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ABSTRACT
Computer experiments with qualitative and quantitative factors occur frequently in various applications in
science and engineering. Analysis of such experiments is not yet completely resolved. In this work, we pro-
pose an additive Gaussian process model for computer experiments with qualitative and quantitative fac-
tors. The proposed method considers an additive correlation structure for qualitative factors, and assumes
that the correlation function for each qualitative factor and the correlation function of quantitative fac-
tors are multiplicative. It inherits the flexibility of unrestrictive correlation structure for qualitative factors
by using the hypersphere decomposition, embracing more flexibility in modeling the complex systems of
computer experiments. The merits of the proposed method are illustrated by several numerical examples
and a real data application. Supplementary materials for this article are available online.

1. Introduction

Computer experiments that use complex computer models to
study real systems have attracted wide attentions in many sci-
ence and engineering applications. Because computer models
are typically expensive in terms of computational time, an emu-
lator (surrogate model) is often needed (Sacks et al. 1989). An
emulator can be used as a stand-in for a computer model and it
is cornerstone for further analysis such as optimization, sensitiv-
ity analysis, and uncertainty quantification. The bulk of thework
on building emulators assume that the input factors in computer
models are quantitative (Santner, Williams, and Notz 2003) and
those methods are not directly applicable to computer models
that contain both qualitative and quantitative factors.

Computer models with both qualitative and quantitative fac-
tors arise in various applications. For example, this work ismoti-
vated by a real computer experiment of finite element modeling
of full-scale embankment over soft soils considering reinforce-
ment stiffness and column length as qualitative factors (Rowe
and Liu 2015; Liu and Rowe 2015). Examples from the litera-
ture are: the computational fluid-dynamics simulation for study-
ing data center often contains qualitative factors such as “hot
air return vent location” and “power unit type” (Qian, Wu, and
Wu 2008); the agent-based network modeling in epidemiol-
ogy study (Bhuiyan et al. 2014) often constructs the network
with shuffle type as a qualitative factor; for investigating wear
mechanisms of total knee replacements in bioengineering, Han
et al. (2009) presented the knee models with qualitative factors
such as “prosthesis design” and “force pattern.”

Gaussian processmodeling is a common technique for build-
ing emulators of computer models. For computer models with
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both qualitative and quantitative factors, it is not trivial to build
emulators using Gaussian processmodeling. This is because dif-
ferent level combinations of qualitative factorsmay not have spe-
cific distance measurement. To accommodate both qualitative
and quantitative factors into Gaussian process modeling, there
are two key challenges: how to construct a proper covariance
structure for the qualitative factors, and how to specify the rela-
tionship between the correlation function for qualitative factors
and the correlation function for quantitative factors.

For constructing correlation function for qualitative fac-
tors, one approach is to consider a restrictive correlation func-
tion (McMillian et al. 1999; Joseph and Delaney 2007). Such
an approach can simplify the computational complexity for
the model estimation. However, restrictive correlation func-
tions lack flexibility to quantify general correlation structure of
qualitative factors. Another approach is to construct an unre-
strictive correlation structure for qualitative factors. Qian, Wu,
and Wu (2008) developed a general framework of construct-
ing an unrestrictive correlation structure for qualitative factors
in Gaussian process models. Their method adopts semidefinite
optimization in estimation to ensure the positive-definiteness of
the correlation structure. To overcome the complicated estima-
tion procedure in Qian, Wu, and Wu (2008), Zhou et al. (2011)
developed a hypersphere parameterization (Pinheiro and Bates
1996; Rebonato and Jackel 1999) method to model the unre-
strictive correlation structure, which can automatically guar-
antee the positive-definiteness of the correlation structure.
Recently, Zhang and Notz (2015) considered an indicator func-
tion approach to model the correlation function for the qual-
itative factors, which is in a similar spirit as that in Zhou
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et al. (2011). The third direction is to adopt the hierarchical
Bayesian Gaussian process models (Swiler et al. 2014) to accom-
modate both qualitative and quantitative factors. For construct-
ing correlation functions with both qualitative and quantitative
factors, themajority of existing work assumes themultiplication
between the correlation function of qualitative factors and the
correlation function of quantitative factors. The potential draw-
back of using multiplication in correlation function is that mul-
tiplication could improperly characterize the effect of the corre-
lation from qualitative factors. For example, when the correla-
tion function of one qualitative factor is small or close to zero, it
would result in the overall correlation function to be very small.

In this work, we propose an additive Gaussian process model
for computer experiments with qualitative and quantitative
factors. The key idea of the proposed method is to consider
an additive correlation structure for qualitative factors, and
to assume that the correlation function for each qualitative
factor and the correlation function of quantitative factors are
multiplicative. Such a formulation also allows different covari-
ance structures for quantitative factors with respect to different
qualitative factors. It inherits the flexibility of an unrestric-
tive correlation structure for qualitative factors by using the
hypersphere decomposition.

The remainder of this article is organized as follows. Section
2 provides notation and a general background. Section 3 details
the proposed additive Gaussian process model, along with the
estimation, prediction and interpretation. Section 4 presents
numerical examples to illustrate the effectiveness of the pro-
posed method. In Section 5, the proposed method is applied in
a real computer experiment of finite element modeling for full-
scale embankment over soft soils. We conclude this work with
brief summary and discussion in Section 6.

2. Notation and Background

This section provides notation and background for later devel-
opment. We review Gaussian process models with only quan-
titative factors, and the hypersphere parameterization to con-
struct the correlation structure for qualitative factors in Zhou
et al. (2011). Throughout, we consider computer experiments
with p quantitative factors x = (x1, . . . , xp)T ∈ Rp and q qual-
itative factors z = (z1, . . . , zq)T with the jth qualitative factor
havingmj levels, j = 1, . . . , q, and the corresponding output is
denoted byY. Suppose that the data obtained from the computer
experiment are (yi,wi), i = 1, . . . , n, where wi = (xi, zi).

2.1 Gaussian ProcessModelWith Quantitative Factors

With quantitative factors as inputs in the model, the key idea
of Gaussian processes is to consider the outputs from computer
experiments as a realization of a Gaussian process. The corre-
lation of responses at two data points is determined by a cor-
relation function of inputs, such as Matern correlation function
(Matern 1986). Tomodel the relationship between output Y and
inputs x, one stationaryGaussian processmodel, known as ordi-
nary Kriging model, assumes,

Y (x) = μ + Z(x), (1)

where μ is the constant mean, Z(x) is a Gaussian process with
mean zero and the covariance function φ(·) = σ 2R(·|θ). Here
σ 2 is the variance and R(·|θ) is referred to as the correlation
function with the correlation parameter vector θ. A popular
choice of the correlation function is the Gaussian correlation
function

R(xi, x j|θ) = exp

{
−

p∑
k=1

θk(xik − x jk)
2

}
, (2)

for any two inputs xi = (xi1, . . . , xip)T and x j = (x j1, . . . , x jp)
T,

where θ = (θ1, . . . , θp)
T and θk ≥ 0, k = 1, . . . , p. Consider

the inputs of quantitative factors x1, . . . , xn and the correspond-
ing responses y1, . . . , yn. For the ordinary Kriging, the best lin-
ear predictor at an input x is given by

ŷ(x) = μ̂ + rT (x)R−1(y − μ̂1), (3)

where y = (y1, . . . , yn)T, R is an n × n correlation matrix with
the (i, j)th elementR(xi, x j), r(x) = (R(x, x1), . . . ,R(x, xn))T,
1 is an n-dimensional column vector of all 1’s, and μ̂ =
(1TR−11)−11TR−1y is the estimate of μ. Note that the predic-
tor in (3) involves with unknown correlation parameters in the
correlation function. To estimate these parameters, a common
approach is the maximum likelihood estimation method (Sant-
ner, Williams, and Notz 2003; Fang, Li, and Sudjianto 2005).

2.2 Unrestrictive Correlation for Qualitative Factors

When computer experiments have qualitative factors as inputs,
the usual correlation function in (2) does not work properly
because the Euclidian distance cannot be used for different
level combinations of qualitative factors. To address this issue,
Zhou et al. (2011) introduced a hypersphere parameterization
to quantify the correlations of the qualitative factors. Recall that
the jth qualitative factor z j has mj levels. For j = 1, . . . , q, let
T j = (τ

( j)
r,s ) be anmj × mj correlationmatrix of themj levels of

the qualitative factor z j. The key idea of Zhou et al. (2011) is to
apply the hypersphere decomposition to model T j such that T j
is a positive-definite matrix with unit diagonal elements. Their
approach consists of two steps. Step 1 is to find a lower trian-
gular matrix with strictly positive diagonal entries L j = (l( j)r,s )

through a Cholesky-type decomposition, that is, T j = L jLTj for
j = 1, . . . , q. In Step 2, each row vector (l( j)r,1 , . . . , l( j)r,r ) in L j
is specified in the following way: for r = 1, l j,1,1 = 1 and for
r = 2, . . . ,mj ,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
l( j)r,1 = cos(ϕ j,r,1)

l( j)r,s = sin(ϕ j,r,1) . . . sin(ϕ j,r,s−1)

×cos(ϕ j,r,s), for s = 2, . . . , r − 1
l( j)r,r = sin(ϕ j,r,1) . . . sin(ϕ j,r,r−2)sin(ϕ j,r,r−1),

where ϕ j,r,s ∈ (0, π ) and τ
( j)
r,r = ∑r

s=1(l
( j)
r,s )2 = 1 for

r = 1, . . . ,mj .
For computer experiments with both quantitative factors

and qualitative factors, Zhou et al. (2011) combined the Gaus-
sian correlation function for quantitative factors and hyper-
sphere decomposition for qualitative factors. Specifically, for any
two inputs w1 = (x1, z1) and w2 = (x2, z2), they proposed the
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covariance betweenY (w1) andY (w2) to be

φ(Y (w1),Y (w2)) = σ 2cor(Z(w1),Z(w2))

= σ 2R(x1, x2|θ)

q∏
j=1

τ
( j)
z1 j,z2 j , (4)

where R(x1, x2|θ) quantifies the correlation between inputs x1
and x2, and τ

( j)
z1 j,z2 j represents the correlation between level z1 j

and level z2 j of the jth qualitative factor.
The correlation function in (4) considers the multiplicity of

correlations between quantitative factors and qualitative factors.
Such a formulation may not be very flexible to accommodate
the complex effects of qualitative factors on the outputs of com-
puter experiments. For example, a zero value of any τ

( j)
z1 j,z2 j in (4)

would result in the overall correlation φ(Y (w1),Y (w2)) being
zero. Therefore, it calls for novel, flexible correlation functions
for modeling computer experiments with both quantitative fac-
tors and qualitative factors.

3. Additive Gaussian Process Model

To enhance the flexibility in capturing the correlations between
qualitative and quantitative factors for accurate prediction, we
propose a novel Gaussian process model to analyze data for
computer experiments with both qualitative and quantitative
factors. For the p quantitative factors x = (x1, . . . , xp)T and
the q qualitative factors z = (z1, . . . , zq)T, we model the corre-
sponding response Y as

Y (x, z1, . . . , zq) = μ + G1(z1, x) + · · · + Gq(zq, x), (5)

where μ is the overall mean, Gj ’s are independent Gaussian
processes with mean zero and the covariance function φ j, for
j = 1, . . . , q. Here we adopt the additive form to quantify the
contributions of q qualitative input factors to the output. It is
in a similar spirit to the additive model in machine learning lit-
erature (Hastie and Tibshirani 1990). As the effects of qualita-
tive factors on responses are complicated, the motivation of the
additive form is to emphasize the effect of each qualitative fac-
tor coupled with quantitative factors.Moreover, the additive for-
mulation enables us to infer the significance of each individual
qualitative factor in themodel. The proposedmodel in (5) incor-
porates interactions between qualitative factors and quantita-
tive factors, and interactions among quantitative factors. How-
ever, its current form does not take into account the interactions
among qualitative factors.

To construct the covariance function φ j in each Gaussian
process Gj, we adopt the approach in Zhou et al. (2011) for the
qualitative factors. Recall that the correlationmatrixT j = (τ

( j)
r,s )

of the mj levels of the qualitative factor z j, j = 1, . . . , q. The
covariance function φ j for two inputs w1 = (x1, z1) and w2 =
(x2, z2) is given by

φ j(Gj(w1),Gj(w2)) = σ 2
j cor(Gj(w1),Gj(w2))

= σ 2
j τ

( j)
z1 j,z2 j R(x1, x2|θ( j)), (6)

where σ 2
j is the variance component associated with Gj, and

R(x1, x2|θ( j)) represents the correlation induced by the quanti-
tative parts x1 and x2 with the correlation parameter vector θ( j).

Here we adopt the commonly used Gaussian correlation func-
tion in (2) for R(x1, x2|θ( j)).

By defining G(x, z) = G1(z1, x) + · · · + Gq(zq, x), it is
straightforward to see that G(x, z) is an additive Gaussian pro-
cess. That is, the response Y in (5) follows a Gaussian process
with mean zero and the covariance function φ specified by

φ(Y (w1),Y (w2)) = cov(Y (x1, z1),Y (x2, z2))

=
q∑
j=1

σ 2
j cor(Gj(z1 j, x1),Gj(z2 j, x2))

=
q∑
j=1

σ 2
j τ

( j)
z1 j,z2 j R(x1, x2|θ( j)), (7)

where T j = (τ
( j)
r,s ) is defined as in Section 2.2. The correlation

function in (7) is different from that in (4) in two aspects. First,
the correlation function for qualitative factors in (4) takesmulti-
plicative formwhile the counterpart in (7) takes additive form. It
implies that if there is one τ

( j)
z1 j,z2 j = 0 in (4), then the correlation

between Y (w1) and Y (w2) becomes 0. However, the responses
Y (w1) and Y (w2) can still be highly correlated because of the
correlations due to quantitative variables and other qualitative
factors. In contrast, the correlation function in (7) does not have
this problem. It will not result in zero correlation betweenY (w1)

andY (w2) even if there exist some qualitative factors z j ’s having
τ

( j)
z1 j,z2 j = 0.
Second, the formulation in (7) allows Gj ’s having different

covariance structures for quantitative factors with respect to dif-
ferent qualitative factors. It provides more flexibility for mod-
eling the complex systems of computer experiments than the
one in (4) which only has a fixed covariance structure for all
quantitative factors. It is worth pointing out that the proposed
method is not restricted to the approach in Zhou et al. (2011)
for modeling the correlation function of the qualitative factor in
eachGj. One can also consider the use of other correlation func-
tions, such as the exchangeable correlation function in Joseph
and Delaney (2007) and the multiplicative correlation function
in McMillian et al. (1999), for the qualitative factor in each Gj
in the proposed method.

Recall that the data are (yi,wi), i = 1, . . . , n, where wi =
(xi, zi). Denote by y = (y1, . . . , yn)T the resulting outputs with
the inputsw1, . . . ,wn. Under the proposedmodel in (5), the log-
likelihood function can be written as

l(μ, θ, σ2,T) = −1
2
[
log |�(θ, σ2,T)|

+ (y − μ1)T�−1(θ, σ2,T)(y − μ1)
]
, (8)

up to some constant. Here �(θ, σ2,T) is the covariance matrix
of y. Under the proposed model in (5), one can easily see that
the covariance matrix�(θ, σ2,T) is guaranteed to be a positive
definite matrix.

Proposition 1. Let y = (y1, . . . , yn)T be n outputs from the input
(w1, . . . ,wn). Under the proposed model in (5), the covariance
matrix in (7) of y is a positive definite matrix.
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286 X. DENG ET AL.

Proposition 1 can be readily verified by noting that the
covariance matrix for y is

�(θ, σ2,T) = (
φ(yi(wi), yi′ (wi′ ))

)
n×n

=
q∑
j=1

σ 2
j R j ◦ H j,

where ◦ is a Schur product, and R j = (R(xi, xi′ |θ( j)))n×n and
H j = (τ

( j)
zi j,zi′ j )n×n. Note that R j is positive definite and H j is a

positive semidefinitematrixwith the diagonal entries all equal to
1’s. Proposition 1 now follows by Lemma 1 (Horn and Johnson
2012).

Lemma 1 (Schur Product Theorem). If A is an n × n positive
semidefinitematrixwith no diagonal entry equal to zero andB is
an n × n positive definite matrix, thenA ◦ B is positive definite.
If both A and B are positive definite, then so is A ◦ B.

3.1 Estimation

The model in (5) contains the parameters μ, σ 2
j , ϕ j,r,s (r =

2, . . . ,mj, s < r), and θ( j), for j = 1, . . . , q. Thus, there are
totally 1 + q + ∑q

j=1 mj(mj − 1)/2 + pq parameters to be esti-
mated. Let σ2 = (σ 2

1 , . . . , σ 2
q ), T = (T1, . . . ,Tq), and θ =

(θ(1), . . . , θ(q)). Furthermore, denote the covariance matrix by
� ≡ �(θ, σ2,T) = (

φ(yi(wi), yi′ (wi′ ))
)
n×n. It is easy to see

φ(yi, yi) = ∑q
j=1 σ 2

j , and φ(yi, yi′ ) is specified by (7) if i �= i′.
Recall that the proposed additive Gaussian process model

has an explicit expression of the log-likelihood function in (8).
Thus, it is natural to consider estimating parameters via the like-
lihood approach, that is,maximizing the log-likelihood function
for parameter estimation. Specifically, given (θ, σ2,T), the max-
imum likelihood estimator of μ is easy to obtained,

μ̂ = (1T�−11)−11T�−1y. (9)

Substituting (9) into (8), we obtain that the maximum of (8) is

l(μ̂, θ, σ2,T) = −1
2
[
log |�| + (yT�−1y)

− (1T�−11)−1(1T�−1y)2
]
.

The estimators of θ, σ2,T can be obtained as

[θ̂, σ̂2
, T̂] = argmin log |�| + (yT�−1y)

− (1T�−11)−1(1T�−1y)2. (10)

The minimization problem in (10) requires ϕ j,r,s ∈ (0, π ) and
σ j ≥ 0 for j = 1, . . . , q. It can be solved using standard nonlin-
ear optimization algorithms in Matlab or R.

3.2 Prediction and Interpolation

The prediction of the proposed additiveGaussian process is sim-
ilar to the prediction procedure in (3) for the ordinary kriging.
Specifically, the prediction of y at a new location w0 = (x0, z0)
is the condition mean, that is,

E(y(w0)|y1, . . . , yn) = μ + φ(w0)
T�−1(θ, σ2,T)(y − μ1),

(11)

where φ(w0) = (φ(w0,w1), . . . , φ(w0,wn))
T. Thus given the

estimates μ̂, θ̂, σ̂, T̂, we have the prediction of y at a new location
w0 is

ŷ(w0) = μ̂ + φ(w0)
T�−1(θ̂, σ̂

2
, T̂)(y − μ̂1). (12)

For interpolation, it is straightforward to show that when
w0 = wi, the coefficient φ(w0)

T�−1(θ̂, σ̂
2
, T̂) in (12) is an n-

dimensional vector with the ith entry being 1 and otherwise 0.
Thus, ŷ(w0) = yi, achieving the property of interpolation.

Moreover, the single-stage predictor in (12) can be
viewed as a sequential predictor. To see this, let � j =
σ 2
j R j ◦ H j, we have � = ∑q

j=1 � j by Proposition 1. Cor-
respondingly, let φ j(w0) = σ 2

j R(w0,w|θ( j)) ◦ H0 j, where
R(w0,w|θ( j)) = (R(w0,w1|θ( j)), . . . ,R(w0,wn|θ( j))T and
H0 j = (τ

( j)
z0 j,z1 j , . . . , τ

( j)
z0 j,zn j )

T. We have φ(w0) = φ1(w0) + · · · +
φq(w0). Therefore, the prediction at w0 can be rewritten as

ŷ(w0) = μ̂ + (φ1(w0) + · · · + φq(w0))
T

⎛
⎝ q∑

j=1

� j

⎞
⎠

−1

(y − μ̂1), (13)

and referred to as the “joint predictor.”
The sequential predictor works as follows. First, we build a

predictive model ŷ1 by using φ1. Then obtain the residual vector
e1 = y − ŷ1 where ŷ1 = (ŷ1(w1), . . . , ŷ1(wn))

T. Then the vec-
tor e1 is treated as a new response vector for building a predictive
model ŷ2 using φ2, and one can similarly define the residual vec-
tor e2 = e1 − ŷ2. We continue this procedure till the last stage.
More specifically, the sequential prediction provides

ŷ1(w0) = μ̂ + φT
1 (w0)

⎛
⎝ q∑

j=1

� j

⎞
⎠

−1

(y − μ̂1), e1 = y − ŷ1;

ŷ2(w0) = φT
2 (w0)

⎛
⎝ q∑

j=2

� j

⎞
⎠

−1

e1, e2 = y − ŷ1 − ŷ2;

...

ŷk(w0) = φT
k (w0)

⎛
⎝ q∑

j=k

� j

⎞
⎠

−1

ek−1, ek = y −
k∑
j=1

ŷ j;

...

ŷq(w0) = φT
q (w0)�

−1
q eq−1.

We then form a sequential predictor as

ŷseq(w0) =
q∑
j=1

ŷ j(w0). (14)

The following theorem shows that the “joint predictor” and
“sequential predictor” are equivalent. The proof of the theorem
is given in the supplementary materials.

Theorem 1. With the same parameter values, the “joint predic-
tor” in (13) and “sequential predictor” in (14) are equivalent.
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3.3 Connection to Composite Gaussian Process

The proposed model in (5) can be viewed as a generalization of
a composite Gaussian processmodel proposed by Ba and Joseph
(2012) for computer experiments with quantitative factors. A
composite Gaussian process model assumes

Y = μ + G1(x) + G2(x), (15)

where G1 and G2 are two independent Gaussian process mod-
els with the covariance functions σ 2

1 R(·|θ(1)) and σ 2
2 R(·|θ(2)),

respectively. By imposing the constraints σ 2
1 ≥ σ 2

2 and θ(1) ≤
θ(2), the model in (15) aims that the global component G1(x)
can capture more variation in the response than the local pro-
cess G2(x). The composite Gaussian process model in Ba and
Joseph (2012) can also accommodate the nonstationary variance
components.

A computer experiment with quantitative factors x can be
viewed as having two additional qualitative factors z1 and z2 each
having only one level. The correlation matrices for z1 and z2 are
T = 11T. By imposing σ 2

1 ≥ σ 2
2 and θ(1) ≤ θ(2), we can see that

the proposed methodY (x, z1, z2) = μ + G1(z1, x) + G2(z2, x)
is equivalent to a composite Gaussian process model.

4. Examples

In this section, we conduct a simulation study to demonstrate
the effectiveness of the proposed model in (5) with the covari-
ance function in (7). Specifically, we compare the proposed
model with three methods investigated in Zhou et al. (2011).
These three methods consider a Gaussian process model in (1)
with the correlation function in (4). In particular, the Gaussian
correlation function is used for quantitative factors and the fol-
lowing three correlation functions are adopted for qualitative
factors for the three methods, respectively:

(a) the exchangeable correlation function τr,s = c (0 < c <

1) for r �= s (Joseph and Delaney 2007; Qian, Wu, and
Wu 2008);

(b) the multiplicative correlation function τr,s =
exp{−(θr + θs)} (θr > 0, θs > 0) for r �= s (McMil-
lian et al. 1999; Qian, Wu, and Wu 2008);

(c) the unrestrictive correlation function τr,s in Section 2.2
(Zhou et al. 2011).

Following the notation in Zhou et al. (2011), the three meth-
ods are denoted by “EC,” “MC,” and “UC,” respectively, while the
proposed method is denoted by “AD_UC” as it adopts “UC” for
each qualitative factors. Here we have not included Zhang and
Notz (2015) for comparison, since their method also adopts the
multiplicity of correlations between quantitative and qualitative
factors, in a very similar spirit as that in Zhou et al. (2011). For
the comparison purpose, we also include the proposed additive
Gaussian process model with EC andMC correlation structures
for each qualitative factor, denoted as “AD_EC” and “AD_MC,”
respectively.

Several criteria can be used to evaluate the performance of
different methods in comparison. Following Zhou et al. (2011),

we adopt the root mean square error (RMSE) given by

RMSE =
√√√√ 1

|Wpred|
∑

w∈Wpred

(ŷ(w) − y(w))2, (16)

where ŷ(w) and y(w) are the predicted response and the true
response at the new inputw in the hold-out setWpred. A relevant
criterion is Nash-Sutcliffe efficiency (Kaufman et al. 2011) given
by

NSE = 1 −
∑

w∈Wpred
(ŷ(w) − y(w))2∑

w∈Wpred
(ŷ(w) − ȳ)2

, (17)

where ŷ(w) and y(w) are defined as in (16) and ȳ is the average
of the predictions. The second term in (17) is the ratio of an esti-
mated predicted mean square error to the unstandardized vari-
ance ofY (w). The NSE represents an estimate of the proportion
of the variability in Y that is explained by the model. Thus, the
NSE can be interpreted as a performance measure in analogy to
R2 in linear regression. For the relationship between RMSE and
NSE, methods with lower RMSE typically yield higher NSE.

Examples 1–3 consider three computer models and eval-
uate the performance of the six methods, “EC,” “MC,” “UC,”
“AD_EC,” “AD_MC,” “AD_UC.” These examples are chosen
under the consideration of having strong interactions between
qualitative factors and quantitative factors. Specifically, we
choose the three examples to evaluate the performance of the
different methods under three scenarios. Example 1 consid-
ers that the significant two-factor interactions in the model are
those between qualitative variables and quantitative variables.
Example 2 considers that the significant two-factor interactions
in the model are those between qualitative factors and quanti-
tative variables as well as those between quantitative variables.
Example 3 considers that the significant two-factor interactions
include interactions between quantitative variables, between
quantitative variable and qualitative variables, and between
qualitative factors. In each example, we implement the sixmeth-
ods over 100 simulations and report the associated RMSEs.

Example 1. Consider a computer experiment with p = 6 quan-
titative factors and q = 5 qualitative factors each having three
levels. Data are generated from the computer model

y =
5∑

i=1

xiz6−i

4000
+

5∏
i=1

cos
(
xi√
i

)
sin

(
z6−i√

i

)
, (18)

where −100 < xi < 100 for i = 1, . . . , p and z j = {−50, 0, 50}
for j = 1, . . . , q. In each simulation, an 81-run design is
adopted, where a three-level fractional factorial design (Wu and
Hamada 2009) is used for qualitative factors and a randomLatin
hypercube design (McKay, Beckman, andConover 1979) is used
for quantitative factors. The RMSE in (16) is computed based
on the hold-out set Wpred with 2430 points consisting of four
replicates of a full factorial three-level design for qualitative fac-
tors and a random Latin hypercube design for quantitative fac-
tors. Figure 1 displays the boxplots of the RMSEs associatedwith
“EC,” “MC,” “UC,” “AD_EC,” “AD_MC,” and “AD_UC” for p = 6
over 100 simulations. From Figure 1, it is clearly seen that the
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Figure . Boxplots of RMSEs associated with “EC,” “MC,” “UC,” “AD_EC,” “AD_MC,”and “AD_UC” for the computer model in () with p = 6 over  simulations.

proposed method “AD_UC” outperforms the other three meth-
ods since its correspondingRMSE is significantly lower than that
of the alternatives. Also the additive Gaussian process methods
“AD_EC,” “AD_MC,” and “AD_UC” perform better than “EC,”
“MC,” and “UC.” It is noting that although themultiplicative cor-
relationmodel UC itself has relatively larger RMSE than EC and
MC in this example, the “AD_UC” gets a smaller RMSE than
“AD_EC” and “AD_MC.”

Example 2. Consider a computer experiment with p = 7 quan-
titative factors and q = 6 qualitative factors z1, . . . , z6, where z1
and z2 have two levels, z3, z4, and z5 have three levels, and z6 has
four levels. Consider the computer model,

y =
5∑

i=1

exp{−xi}cos(4z7−i)sin(4xi+2)

+ exp{−x6}cos(4z1)sin(4z1)

+ exp{−x7}cos(4x7)sin(4z2), (19)

where 0 < xi < 1 for i = 1, . . . , p, z j = {0.3, 0.8} for
j = 1, 2, z j = {0.1, 0.5, 0.9} for j = 3, 4, 5 and zp+6 =
{0.05, 0.35, 0.65, 0.95}. In each simulation, a 142-run design is
adopted, where two replicates of a 72-runmixed-level fractional
factorial design are used for qualitative factors and a random
Latin hypercube design is used for quantitative factors. The
RMSE in (16) is computed based on the hold-out setWpred with
2160 points consisting of five replicates of a full factorial design
for qualitative factors and a random Latin hypercube design for
quantitative factors. Figure 2 displays the boxplots of the RMSEs
associated with “EC,” “MC,” “UC,” “AD,” “AD_EC,” “AD_MC,”
and “AD_UC” over 100 simulations. The results in Figure 2
clearly indicate that the proposed method “AD_UC” provides
much lower RMSEs. One can also see that the prediction per-
formances of “EC,” “MC,” and “UC” are very comparable in this

example, while “AD_UC” is still relatively better than “AD_EC”
and “AD_MC” in terms of RMSE values.

Example 3. Consider the computer model,

y = 5g1(z5) + 3g2(z4) + 1.2g1(x4) + 1.5g2(x8) + 2.3g3(x2)

+ 7g2(x2) + 4g3(1.5z3 + x1) + 7g4(1.2z2 + x3)

+ 4.5g3(x9 + x6) + 3g3(x4 + x5)

+ 1.1g2(z2 + z3) + 1.5g2(z1 + z5), (20)

where 0 < xi < 1 for i = 1, . . . , p, x j ∈ {0.1, 0.5, 0.9} for
j = p+ 1, . . . , k, g1(x) = x, g2(x) = (2x − 1)2, g3(x) = sin
(2πx)/[2 − sin(2πx)], and g4(x) = 0.1sin(2πx) + 0.2cos
(2πx) + 0.3[sin(2πx)]2 + 0.4[cos(2πx)]3 + 0.5[sin(2πx)]3.
The functions g1, g2, g3, g4 are defined in Reich, Storlie, and
Bondell (2009). In each simulation, a three-level fractional
factorial design of 81 runs is used for qualitative factors and a
random Latin hypercube design of 81 runs is used for quan-
titative factors. The RMSE in (16) is computed based on the
hold-out setWpred with 1215 points consisting of five replicates
of a full factorial design for qualitative factors and a random
Latin hypercube design for quantitative factors. Figure 3 dis-
plays the boxplots of the RMSEs associated with “EC,” “MC,”
“UC,” “AD_EC,” “AD_MC,” and “AD_UC” for q = 5 and p = 9.
The results show that the additive Gaussian process methods
“AD_EC,” “AD_MC,” and “AD_UC” still perform better than
the other threemethods in comparison. However, the advantage
of the additive Gaussian process methods over the other three
methods is not as significant as those in Examples 1 and 2. It
is also worth noting that in this example, the advantage of the
proposed method “AD_UC” is comparable to “AD_EC” and
“AD_MC.” One possible explanation is that the computer model
in (20) does not have as strong interactions between qualitative
factors and quantitative factors as those in (18) and (19).
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Figure . Boxplots of the RMSEs associated with “EC,” “MC,” “UC,” “AD_EC,” “AD_MC,”and “AD_UC” for the computer model in () over  simulations.

5. Real Data Analysis

In this section, we apply the proposed method to a real applica-
tion in which the computer experiment has both qualitative and
quantitative factors. A fully 3D coupled finite elementmodel has
been calibrated and verified by successfully capturing both the
deformations and stresses of full scale embankments involving
unreinforced, piled, and two different reinforced and piled sec-
tions (Rowe and Liu 2015). Given the cost of building andmon-
itoring full-scale reinforced and column-supported embank-
ment in field, a validated numericalmodeling is usually regarded
as a cost-effective tool to advance the knowledge of complex

issues in such a system involving geosynthetic reinforced plat-
form, embankment fill, columns, and geosynthetic reinforce-
ment. In this study, the aforementioned validated numerical
model was used to investigate the influence of three qualita-
tive factors and one quantitative factor for improving the per-
formance of reinforced embankments with floating columns
over soft clay. Figure 4 illustrates the structure of this full scale
embankment. A 7 meter (m) thick reinforced embankment was
constructed over a 15 m soft clay deposit improved with 1-m-
diameter and 9-m-long columns at 2 m center-to-center spac-
ing. The finite element discretization for the case examined had

Figure . Boxplots of the RMSEs associated with “EC,” “MC,” “UC,” “AD_EC,” “AD_MC,”and “AD_UC” for the computer model in () over  simulations.
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Figure . The embankment examined: (a) finite element mesh; (b) the schematic view of embankment constructed on foundation soil.

36,802 elements and 69,667 nodes (Figure 4(a)). The three qual-
itative factors are embankment construction rate (z1), Young’s
modulus of columns (z2), and reinforcement stiffness (z3), and
the quantitative factor x1 is the distance from the embankment
centerline to the embankment shoulder (Figure 4(b)). An aver-
age run for one case of this size took roughly 9 hr on a 12-noded
parallel super-computer at the High Performance Computing
Virtual Laboratory (HPCVL). The response variable considered
herein is the final embankment crest settlement U3, which is a
crucial embankment working indicator.

For the computer experiment, each of the three qualitative
factors z1, z2, z3 has three levels: the levels of z1 are 1, 5, 10
m/month; the levels of z2 are 50, 100, 200 MPa; and the levels of
z3 are 1578, 4800, 8000 kN/m. The quantitative factor x1 takes
the 29 values uniformly from the interval [0, 14]. For each value
of the quantitative factor, a three-level fractional factorial design
of nine runs is used for the qualitative factors. Thus, there are 261
design points, which are used for model estimation for the four
methods “EC,” “MC,” “UC,” and “AD,” respectively.

To compare the prediction performance of these four meth-
ods, we evaluate their prediction performance on the test data.
Specifically, the test dataset contains 29 input settings in which
the values of quantitative factor x1 are taken uniformly from
the interval [0, 14], and the setting of the qualitative factors is
(z1, z2, z3) = (5, 100, 4800). Note that such a setting of quali-
tative factors is not used in the nine-run three-level fractional
factorial design.

Figure 5 displays the boxplots of the RMSEs in (16) associ-
ated with “EC,” “MC,” “UC,” and “AD_UC” for the fully 3D cou-
pled finite element model over 100 replications. From the box-
plots in the figure, one can clearly see that the proposed method
performs much better than the other three methods in terms of
prediction accuracy and precision. It is worth pointing out that
the RMSEs associated with “EC,” “MC,” “UC” have large varia-
tions with a significant portion of outliers in their boxplots. A
possible explanation is that those methods have not full cap-
tured the underlying correlation structures of qualitative and
qualitative factors, resulting in large bias in the estimation of the

mean response. In addition, the proposed method gives nearly
identical RMSEs over 100 replications because in this particu-
lar example the maximum likelihood estimates are found nearly
identical over those replications regardless the initial values of
parameters in the maximum likelihood optimization. In sum-
mary for the case examined, the proposed “AD_UC” method
presents a very promising and time-saving tool to achieve excel-
lent agreement with the computations from complex computer
experiments (i.e., fully 3D coupled finite element modeling).

6. Discussion

In this work, we propose an additive Gaussian process for mod-
eling computer experiments with both quantitative and qualita-
tive factors. Several illustrative examples and a real application
have demonstrated that the proposed method can build a more
accurate emulator comparing with the existing methods. The
reason that might explain the success of the proposed method
is that, the proposed model employs a more flexible covariance
structure that is capable of accommodating the complex interac-
tion effects between qualitative factors and quantitative factors.

A few remarks are worth mentioning here. First, the cur-
rent work only considers the additive Gaussian process with
respect to the qualitative factors. There are several existing
work considering additive kernels for the quantitative factors
(Durrande et al. 2011; Duvenaud, Nickisch, and Rasmussen
2011). How to incorporate additive kernels for the quantitative
factors in our method can be an interesting topic for future
research. To extend the proposed method for accommodating
the interactions between qualitative factors, one possibility is
to include those interactions in the mean part. By conducting
variable selection to include significant interactions in the mean
part, the proposed method deserves thorough investigations in
the future work.

Second, the empirical study shows that the proposedmethod
is particularly useful in building Gaussian process modeling
when the number of qualitative factors is relatively large, and the
interaction effects between qualitative factors and quantitative
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Figure . Boxplots of the RMSEs associated with “EC,” “MC,” “UC,” and “AD_UC” for the fully D coupled finite element model over  replications: (a) RMSE; (b) logarithm
of RMSE.

factors are strong and complex. If instead the number of quali-
tative factors is small and such interaction effects are not strong
or complex, the performance of the proposedmethod and other
existing methods are likely to be very comparable. It means that
existing methods are probably sufficient in providing an accu-
rate emulator. Third, recall that the number of parameters in
the proposed model is 1 + q + ∑q

j=1 mj(mj − 1)/2 + pq, and
thus when the number of input variables and/or the levels of
qualitative factors are large, parameter estimation can be com-
putationally cumbersome. There is a need for a computationally
efficient estimation procedure. Finally, in a recent article Deng,
Hung, and Lin (2015) introduced marginally coupled designs
for computer experiments with both qualitative and quantita-
tive factors. Ba,Myers, andBrenneman (2015) proposed optimal
sliced Latin hypercube designs paired with fractional factorial
designs to accommodate both qualitative and quantitative fac-
tors. Note that the space-filling property of a design can have a
significant impact on the model performance. It would be inter-
esting to explore the possibility of coupling the proposed model
with those designs for more accurate emulators.

SupplementaryMaterials

The supplementary material for this article contains the following: (1)
proof of Theorem 1, (2) Matlab codes for implementation of the proposed
method, and (3) data from the real application in Section 5.
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