λ

(t+1)

jk wjk||β j−βk||2,

(3)
where λ

(t+1)

jk ∝ 1
||β(t)

j −β
(t)
k ||2

and β
(t)
j is the updated estimate of

β j at iteration (t + 1).
Obviously, the formulation in (3) is equivalent to using one

global λ with adaptive penalty weight,

β(t+1) = argmin
β

N∑
i=1

fi(β i; yi, xi)+λ
∑

(j,k)∈E
γ

(t+1)

jk ||β j−βk||2,

(4)
where γ

(t+1)

jk ∝ wjk

||β(t)
j −β

(t)
k ||2

is the adaptive weight at iteration

(t + 1).
When the loss function fi is the negative log-likelihood func-

tion, we can justify the adaptive weights in our proposed adap-
tive convex clustering model from the Bayesian point of view.
Note that the construction of adaptive weights is equivalent to
assigning an appropriate prior to coefficients β . Let us denote
the prior density function as p(β|θ). Then the maximizing-a-
posterior (MAP) estimate of β is obtained by solving

β̂MAP = argmax
β

log f (y|X, β , θ) + log p(β|θ),

where y ∈ R
N is the response variable, and θ ∈ � contains all

unknown hierarchical parameters. The second item log p(β|θ)

can be thought of as a penalty term added on the log-likelihood
of the data f (y|X, β , θ) (Lee et al. 2010).

Denote βe = β j − βk, e = 1, . . . , E, as the difference of
coefficients for any (j, k) ∈ E . According to Lee et al. (2010) and
Jiang, Lozano, and Liu (2012), the hierarchical priors given to
the coefficient difference on each pair βe = (

βe,0, . . . , βe,p
)′ are

listed below,

βe,i|σ 2
e ∼ N(0, σ 2

e ), i = 0, 1, . . . , p,

σ 2
e |τe ∼ G

(
p + 1

2
, 2τ 2

e

)
,

τe|ae, be ∼ IG(ae, be),

(5)

where G (a, b) denotes the Gamma distribution and IG (a, b)

represents the inverse Gamma distribution. The joint distribu-
tion of each coefficient difference vector βe is

p(βe|τe) = (2τe)−pπ−(p−1)/2

	((p + 1)/2)
exp

(
−||βe||2

τe

)
.

Besides, we have

τe|β(t)
e , ae, be ∼ IG(ae + p, be + ||β(t)

e ||2).

Thus, the corresponding iterative procedure to solve for β is,

β(t+1) = argmin
β

−logf (y|X, β , θ)

+
∑
e∈E

||βe||2
∫ 1

τe
p
(
τe|β(t)

e , ae, be
)

dτe,

and it can be reformulated as

β(t+1) = argmin
β

−logf (y|X, β , θ) +
∑
e∈E

γ (t+1)
e ||βe||2, (6)

where γ
(t+1)
e = ae+p

||β(t)
e ||2+be

. This adaptive weight formula is
consistent with the proposed adaptive weight structure in (4).

In addition, the prior distribution of all regression coeffi-
cients β = (

βT
1 , . . . , βT

N
)T , which is a vector of length N(p+1),

can be defined as follows,

π(β|a1, . . . , aE, b1, . . . , bE) ∝
∏

(j,k)∈E
p(β j, βk|ae, be),

where ae, be for e = 1, . . . , E are the hierarchical parameters at
each edge e, and the distributions of edges are assumed to be
conditionally independent (Liben-Nowell and Kleinberg 2007).

The hierarchical representation for the prior distribution of
regression coefficient vector can be expressed as

π(β|a1, . . . , aE, b1, . . . , bE)

∝
∫ ∫ E∏

e=1
(σ 2

e )−
1
2 exp

(
−1

2
βT
−1

β β

)
E∏

e=1
π(σ 2

e |τe)
E∏

e=1
π(τe)

E∏
e=1

dσ 2
e

E∏
e=1

dτe,

where 
−1
β is the N(p + 1) × N(p + 1) symmetric precision

matrix with the following structure,


−1
β =

⎡
⎢⎢⎢⎢⎢⎢⎣

∑
j∈N (1)

1
σ 2

(1,j)
− 1

σ 2
(1,2)

0 . . . 0

− 1
σ 2

(2,1)

∑
j∈N (2)

1
σ 2

(2,j)
0 . . . − 1

σ 2
(2,N)

...
...

...
. . .

...
0 − 1

σ 2
(N,2)

− 1
σ 2

(N,3)

. . .
∑

j∈N (N)
1

σ 2
(N,j)

⎤
⎥⎥⎥⎥⎥⎥⎦

⊗ 1p+1,

whereN (i) denotes the neighbors of observation i, the subscript
(i, j) denotes pair (i, j) ∈ E , and σ 2

(i,j) = σ 2
(j,i). The symbol ⊗

represents Kronecker product. The off-diagonal element − 1
σ 2

(i,j)
is nonzero if and only if (i, j) ∈ E , that is, observations i and j
are paired.

3.3. Consistency Properties of Clustering and Parameter
Estimation

In this section, we study the asymptotic properties of the adap-
tive convex clustering in the context of GLMs. More precisely,
we assume that the number of covariates p is fixed and the
number of observation N grows to infinity. Some notation and
assumptions need to be introduced before stating the results.
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First, we assume that the model has a clustering representation
with 1 � K � N number of actual clusters in the whole
dataset

{
(xi, yi) : i = 1, . . . , N

}
where xi ∈ R

p is the covariate
vector and yi is the corresponding response variable. Denote
y = [y1, . . . , yn]T , X = [x1, . . . , xn]T , zi = (

1, xT
i
)T and

β i ∈ R
p+1 the corresponding coefficient vector at observation

i. Without loss of generality, let A = {(j, k
)

: β∗
j �= β∗

k} be
the set of unique pairs of coefficient vectors, and its cardinality
is |A| = K (K − 1) /2. Then βA = (

βT
1 , . . . , βT

K
)T is the

collection of all unique coefficients (sample-wise) where βk ∈
R

p+1, k = 1, . . . , K are the unique coefficient vectors for each
cluster. Here β∗

A = (
β∗T

1 , . . . , β∗T
K

)T denote the true model
parameters and nk as the number of observations in each cluster.
The corresponding design matrix Z∗ = diag

(
Z∗

1, . . . , Z∗
K
)

is
a N by K(p + 1) block-diagonal matrix, whose blocks are of
size nk × (p + 1) and defined as Z∗

k = [1 X∗
k]. Here X∗

k
stands for the nk × p sub-matrix of X∗ with rows corresponding
to the observations falling in cluster k. Thus, the vector of all
response variables is arranged into y = (

yT
1 , . . . , yT

K
)T , where

yk := {yi, ci = k} with ci as the cluster indicator.
In GLMs, assume that each response yi comes from a dis-

tribution in the exponential family with canonical parameter
ξi and dispersion parameter φ. The corresponding probability
density function can be written as

f
(
yi

) = exp
{

yiξi − b (ξi)

ai (φ)
+ c

(
yi, φ

)}
, (7)

where ai (φ) , b (ξi), and c
(
yi, φ

)
are known functions. In this

framework, it can be shown that,

E (Yi) = μi = b′ (ξi) ,

var (Yi) = σ 2
i = b′′ (ξi) a (φ) = φb′′ (ξi) /qi,

where b′ (ξi) and b′′ (ξi) are the first and second derivatives of
b (ξi).

Next, we assume for si = k, the expected value of Yi, μi is a
linear function of the independent variables, xi, such that

E (Yi) = μi = g−1 (
xT

i β∗
k
)

,

or,

ηi = g(μi) = xT
i β∗

k ,

for si = k, where g is the link function, and the quantity ηi
is called the linear predictor which is same as the canonical
parameter ξi.

Without loss of generality, the adaptive convex clustering
estimates β̂

∗(N)
are given by

β̂
∗(N) = argmin

β

N∑
i=1

(−yi(xT
i β i) + b

(
xT

i β i
))

(8)

+ λN
∑

(j,k)∈E
γ(j,k)||β j − βk||2.

Accordingly, we write the optimal Fisher information matrix,

I
(
β∗
A

) =
⎡
⎢⎣

I(β∗
1) 0 0

0
. . . 0

0 0 I(β∗
K)

⎤
⎥⎦ ,

where I(β∗
k) is the Fisher information matrix related to the kth

true clustered model.
Theorem 1 shows that the adaptive convex clustering

estimates β̂
∗(N)

enjoy the asymptotic properties if λN is chosen
appropriately under some mild regularity conditions. The
detailed proof can be found in the supplementary materials.

Theorem 1. Let A∗
N = {(j, k

)
: β̂

∗(N)

j �= β̂
∗(N)

k }. Suppose that
λN√

N
→ 0 and λN → ∞; then under some mild regularity

conditions, the adaptive convex clustering estimator β̂
∗(N)

must
satisfy the following properties:

1. Consistency in clustering: limn→∞P
(
A∗

N = A
) = 1;

2. Asymptotic normality:
√

N(β̂
∗(N)

A −β∗
A) →d N(0, I(β∗

A)−1),
as n → ∞,

where n is the sample size of the smallest cluster.

From Theorem 1, it is seen that the proposed adaptive convex
clustering can be asymptotically consistent in both clustering
and parameter estimation.

4. The Adaptive IWLS-Based Algorithm

Several algorithms have been developed in the literature to solve
the convex clustering problems (Zhu et al. 2014; Chen et al. 2015;
Lange and Keys 2015). However, the general convex optimiza-
tion methods may not work very well for the problem where
p, N, and E are potentially large. Hallac, Leskovec, and Boyd
(2015) developed an algorithm based on the ADMM (Boyd et al.
2011; Parikh and Boyd 2014; Chen et al. 2015) to solve the con-
vex clustering problem efficiently. Note that the ADMM-based
algorithm searches the optimal solutions by going through every
pair of unknown parameters in the regularization term. Such an
algorithm may get stuck in local optimum especially when the
objective function is nonlinear. We refer to Boyd et al. (2011) for
the detailed description about the ADMM method.

To overcome this challenge, we develop an IWLS based algo-
rithm for the adaptive convex clustering of GLMs. The IWLS-
based algorithm is commonly used for GLMs with promising
performance. Here we adopt the idea of IWLS for parameter
estimation in the adaptive convex clustering of GLMs. The key
idea of the IWLS is a Newton–Raphson approach, which uses a
second-order Taylor expansion for the log-likelihood function
of the GLMs. It means that in each iteration, the log-likelihood
function is approximated by a quadratic function. Specifically,
let us denote β̂

(t)
the estimate at iteration t, and we can calculate

η̂
(t)
i = xT

i β̂
(t)

, and μ̂
(t)
i = g−1

(
η̂

(t)
i

)
. At iteration (t + 1),

the log-likelihood function at (xi, yi), denoted as fi(β i; yi, xi), is
approximated by

f (t+1)
i = ŵ(t)

i (ẑ(t)
i − xT

i β i)
2, (9)

where

ẑ(t)
i = η̂

(t)
i +

(
yi − μ̂

(t)
i

) dηi
dμi

|
μ̂

(t)
i

and

ŵ(t)
i = qi/

[
b′′ (θ

(t)
i

) (
dηi
dμi

|
μ̂

(t)
i

)2
]

.
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Details of IWLS based approximation for logistic regression can
be found in the supplemental materials. Then the approximated
objective function of (4) becomes

β(t+1) = argmin
β

N∑
i=1

ŵ(t)
i (ẑ(t)

i − xT
i β i)

2 (10)

+ λ
∑

(j,k)∈E
γ

(t+1)

jk ||β j − βk||2,

which can be solved efficiently by using the CVXPY (Diamond
and Boyd 2016), a conventional convex optimization tool. In
case of large datasets, the CVXPY can be paralleled easily. The
iterative procedure is repeated until changes in β̂

(t+1)
are suffi-

ciently small.
The proposed IWLS-based algorithm iteratively updates

the unknown parameters β1, . . . , βN simultaneously by taking
advantage of the second-order derivative (i.e., Hessian matrix).
While the ADMM-based algorithm updates the parameters
pair-by-pair in a similar fashion as the coordinate descent
methods. Thus, it is expected that the proposed IWLS-based
method will converge to the optimum more efficiently than the
ADMM-based algorithm. But it would be difficult to surely
guarantee the convergence of global optimum in practice
because the IWLS-based method may encounter the singularity
(or near singularity) of the Hessian matrix. More detailed
numerical comparisons between the proposed IWLS-based
algorithm and the ADMM-based algorithm will be shown in
Section 5. Note that the objective function in the proposed
adaptive convex clustering will change during the optimization
iteration t because of the updating of the adaptive weights
γ

(t)
jk . Particularly, the weights for zero-coefficient differences

get inflated (to infinity), whereas the weights for nonzero-
coefficient differences converge to a constant value. Thus, the
objective function remains convex, making the estimation of
coefficients converge to the estimates in each estimated segment.

5. Simulation Study

To assess the performance of the proposed method, we con-
ducted a set of simulation studies. In particular, Section 5.1
aims to verify the shrinkage problem of the conventional convex

clustering. We first compare the performance of the conven-
tional convex clustering using ADMM and IWLS algorithms
under the scenario where the true clusters are totally separated
from each other. Next, we will illustrate how the shrinkage
problem arises in the conventional convex clustering when the
clusters are not well separated.

In Section 5.2, we focus on the comparison of the proposed
approach with several existing methods under a more complex
example where four clusters are adjacent to each other. Without
loss of generality, we take logistic regression model as an exam-
ple of GLMs in the numerical study.

The simulated data contain N observations with binary
responses at each observation yi ∈ {−1, 1}. Specifically,
three continuous features, U1, U2, U3 are simulated for each
observation, where U1 and U2 are used as clustering features,
vj = (

u1j, u2j
)T , to calculate the prespecified weight wjk.

The set of observation pairs E is formed by connecting five
nearest neighbors to each observation (Hallac, Leskovec, and
Boyd 2015). The Euclidean distance calculated by vj is used
to define the nearest neighbors. Thus, each observation has at
least five connected observations. For simplicity, only X1 = U3
is included in the logistic regression model in the simulation
study.

For each simulation, data are randomly split into training
(80%) and testing (20%) datasets. Then cross-validation is con-
ducted for the training data to find the optimal λ value which
maximizes the prediction accuracy based on AUC, the area
under the receiver operating characteristic (ROC) curve. The
cutoff point in the logistic regression is chosen in the way that
the sum of sensitivity and specificity is maximized. In addition,
each simulation setting was repeated for 50 times and the corre-
sponding mean and standard deviation of resulting statistics are
reported.

5.1. Evaluation on Shrinkage Problem

In this section, two scenarios as listed below are generated with
the number of true clusters K = 2: (D1) the clusters are fully
separated and (D2) the clusters are adjacent.

(D1) Separated clusters with K = 2: N = 500 observations of
(U1, U2) are simulated as in Figure 2(D1). The two clusters

Figure 2. Illustration of simulated data under scenarios (D1) and (D2).
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are clearly separated from each other. Particularly, 250
data points in one cluster are generated from N (μ1, �),
and 250 data points in another cluster are generated from
N (μ2, �). Here μ1 = (1.2, 3.3)T , μ2 = (1.5, 4.2)T , and
� = diag(0.01, 0.02).

(D2) Adjacent clusters with K = 2: N = 500 observa-
tions of vi = (u1i, u2i)T are first simulated from two
multivariate normal distributions: 250 data points from
N (μ1, �1) and 250 data points from N (μ2, �2), where
μ1 = (4.2, 5.9)T , �1 is a correlation matrix with off-
diagonal value to be 0.05, and μ2 = (3.5, 5.6)T and �2
a correlation matrix with off-diagonal value to be 0.1.
Secondly, the data are split into two adjacent clusters by a
nonlinear function, f1 (u) = sin(u∗) − 1.5u3, where u∗ is
the normalized u. The corresponding blue curve is shown
in Figure 2(D2).

The shrinkage problem is not very severe in (D1) where
the clusters are clearly separated. The setting of μ1 and μ2
is designed to make the two clusters well separated with the
variance in � being relatively small. In (D2), we set the values
of μ1, �1 and μ2, �2 such that data from the two clusters are
not well separated at the boundary. Then the segmentation
and estimation are relatively difficult, especially for the data
near the boundary between two clusters. The reason is that,
the data around the boundary might be considered as “close”
neighbors in terms of vi values even though they actually belong
to different clusters. Thus, the pairs are wrongly connected and
the fixed penalty weights push their corresponding coefficients
toward zero. This leads to the shrinkage problem as discussed in
Section 3.

Note that in each scenario, the values of X1 = U3 are
simulated from N (1.0, 0.1) and normalized. A unique set of
true coefficients, βk = [βk0, βk1]T , k = 1, . . . , K, is assigned to
each cluster obtained previously. The true values can be found

in Tables 2 and 3. Finally, the binary responses y are simulated
based on the predictor variable X1 as well as the corresponding
true coefficients βk.

The models compared in this section are the conventional
convex clustering model in (1) with two different algorithms
ADMM and IWLS, respectively. We denoted these two methods
as CC-ADMM and CC-IWLS.

Table 2 shows the mean estimation results under scenario
(D1). The corresponding standard errors are reported in paren-
theses as well. The CC-ADMM(GLM) and CC-IWLS(GLM) are
the results obtained from refitting the logistic regression models
under each cluster estimated from the CC-ADMM and CC-
IWLS, respectively. The computation time listed is the average
time per iteration per λ value.

Note that the simulated data in (D1) are clearly separated by
(X1, X2) as shown in Figure 2(D1). By connecting the nearest
five neighbors to each observation, all observation pairs belong
to the same true cluster. Thus, there are no shrinkage problems
under this scenario, and both CC-ADMM and CC-IWLS are
able to find the true clusters. Therefore, the two GLM-refitted
results are exactly the same in Table 2. However, the CC-ADMM
does not find the optimal estimate of βk, while CC-IWLS gives
almost the same coefficient estimates as those obtained from
the CC-IWLS(GLM). This indicates that the ADMM algorithm
failed to find the global optimum. In terms of computation time,
the CC-IWLS takes about two thirds of the time compared with
the CC-ADMM. To summarize, the CC-IWLS results in more
accurate estimation and is computationally more efficient.

Table 3 shows the estimation results under scenario (D2).
Since there are two adjacent clusters, the segmentation and
estimation are relatively difficult compared with (D1), especially
for the data near the boundary. Based on the results of GLM
refitting, it is seen that the CC-IWLS produced more accurate
clustering results than the CC-ADMM. Due to the inaccuracy in
cluster assignment, the estimates of CC-ADMM(GLM) are far

Table 2. Coefficient estimation for separated clusters with K = 2 (D1).

Segment True CC-ADMM(GLM) CC-ADMM CC-IWLS(GLM) CC-IWLS

1

β01 −1 −1.020 −0.745 −1.020 −1.047
(0.249) (0.185) (0.249) (0.220)

β11 2.5 2.530 1.883 2.530 2.534
(0.353) (0.208) (0.353) (0.387)

2

β02 1.5 1.564 0.869 1.564 1.52
(0.364) (0.375) (0.364) (0.285)

β12 −3.5 −3.611 −2.024 −3.611 −3.51
(0.621) (0.709) (0.621) (0.586)

Computation time (min) − 2.22 − 1.51
(0.97) (0.214)

Table 3. Coefficient estimation (based on 50 iterations) for adjacent clusters with K = 2 (D2).

Segment True CC-ADMM(GLM) CC-ADMM CC-IWLS(GLM) CC-IWLS

1 β01 −1 −2.572 −0.398 −0.997 −0.410
(17.54) (0.878) (0.437) (0.236)

β11 2.5 0.310 1.151 2.606 1.182
(41.12) (1.742) (0.572) (0.329)

2 β02 1.5 11.761 0.942 1.569 0.634
(28.60) (0.524) (0.580) (0.230)

β12 −3.5 −29.358 −1.922 −3.739 −1.269
(78.24) (0.947) (1.378) (0.477)



8 S. CHU ET AL.

away from the truth, and their corresponding standard errors
are inflated. Besides, the coefficient estimates of CC-ADMM
have relatively larger standard errors as well. It indicates that
the ADMM algorithm may not converge to the global optimum.
In addition, comparing CC-ADMM and CC-IWLS with their
corresponding GLM refits, both algorithms consistently give
smaller absolute coefficient values.

The results shown in both (D1) and (D2) scenarios indicate
that the CC-ADMM encounters both shrinkage and conver-
gence issues for the logistic objective function.

5.2. Methods Comparison

In this section, we first simulate a more complex scenario with
K = 4 true clusters (D3) as follows.

(D3) Adjacent clusters with K = 4: N = 900 observations
of (U1, U2) are simulated shown in Figure 3. Particularly,
U1 ∼ N (0, 0.4), and U2 ∼ N (0, 0.5). The data are split
into four adjacent clusters by two nonlinear functions,
h1 (u) = sin(u∗) − 1.5(u∗)3 and h2 (u) = sin(u∗) −
1.5 (u∗)3, where u∗ is the normalization of u. Besides, X3
is simulated the same way as in (D1) and (D2).

In this study, we compare our proposed approach, denoted
as ACC-IWLS, with the existing methods, CC-ADMM, the

global model, and the k-means method listed below. We also
include the Optimal Model as a benchmark, which corresponds
to the best result achievable under the assumption that the true
segmentation is known.

Global model: Fit one logistic regression model.
k-means method: Cluster data by k-means according to
U1, U2 and then fit logistic regression under each cluster.
ACC-IWLS: Fit adaptive convex clustering model using the
IWLS-based algorithm.
Optimal model: Fit logistic regression model for each true
segment.

Note that both the CC-ADMM method and our proposed
methods can end up with more than four clusters. To evaluate
the accuracy of estimated coefficients for the individual four
clusters, we marked them as four segments “1,” “2,” “3,” and “4”
as shown in Figure 3(a). In Table 4, we compare the coefficients
of estimated clusters that have majority of data points falling
into these four segments with the true coefficient values. The
results in Table 4 indicate that the coefficient estimation from
the proposed ACC-IWLS method is more accurate than that of
the CC-ADMM. Besides, comparing both algorithms with their
GLM refits, it is clear that the CC-ADMM shows much more
serious shrinkage problem than the ACC-IWLS.

Figure 3. Illustration of simulated data under scenario (D3) and (D4).

Table 4. Coefficients estimation results for adjacent clusters with K = 4 (D3).

Segment True CC-ADMM(GLM) CC-ADMM ACC-IWLS(GLM) ACC-IWLS

1

β01 −1 −1.176 −0.533 −1.117 −0.998
(0.749) (0.269) (0.654) (0.530)

β11 2.5 2.966 1.218 2.628 2.272
(1.060) (0.324) (0.970) (0.863)

2

β02 1.5 1.395 0.509 1.419 1.220
(0.639) (0.212) (0.975) (0.574)

β12 −3.5 −3.617 −1.258 −3.359 −2.452
(1.386) (0.252) (1.817) (0.974)

3

β03 0.5 0.593 0.406 0.666 0.688
(0.433) (0.196) (0.406) (0.231)

β13 1.5 1.951 0.884 1.761 1.308
(0.769) (0.292) (1.193) (0.548)

4

β04 −0.5 −0.615 −0.271 −0.554 −0.777
(0.550) (0.176) (0.541) (0.361)

β14 −1.5 −2.023 −1.081 −1.652 −1.170
(1.172) (0.266) (0.719) (0.436)
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Furthermore, we evaluate and the performance of these
methods via several criteria listed in Table 5. The F1 score is
defined as

F1 = 2PR
P + R

,

where P = tp/(tp + fp) is the precision, and R = tp/(tp + fn)

is the recall or sensitivity. The larger F1 score implies higher
clustering accuracy. Here tp is the true positive, fp is the false
positive, tn is the true negative, and fn is the false negative,
respectively. The Frobenius norm measures the estimation accu-
racy of coefficients, and is defined as

Fnorm =

√√√√√ n∑
i=1

p∑
j=0

(
β̂ij − βij

)2
,

where n is the number of testing observations. In addition, the
AUC is the area under the ROC curve, which can be used to
evaluate how well the model is distinguishing between classes.

The result shows that proposed ACC-IWLS generally out-
performs other methods with the lowest classification error and
Fnorm, and the highest AUC value. The global model gives
the worst performance. The classification errors of both CC-
ADMM and ACC-IWLS are no better than the global model,
which might be due to the shrinkage problem in the data.
Besides, the ACC-IWLS performs better than the CC-ADMM
across all criteria except recall. A possible reason why the CC-
ADMM has a high recall score is that the CC-ADMM tends
to predict positives for almost all the observations, which leads
to a very low precision. In conclusion, the proposed adaptive
convex clustering model with IWLS based algorithm (ACC-
IWLS) produces a desirable result on data segmentation as well
as model prediction.

To further evaluate the performance of the proposed method
in the case of a larger number of clusters, we consider a simula-
tion study with the number of clusters K = 7.

(D4) Adjacent clusters with K = 7: N = 1250 observations
of (U1, U2) are simulated in a similar way as the setting
in (D3). The data are split into seven adjacent clusters as
shown in Figure 3. Besides, X3 is simulated in the same
way as in (D3).

The performance of different methods are reported in Table 6.
All results are based on 50 iterations except the CC-ADMM
method, which is based on 15 iterations. It is worth remarking
that the computation of the CC-ADMM method in this case is
very slow with more than 20 hr per run on a standard Mackbook
Pro laptop with 4GB RAM. From the results in Table 6, it is seen
that the proposed ACC-IWLS outperforms global and k-means
significantly, especially for classification error, Fnorm, and AUC.
Both CC-ADMM and ACC-IWLS have comparable perfor-
mance in terms of Fnorm and AUC. However, the proposed
ACC-IWLS gives better classification error, F1 and recall values,
which can be explained by the fact that our proposed method
can address the coefficient shrinkage problem. In general, our
proposed method can be applied to the data with relatively larger
number of clusters and preserves its merits over other methods.

6. IT Service Pricing Data Application

In this section, we apply the methodology to the historical
pricing data from a major IT service provider. Specifically, we
evaluate two datasets corresponding to the software brands of
analytics and security, for simplicity, denoted as Brand1 and
Brand2, respectively, throughout the rest of this article. The
adaptive convex clustering model will be applied to the data of
each brand independently. The goal is to cluster and fit logistic

Table 5. Performance comparison for adjacent clusters with K = 4 (D3): The classification error and Fnorm are smaller the better, while AUC, F1, precision, and recall are
larger the better.

Models Classification error Fnorm AUC F1 Precision Recall

CC-ADMM 0.41 57.46 0.75 0.59 0.59 0.62
(0.041) (5.139) (0.042) (0.059) (0.055) (0.112)

Global 0.46 70.14 0.54 0.59 0.54 0.70
(0.038) (0.898) (0.044) (0.120) (0.082) (0.203)

k-means 0.43 67.08 0.61 0.55 0.59 0.56
(0.035) (1.403) (0.040) (0.104) (0.067) (1.969)

ACC-IWLS (proposed) 0.31 53.46 0.75 0.68 0.70 0.69
(0.04) (12.02) (0.046) (0.060) (0.048) (0.125)

Optimal 0.22 12.12 0.87 0.78 0.79 0.78
(0.036) (5.509) (0.029) (0.045) (0.048) (0.082)

Table 6. Performance comparison results for adjacent clusters with K = 7 (D4).

Models Classification error Fnorm AUC F1 Precision Recall

CC-ADMM 0.35 63.30 0.81 0.60 0.63 0.59
(0.040) (9.53) (0.041) (0.064) (0.082) (0.106)

Global 0.45 97.56 0.50 0.25 0.61 0.19
(0.040) (0.773) (0.046) (0.130) (0.154) (0.152)

k-means 0.35 77.58 0.72 0.64 0.61 0.67
(0.043) (6.106) (0.050) (0.055) (0.095) (0.067)

ACC-IWLS (proposed) 0.32 62.10 0.81 0.66 0.64 0.69
(0.05) (15.01) (0.065) (0.056) (0.070) (0.088)

Optimal 0.19 18.58 0.90 0.79 0.79 0.80
(0.019) (5.066) (0.018) (0.022) (0.042) (0.042)
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regression models to predict the purchase likelihood for the
quotes in each brand, where the RFQs sharing similar purchase
behavior are expected to be clustered together.

Brand1 contains N1 = 2682 observations, whereas Brand2
contains N2 = 2642 observations. Each observation i
corresponds to a unique RFQ. Three features considered here
are grade (U1 = entitled price/value score), deal-size (U2 =
log(total entitled price)), and normalized price (U3 = quote
price/value score) (Xue, Wang, and Ettl 2015). The three features
are included in the logistic regression model to predict the
purchase likelihood. The U1 and U2 are chosen as the clustering
features according to domain expert’s knowledge. To form the
set of pairs E , each RFQ is connected to its five nearest neighbors
in terms of the Euclidean distance of vi = (u1i, u2i)′. The binary
response (Yi) at each node is coded as 1/−1 indicating whether
or not the corresponding client made a purchase.

For each brand, the RFQs are randomly split into the 80%
training and 20% testing datasets. The 5-fold cross-validation
is conducted on each training dataset to choose the optimal
value of λ as well as the cutoff point in the logistic regression.
Specifically, λ is chosen to maximize the median AUC values

in 5-fold cross-validation, while the cutoff point is chosen to
maximize the sum of sensitivity and specificity. The optimal
values will be directly used in the testing data. We compare
the proposed approach ACC-IWLS with the global model, the
k-means method, and the c-tree method implemented in Xue,
Wang, and Ettl (2015).

The comparison of four approaches would provide impor-
tant insights into the modeling performance. The global model
assumes the purchase behavior of all RFQs can be captured in a
uniform pattern, in which all RFQs are fit into a single logistic
regression model without any segmentation. In contrast, both
the k-means method and c-tree method have separate steps of
segmentation and regression. Specifically, the k-means method
uses an unsupervised learning approach to cluster RFQs based
on quote features. However, the c-tree method first conducts tree
regression classification considering the discount off the entitled
price as a measure of the sellers’ pricing strategy in response to
RFQ features. After the segmentation, logistic regression models
are fit for each segment. To make a fair comparison, the number
of clusters used in the k-means method is the same as that
obtained from the c-tree method. For the proposed ACC-IWLS,

Figure 4. Comparison of clustering results for Brand1.
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it integrates the clustering and regression in a single step to learn
the buyer’s response to the pricing decision and quote features.

The performance of all four models are compared in Fig-
ures 4 and 5, Tables 7 and 8 for Brand1 and Brand2, respectively.

In the case of Brand1, the proposed adaptive convex cluster-
ing only results in two segments. The prediction performance in
Table 7 indicates that the proposed method is comparable to the
global method and performs relatively better than the k-means,
the c-tree, and the CC-ADMM method with a higher value of
AUC. It seems that segmentation will not obviously improve the
prediction accuracy of Brand1 compared with the global model.

Table 7. Modeling performance comparison for Brand1: The classification error is
the smaller the better, while the F1, AUC, precision, and recall are the larger the
better.

Classification
error F1 AUC Precision Recall

Global 0.40 0.53 0.653 0.47 0.62
k-means 0.44 0.54 0.640 0.44 0.71
c-tree 0.41 0.56 0.640 0.47 0.69
CC-ADMM 0.42 0.54 0.635 046 0.65
ACC-IWLS (proposed) 0.40 0.55 0.659 0.47 0.67

One possible explanation is that the data in Brand1 may not
have segmentation patterns just based on the current features
since there is a very limited number of variables available to
describe the bundling features in the complex configuration. We
also find the c-tree model is unable to outperform the global
model, which means a supervised learning based on the seller’s
pricing strategy does not necessarily improve the fit of logistics
regression. Moreover, the k-mean method makes the perfor-
mance even worse compared to the global method, indicating
that the unsupervised learning may result in poor segmentation
and deteriorate the prediction of purchase behavior. We also

Table 8. Modeling performance comparison for Brand2: The classification error is
the smaller the better, while the F1, AUC, precision, and recall are the larger the
better.

Classification
error F-score AUC Precision Recall

Global 0.40 0.41 0.614 0.32 0.57
k-means 0.42 0.43 0.622 0.32 0.63
c-tree 0.39 0.37 0.606 0.31 0.47
CC-ADMM 0.75 0.40 0.541 0.25 1.00
ACC-IWLS (proposed) 0.32 0.39 0.659 0.37 0.41

Figure 5. Comparison of clustering results for Brand2.
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notice that the CC-ADMM does not provide better performance
than the proposed method.

It is worth pointing out that currently U1 and U2 are used
as clustering features. The Normalized Price U3 contains the
information of quote pricing decision, and it cannot be used as
a clustering feature since the embedded quote price is unknown
(Xue, Wang, and Ettl 2015). Please see the supplemental mate-
rials for detailed explanations. To further evaluate the proposed
ACC model performance for data in Brand1, we have run one
more experiment (named as Exp-A) using the Normalized Price
U3 as a clustering feature. That is, the clustering features are
changed to U1 and U3, and all others remain the same setting.
The corresponding performance for this Exp-A case is reported
in the supplemental materials. Compared with other models, it
is seen that the proposed method for the Exp-A case provides
better performance in terms of classification error, AUC, and
precision. It indicates that if more informative features are avail-
able for use, our proposed model can gain some advantage for
analyzing data in Brand1.

For Brand2, the proposed method shows significant impro-
vement in comparison with the global model and the k-mean
method especially in terms of the classification error and AUC,
while the CC-ADMM method has the worst performance. In
this case, our proposed model performance based segmentation
shows its advantage in simultaneously detecting the segments
and fitting the regression model. On the other hand, the c-
tree method only shows a minor improvement in terms of
classification error, which means the seller’s price differentiation
does not fully reflect the heterogeneity in customer’s purchase
behavior. It is worth pointing out that the CC-ADMM method
classifies all labels to be 1’s in the test data, resulting in poor
classification error and very high recall value. As shown in Fig-
ure 5(c), the CC-ADMM method does not provide a meaningful
segmentation result.

As a brief summary, we clearly observe the disconnection
between segmentation and regression in the two-step methods:
the k-mean method and the c-tree method. In particular, an
unsupervised learning method, such as the k-means method, is
very likely to give a blinded segmentation and thereby deteri-
orate the modeling fitting. Also, a supervised learning method
based on seller’s pricing strategy does not show any remarkable
improvement. It seems the seller is unable to fully capture the
heterogeneity in customers’ purchase behavior during the pric-
ing of personalized offerings. On the contrary, a one-step model,
the proposed ACC-IWLS, performs the best and is capable of
learning hidden patterns of customer behavior in a business
setting as complex as personalized configurations.

7. Discussion

This work considers the convex clustering problem where the
different subsets of the data have heterogeneous model struc-
tures. The proposed adaptive convex clustering model with
IWLS-based algorithm (ACC-IWLS) addresses the potential
shrinkage problem of model coefficients estimation in the con-
ventional convex clustering. It provides accurate results of both
data segmentation and model estimation with an efficient algo-
rithm. In particular, the weights in the penalty term of the pro-
posed method are iteratively reweighted based on the similarity

of their corresponding model coefficients to alleviate the shrink-
age problem. The construction of adaptive convex clustering
also has a meaningful interpretation from the Bayesian perspec-
tive. An IWLS-based algorithm is developed to facilitate the
computation of parameter estimation. We would like to remark
that due to the data availability and restrictions in business
operation, the proposed method could have some limitations
to include more informative features for improving the model
performance.

One potential direction for future research is to extend this
work to a “soft” clustering setting. That is, instead of hard
clustering as presented in this article, we can fit a mixture of
GLMs to heterogeneous data so that a probability or likelihood
of each data point to be in each clusters is assigned. The tradi-
tional mixture models cluster data purely based on the similarity
of model structures while our “soft” clustering problem aims
to perform clustering according to both model structures and
input features. One way to extend the mixture model to account
for the similarity of the input features is to impose a prior
distribution on the cluster membership. The prior distribution
assumes data are more likely to be assigned to the same cluster
if their input features are more similar. Compared with the
current “hard” clustering, the “soft” clustering approach will
provide a confidence of the clustering assignment. However, it
can be more computationally expensive since it often requires
the Markov chain Monte Carlo (MCMC) for computation.

Note that customer attributes are also important character-
istics that can potentially impact the data segmentation as well
as model fitting. Unfortunately, the available historical data only
contain products’ attributes. The proposed approach can be fur-
ther improved if one can collect more customer or other relevant
information such as seller’s E-mail contents. In addition, the
set of pairwise indices E in the penalty term is constructed
mainly based on the similarity measures between each pair
of observations. Such a construction would preclude grouping
two observations that are far away from each other in terms
of their similarity measures into the same segment. It is worth
pointing out that identify overlapping clusters is still challeng-
ing, although the proposed methodology works quite well for
separate and adjacent clusters. It might be useful to incorporate
proper prior knowledge such as informative clustering features
in finding the correct overlapping clusters.

There are other potential research directions to further
enhance the proposed methodology. Note that the computation
cost of the proposed method becomes expensive when the
underlying number of clusters gets large. One possible solution
is to investigate how the proposed method and algorithm can
be adapted for parallel computing, especially for the adaptive
IWLS-based algorithm. In the real business application, it is
desirable to obtain a relatively balanced cluster structure among
RFQs. Thus, one direction is to include the balance condition
among clusters in the penalty term to avoid dominating clusters
or extremely small clusters. Another open research topic is
the stability of cross-validation for data under GLMs. It will
be interesting to investigate how the model performance will
vary under different cross-validation scenarios, and how to
stabilize it if large variations exist. Finally, in practice, the field
manager would like to highlight the business impact of the
optimal price, and to pick up the model that has the most
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revenue improvement. The revenue improvement is related
to an optimization problem where the objective function
involves the estimated win probability in a complicated manner
under various scenarios (Xue, Wang, and Ettl 2015). It will
be interesting to investigate how to appropriately connect the
proposed method with the decision optimization in a unified
framework.

Supplementary Materials

The online supplementary materials for this article include technical proofs,
algorithms, and the Python code used in the numerical study.
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