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ABSTRACT
The mixture-of-mixtures (MoM) experiment is different from the classical mixture experiment in that the
mixture component in MoM experiments, known as the major component, is made up of subcomponents,
known as the minor components. In this article, we propose an additive heredity model (AHM) for ana-
lyzing MoM experiments. The proposed model considers an additive structure to inherently connect the
major components with the minor components. To enable a meaningful interpretation for the estimated
model, the hierarchical and heredity principles are applied by using the nonnegative garrote technique
for model selection. The performance of the AHM was compared to several conventional methods in both
unconstrained and constrained MoM experiments. The AHM was then successfully applied in two real-world
problems studied previously in the literature. Supplementary materials for this article are available online.
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1. Introduction

In the mixture experiment (Cornell 2002), the typical design
variables are the proportions of mixture components in a blend,
with their summation equal to unity. As a special case of mixture
experiments, the mixture-of-mixtures (MoM) experiment con-
siders the case that each mixture component (so-called “major
component”) is also made up by a mixture of subcomponents
(so-called “minor components”). Clearly, the proportions of
both major and minor components are varied (Cornell and
Ramsey 1998; Piepel 1999) in a constraint experimental region.
Such an inherent structure of experiments poses an intriguing
challenge to appropriate modeling and analysis of MoM experi-
ments. There can be other variables, such as process variables
and the total amount of a blend, to be considered in MoM
experiments. In this work, we mainly focus on the analysis
of MoM experiments with design variables only including the
proportions of major components and their corresponding por-
tions of minor components.

Mixture experiment is one of the classic topics in the design
and analysis of experiments area. It has been applied widely
in food, medicine, and chemistry industries. The MoM experi-
ments, as a special case of mixture experiments, also frequently
appears in applications. See Piepel (1999), Dingstad, Egelands-
dal, and Næs (2003), Borges et al. (2007), Didier et al. (2007),
and Coetzer and Haines (2013) for interesting MoM case stud-
ies. One of the recent MoM examples was studied by Dingstad,
Egelandsdal, and Næs (2003). The MoM experiment was con-
ducted to understand the effects of the protein source on the
firmness of sausages. There are three major components, dark
beef muscle, bright beef muscle, and bright pork muscle, whose
proportion are denoted by c1, c2, and c3. Each major component
k is composed of three minor components protein, connective
tissue, and fat with proportion xk1, xk2, and xk3 with respect to
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ck, k = 1, 2, 3. The firmness of sausages is the response variable
of interest. More details can be found in Dingstad, Egelandsdal,
and Næs (2003).

Various regression models have been proposed in the lit-
erature to analyze mixture experiments, such as the Scheffé
model (Scheffé 1958), the Cox model (Cox 1971), the slack-
variable model (Snee and Rayner 1982; Khuri 2005; Kang, Sal-
gado, and Brenneman 2016), the Kronecker model (Draper and
Pukelsheim 1998; Prescott et al. 2002), the component-slope-
linear model (Piepel 2007), and a general blending model by
Brown, Donev, and Bissett (2015). The idea of the Scheffé model
has been extended to the multiple-Scheffé model (Lambrakis
1968, 1969; Cornell and Ramsey 1998) for analyzing MoM
experiments. The multiple-Scheffé model considers a product
of the Scheffé models for both major and minor components to
model the major–minor interactions. However, such a modeling
strategy involves a large number of interaction terms and needs a
large number of experimental observations. Another limitation
is that the minor components can still be in the model even
when its major component is absent in the model. To address
limitations of the multiple-Scheffé model, Kang, Joseph, and
Brenneman (2011) developed a so-called “major–minor model”
to analyze MoM experiments. Their key idea is to use the Scheffé
model to capture the relationship between the mean response
and the major components, while the coefficients of major com-
ponents and their interactions are modeled as a function of
their respective minor components. The major–minor model
can have a smaller model size than the multiple-Scheffé model.
Furthermore, when the major component is absent, all of its
corresponding minor components are absent from the major–
minor model. On the other hand, the complexity of the major–
minor model depends on the degrees of the Scheffé models
in the levels of major and minor components. When a linear

© 2019 American Statistical Association and the American Society for Quality
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Scheffé model is used for both major and minor components,
the major–minor model does not have interactions between the
major components and between the minor components. When
a quadratic Scheffé model is assumed for both major and minor
components, the resultant terms can be too complex to interpret
because of some high-order interaction terms.

To address these limitations, we propose an additive heredity
model (AHM) to better capture the major–minor structure of
MoM experiments with meaningful interpretation. Similar to
the major–minor model, the AHM also assumes two Scheffé
models for the major and minor components, respectively. But
different from the major–minor model, the two models are
added together to form the final heredity model. The detailed
development is shown in Section 2. The additive model is simple
and paves an easy way to study the contribution of each design
variable in the model. Moreover, by imposing the coefficients
of the minor components to be functions of their respective
major components, the minor components exist only when the
corresponding major component is presented in the model. The
nonnegative garrote technique (Breiman 1995; Yuan and Lin
2007; Xiong 2010) is used in the model estimation to enable
the hierarchical and heredity principles for major and minor
components. The proposed AHM has several advantages. First,
it provides a meaningful model interpretation of the major–
minor structure such that the coefficients of minor components
are dependent upon the corresponding major components. In
MoM experiments, the minor components will be presented
in the model only if their corresponding major component is
included in the model (Yuan, Joseph, and Zou 2009; Kang,
Joseph, and Brenneman 2011). Second, it can explicitly quantify
the contributions of the individual major and minor compo-
nents through the additive form. Third, the AHM can control
the model complexity via variable selection, which is achieved
by the nonnegative garrote method. Furthermore, the additive
structure is flexible to include terms of interest based on practi-
tioners’ objectives.

The rest of article is organized as follows. In Section 2, we
detail the proposed AHM. In Section 3, we present the estima-
tion procedures by the heredity constrained nonnegative garrote
method. The simulation and real case studies are conducted in
Sections 4 and 5. We conclude this work with some discussion
in Section 6.

2. Additive Heredity Model

In an MoM experiment, assume that there are q major compo-
nents, and let ck be the proportion of the kth major component
such that

q∑
k=1

ck = 1, 0 ≤ ck ≤ 1, k = 1, . . . , q. (1)

Moreover, each major component is composed of mk minor
components, whose proportions with respect to ck are xkl,

mk∑
l=1

xkl = 1, 0 ≤ xkl ≤ 1, l = 1, . . . , mk. (2)

To flexibly quantify the effects of major and minor components
on the response y, we consider an additive modeling strategy

to incorporate the major and minor structure relations in the
model. We propose an AHM as

y =
q∑

k=1
γkck +

∑
k<j

γkjckcj +
q∑

k=1

mk∑
l=1

δ
(k)
l xkl

+
q∑

k=1

∑
l<l′

δ
(k)
l,l′ xklxkl′ + ε, with ε ∼ N(0, σ 2), (3)

where γk is the coefficient for the major component proportion
ck, γkj is the coefficient for the interactions between ck and cj.
The δ

(k)
l is denoted as the coefficient for the minor component

proportion xkl, and δ
(k)
l,l′ is denoted as the coefficient for the

interaction between xkl and xkl′ . To ensure the contribution of
the minor component to the response depends upon the corre-
sponding major component, we consider δ

(k)
l to be a function of

the major component ck. A monotonic and bounded mapping
from the major component ck to R is a proper choice for δ

(k)
l

because the larger the ck is, intuitively, the more influential the
minor components of this major component should be to the
response of the whole mixture. Under this consideration, we
consider to use a power function as

δ
(k)
l = ζ

(k)
l ch

k ,

where ζ
(k)
l is the coefficient and h is the power parameter. Sim-

ilarly we consider δ
(k)
l,l′ = ζ

(k)
l,l′ c2h

k with ζ
(k)
l,l′ being the coefficient.

Clearly, the power function ch
k is bounded on the domain of

ck. The hyperparameter h is the power index of ck and set
in the range of (0, 2). For the ck in (0, 1), ch

k is decreasing
with respective to h. Thus, the larger the h is, the less role
the major component would play in the minor components’
effects, including δ

(k)
l xkl and δ

(k)
l,l′ xklxkl′ . The hyperparameter h

is estimated from the data via cross-validation as described in
Algorithm 1. We set the upper bound of h to be 2, which is shown
to be sufficient in our study. Readers can choose any values that
are larger than zero based on their understanding of the major
components’ influence.

Algorithm 1
1: Input: data
2: for a sequence of h do
3: Obtain initial estimators γ init

k , γ init
kj , (δ(k)

l )init, and
(δ

(k)
ll′ )init from ridge estimators of (3).

4: for a sequence of M do
5: Solve the constrained optimization problem (6) and

save the scaling factors α and β .
6: Compute the GCV value at each M.
7: end for
8: Msel = arg minM GCV(M)
9: Compute the mean squared cross-validation (MSCV),

defined later, at Msel.
10: end for
11: hsel = arg minh MSCV(h)
12: Output: the estimated model and MSCV at hsel

The AHM specifies the effects of major and minor compo-
nents in an additive form. Moreover, the AHM has a flexible
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major–minor structure relationship by assuming the coefficient
of minor components varies as a function of a major com-
ponent. This varying-coefficient property is useful to flexibly
accommodate certain dependence relationships between the
major and minor components. The AHM thus can provide a
meaningful model interpretation of the major–minor structure.
Lastly, various Scheffé models of appropriate order are applica-
ble in the AHM framework. For example, a quadratic Scheffé
model for the major component and a linear Scheffé model for
the minor component. We choose the quadratic Scheffé model
for both major and minor components in this study because
we are interested in both the main effects and the two-factor
interactions of the major components, the main effects of the
minor components, and the two factor interactions of the minor
components from the same major component.

2.1. Connection to the Major–Minor Model

In this section, we make a connection between the proposed
AHM and the major–minor model in Kang, Joseph, and Brenne-
man (2011). The major–minor model considers the coefficients
of major components as the Scheffé model on the corresponding
minor components to incorporate the major–minor structure
relations. Take the example of having two major components
c1 and c2, each with two minor components xk1, xk2, k = 1, 2.
Assuming the quadratic Scheffé model for both the major and
minor components, the major–minor model is expressed as

y = (γ1x11 +γ2x12 +γ3x11x12)c1 + (γ4x21 +γ5x22 +γ6x21x22)c2

+ (γ7x11x21 + γ8x11x22 + γ9x12x21 + γ10x12x22

+ γ11x11x12x21 + γ12x11x12x22 + γ13x11x21x22

+ γ14x12x21x22 + γ15x11x12x21x22)c1c2 + ε. (4)

Therefore, when a major component proportion ck = 0, the
corresponding minor components no longer exist in the model.
As a major component’s proportions increase, the contribution
from the corresponding minor components also increases.

Nevertheless, the use of the Scheffé model on minor compo-
nents as the coefficients for the corresponding major component
is not the only way to represent the major–minor structure
relations. For instance, we can use a so-called “minor-major”
model at the minor level to describe the relationship between
the response, the major, and the minor components. That is, the
coefficients of minor components are a function of the respec-
tive major components, indicating that the contribution from
minor components is dependent upon their major components.
Assuming the quadratic Scheffé model for minor components,
the minor-major model can be expressed as
y =(φ1 +φ2c1)x11 +(φ3 +φ4c1)x12 +(φ5 +φ6c1 +φ7c2

1)x11x12

+(φ8 +φ9c2)x21 +(φ10 +φ11c2)x22 +(φ12 +φ13c2 +φ14c2
2)x21x22

+(φ15c1 +φ16c2 +φ17c1c2)x11x21 +(φ18c1 +φ19c2 +φ20c1c2)x11x22

+(φ21c1 +φ22c2 +φ23c1c2)x12x21 +(φ24c1 +φ25c2 +φ26c1c2)x12x22 +ε,
(5)

where the coefficients of minor components are assumed to be
dependent only upon their corresponding major component.

Note that the major–minor model in (4) contains terms that
are complicated and difficult to interpret, such as c1c2x11x21x22.
In contrast, such terms do not appear in the AHM (3) when a

quadratic model is used for both minor and major components.
Through heredity principle incorporated in the nonnegative
garrote method, the AHM can control the model complexity. We
also like to remark that the major–minor model can be rewritten
in the form of additive models. For example, if we assume the
linear Scheffé model for both major and minor components,
the major–minor model is equivalent to the AHM assuming
δ
(k)
l = ζ

(k)
l ck, δ

(k)
l,l′ = 0, and γkj = 0 in model (3). In the

supplemental materials, we show that any major–minor model
can be expressed in some forms of additive models.

3. Model Estimation

To estimate the parameters in the proposed AHM, we employ
the nonnegative garrote method (Breiman 1995; Yuan and Lin
2007; Xiong 2010) to pursue a parsimonious and structured
model. The nonnegative garrote estimate of a parameter is
expressed as θnng = θ(0)αs, where θ(0) is the initial estimate
and αs ≥ 0 is a nonnegative scaling factor. The key idea of the
nonnegative garrote method is to scale the initial estimates via
scaling factors. One feature of the nonnegative garrote method
is the flexibility to adapt the hierarchical and heredity principles
in the form of linear constraints (Yuan and Lin 2007). The
hierarchical principle between the major and corresponding
minor components is to require the minor components being
present only if the corresponding major component is present in
the model. The heredity principle requires that the interaction
terms can appear in the model only if one of its main effects
appears in the model. By imposing such principles, it can make
the proposed model more meaningful and interpretable. Besides
the nonnegative garrote method, the least angle regression
selection (LARS) method can also be modified to incorporate
the heredity principle, as shown in Yuan and Lin (2007). But
Yuan, Joseph, and Zou (2009) pointed out that the nonnegative
garrote method is more efficient in computation and much more
flexible and easier to adopt any kind of constraints between the
effects. For the proposed additive model, the hierarchical and
heredity principle is more complex than the regular regression
model and thus we choose the nonnegative garrote method.

The nonnegative garrote method with the weak heredity
principle can be expressed in (6). The response y is a simplified
notation yi without the observation index i. Let n be the total
number of observations in the MoM experiment. The γ init

k , γ init
kj ,

(ζ
(k)
l )init, (ζ

(k)
l,l′ )init are the initial estimates of the parameters

γk, γkj, ζ
(k)
l , and ζ

(k)
l,l′ , respectively. We denote αk to be the

scaling factor for the major component ck, αkj to be the scaling
factor for the interaction between major components ck and cj,
β

(k)
l to be the scaling factor for the minor component l within

the major component k, and β
(k)
l,l′ the scaling factor for the

interaction between minor components l and l′. The constrained
optimization of estimating parameters is given as follows

min
α,β

n∑
i=1

⎧⎨
⎩y −

⎧⎨
⎩

q∑
k=1

γkck +
∑
k<j

γkjckcj +
q∑

k=1

mk∑
l=1

δ
(k)
l xkl

+
q∑

k=1

∑
l<l′

δ
(k)
ll′ xklxkl′

}}2

, (6)
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s.t.γk = γ init
k αk, γkj = γ init

kj αkj; δ(k)
l = (ζ

(k)
l )initch

kβ
(k)
l ,

δ
(k)
ll′ = (ζ

(k)
ll′ )initc2h

k β
(k)
l,l′ ;

αk ≥ 0, αkj ≥ 0, β(k)
l ≥ 0, β(k)

l,l′ ≥ 0;
q∑

k=1

⎧⎨
⎩

q∑
j=1,k<j

(αk + αkj) +
mk∑
l<l′

(β
(k)
l + β

(k)
l,l′ )

⎫⎬
⎭ ≤ M;

β
(k)
l ≤ αk; β(k)

l′ ≤ αk;
αkj ≤ αk + αj, for k �= j; (6a)

β
(k)
l,l′ ≤ β

(k)
l + β

(k)
l′ , for l �= l′, (6b)

where the constraints (6a) and (6b) are specially applied when
the weak heredity principle is assumed. The weak and strong
heredity principles select the interaction terms based on their
parent terms. The weak heredity only requires one of its parent
terms to be significant. For example, in (6a), αkj will be forced to
be zero unless at least one of αk and αj is strictly positive. This
reflects the weak heredity principle, as it indicates ckcj would be
significant if one of its parent terms ck and cj is significant. The
strong heredity selects a two-factor interaction only if both its
parent terms are significant. When the strong heredity principle
is assumed, these two constraints (6a) and (6b) can be replaced
by

αkj ≤ αk; αkj ≤ αj, for k �= j;

β
(k)
l,l′ ≤ β

(k)
l ; β

(k)
l,l′ ≤ β

(k)
l′ , for l �= l′.

For example, αkj would be strictly positive if both αk and αj are
larger than 0, and accordingly, ckcj is significant if both ck and
cj are significant. If no heredity principle is assumed, the two
constraints (6a) and (6b) can be removed. Here M is a tuning
parameter to control the general sparsity in the model. Note
that the objective in the above optimization can be expressed
as (y − Xη)T(y − Xη), where y = (y1, . . . , yn) is the response
vector, η = (α1, . . . , βq−1,q)′ is the parameter vector containing
all scaling factors α and β , and X is the corresponding regression
matrix. We adopt the generalized cross-validation (GCV) for
finding an optimal value of M, which is given by

GCV = (ŷ − y)T(ŷ − y)

n(1 − tr(H)/n)2 ,

where H is the hat matrix, and tr(H) = tr(Xdiag(η̂)(XTX)−1

XT) = tr(diag(η̂)). Good justification of using GCV for tuning
parameter selection in the nonnegative garrote problem can be
found in Xiong (2010).

The computational algorithm for model estimation (6) is
summarized in Algorithm 1. Because of the nonnegative garrote
method with proper constraints, the model size of the AHM
can be much smaller compared to the multiple-Scheffé model.
It is worth pointing out that the performance of the nonnegative
garrote estimate relies on the choice of the initial estimate. Yuan
and Lin (2007) argued that the nonnegative garrote method can
be used with initial estimators from the ridge regression, the
LASSO, and the elastic net. Here we use the ridge regression
estimate with the regularization parameter λ determined by the
leave-one-out cross-validation for the initial estimators of the

nonnegative garrote method. Other than leave-one-out cross-
validation, the user can also consider using other criteria such
as AICc (Draguljić et al. 2014), especially when the data are
collected from designed experiments with very limited runs.

4. Simulation

In this section, we evaluate the performance of the proposed
AHM in both unconstrained and constrained MoM experi-
ments. We consider two different types of MoM experiments:
(a) each major component contains the same number of minor
components and (b) each major component contains a different
number of minor components, and one major component has a
single minor component. Without loss of generality, for both (a)
and (b) we assume there are only three major components, that
is, c1, c2, and c3. In type (a), each major component ck has two
minor components xk1, xk2. In type (b), the numbers of minor
components corresponding to c1, c2, and c3 are three, two, and
one, respectively. The simulation results for (a) are shown in
this section. The results for (b) are in supplement due to space
limitations.

In case (a), there are five underlying models to be considered
for generating the data

I : y =10c1 + 30c2 + 20c3 + 18c1c2 + ε,
II : y =15c1x11 + 12.5c1x12 + 22.5c2x21 + 20c2x22 + 15c3x31

+ 17.5c3x32 + ε,

III : y =10c1 + 30c2 + 20c3 + 15ch
1x11 + 27.5ch

2x21 + ε,
where h = 0.5,

IV : y =10c1 + 30c2 + 20c3 + 25c2x11 + 22.5c3x21 + ε,
V : y =10c1 + 30c2 + 20c3 + 7c2c3 + 13.75c2

1x11x12 + ε,

where the noise ε ∼ N(0, σ 2) is independent of the component
proportions. The noise variance is chosen such that the signal-
to-noise (SN) ratio (Wu and Hamada 2009) is three.

One benchmark method for comparison is the multiple-
Scheffé model. Assuming the linear Scheffé model for both
major and minor components, the corresponding multiple-
Scheffé model is

y = (α1c1 + α2c2 + α3c3) ×
3∏

k=1
(βk1xk1 + βk2xk2) + ε,

which contains 24 regression coefficients. Other methods used
in comparison include the major-only linear Scheffé model (7)
and the major-only quadratic Scheffé model (8),

y = γ1c1 + γ2c2 + γ3c3 + ε, (7)
y = γ1c1 + γ2c2 + γ3c3 + γ4c1c2 + γ5c1c3 + γ6c2c3 + ε. (8)

Both (7) and (8) naively ignores the information on the minor
components. We also make comparison with the major–minor
models (Kang, Joseph, and Brenneman 2011) assuming the
linear Scheffé model for minor components, linear or quadratic
Scheffé model for major components, defined in (9) and (10),
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respectively.

y = (γ1 + γ2x11)c1 + (γ3 + γ4x21)c2 + (γ5 + γ6x31)c3 + ε,
(9)

y = γ1c1 + γ2c2 + γ3c3 + γ4x11c1 + γ5x21c2 + γ6x31c3

+ γ7c1c2 + γ8c1c3 + γ9c2c3 + γ10x11c1c2 + γ11x11c1c3

+ γ12x21c1c2 + γ13x21c2c3 + γ14x31c1c3 + γ15x31c2c3

+ γ16x11x21c1c2 + γ17x11x31c1c3 + γ18x21x31c2c3 + ε.
(10)

A summary list of compared models is here:

a. the multiple-Scheffé model (MultipleScheffe),
b. the major-only linear Scheffé model (MajorLinear),
c. the major-only quadratic Scheffé model (MajorQuad),
d. the major–minor model assuming the linear Scheffé

model for the major components (1st_MM),
e. the major–minor model assuming the quadratic Scheffé

model for the major components (2nd_MM),
f. the additive heredity model with weak heredity con-

straints (AHM).

To evaluate the model performances, we use the metrics
including the R2, the small-sample-size corrected version of
Akaike information criterion (AICc), mean squared error
(MSE), mean squared cross-validation (MSCV), normalized
MSCV (MSCVnorm), and model size. The R2, AICc, and MSE
measure the fitting performance of models. Note that R2 =
1 − ∑n

i=1(yi − ŷi)2/
∑n

i=1 y2
i is adapted for the Scheffé models

that do not contain intercept. The AICc (Hurvich and Tsai 1989;
Burnham and Anderson 2002; Draguljić et al. 2014) is calculated
via AICc = nlog(RSS/n) + 2p̃n/(n − p̃ − 1), where RSS is the
residual sum of squares, p̃ is the number of nonzero parameters.
The MSCV is calculated via MSCV =

∑n
i=1(yi − ŷ−i)2/n,

where ŷ−i is the prediction at the ith input by the model fitted
without the ith data point. The smaller MSCV value indicates
better prediction performance. The MSCVnorm is calculated by
MSCVnorm = MSCV(n − 1)/(

∑n
i=1(yi − ȳ)2). The AHM has a

varied model size because of the nonnegative garrote technique
employed.

4.1. Unconstrained MoM Experiments

The unconstrained mixture experiment is a typical situation
where each component proportion can take any value in [0, 1].
For the major components, we consider two different designs:
the I-optimal design (Laake 1975; Goos, Jones, and Syafitri
2016) and the maximin distance design (Johnson, Moore, and
Ylvisaker 1990). For the minor components, because each major
component has two minor components, we choose three design
point levels: the two endpoints and the middle point in the
domain. For example, the design points for the minor compo-
nents, (x11, x12), are (1, 0), ( 1

2 , 1
2 ), and (0, 1). We apply the idea of

crossed design to combine the designs for the major and minor
components (Cornell and Ramsey 1998; Dingstad, Egelandsdal,
and Næs 2003; Kang, Joseph, and Brenneman 2011). That is,
corresponding to every treatment combination of the major
components, all possible settings of the minor components are
included in the design.

We first use the I-optimal design for the major compo-
nents. The I-optimal criterion is to minimize the average predic-
tion variance over the experimental region. For the simulation
setting described above, an I-optimal design for a quadratic
Sheffé model of three major components is the simplex-centroid
design (Scheffé 1963; Lambrakis 1968, 1969; Cornell 2002) con-
taining three vertices, three middle points, and the overall cen-
troid of the triangular constrained region by c1 + c2 + c3 = 1,
as shown in Figure 1(A). The plots are generated by the mixexp
package (Lawson and Willden 2016) in R software. Apparently,
the design for two minor components, containing (1, 0), (0, 1),
and (1/2, 1/2), is also a simplex-centroid for any mixture experi-
ment with two components. Thus, the overall design is a crossed
design of simplex-centroid for major components and simplex-
centroid design for the minor components.

Table 1 shows the simulation results in terms of R2, AICc,
MSE, MSCV, MSCVnorm, and model size of the different
models under comparison. The proposed AHM generally
outperforms the other models in prediction accuracy measured
by MSCV and MSCVnorm for all simulation models but
IV. For the simulation model I, which only contains the
major components, the AHM has comparable prediction
performance with the MajorQuad model. The simulation model
II is essentially a linear Scheffé model disregarding the MoM
structure because it is an additive model of all the terms ckxk1
and ckxk2, which are all the minor components proportions
with respect to all the entire mixture. For this model, the
AHM has competitive prediction performance comparable
with 1st_MM, but better prediction performance than the
MajorLinear and the MajorQuad. We also notice that, in the
simulation model III containing the interactions between the
major and corresponding minor components, both the AHM
and the 2nd_MM have good prediction performance. For the
simulation model IV, which contains the interaction terms
between the major and non-corresponding minor components,
the AHM and the 2nd_MM do not have as competitive
prediction performance as the MultipleScheffe model. One
possible explanation is that the crossed-component interaction
terms are not included in the proposed AHM in this study. The
simulation model V contains one interaction term between c2
and c3, and one between minor components c1x11 and c1x12,
and the prediction performance of the AHM is best and close
to that of the true model.

In terms of model fitting, the measures R2, AICc, and MSE
values in Table 1 indicate that the AHM performs satisfactorily.
The model size of the AHM varies across different settings
because of the variable selection performed via the nonnegative
garrote method but is often larger than that of 1st_MM but
smaller than that of 2nd_MM. Note that throughout this work,
the best (or close to best) values are in bold font in all the
tables.

The idea of the maximin design is to spread design points
in the constrained space by maximizing the minimum distance
between all pairs of points. Although originally proposed for
computer experiments (Johnson, Moore, and Ylvisaker 1990),
the maximin design can be applied to mixture experiments
too, except that the experimental space is confined to a
polyhedron, more complicated than the typical cubic for the
computer experiments. We used a stochastic search strategy
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Figure 1. Designs for the major components. In the unconstrained mixture experiment are (A) the I-optimal design with 7 design points and (B) the maximin distance
design with 8 design points. In the constrained mixture experiment are (C) the I-optimal design with 8 design points and (D) the maximin distance design with 8 design
points. In (C) and (D) the dashed lines represent the upper and lower constraints for each mixture component.

to find the optimal design under the maximin distance
criterion. Due to the nature of the stochastic search, the
optimal design varies somewhat in each search, which is
different from the simplex designs. Thus in each replicate of
the simulation, the maximin design might be slightly different.
The algorithm to generate the maximin distance design in the
mixture experiment is available in the supplemental materials.
Figure 1(B) shows the maximin distance design for the three
major components.

Table 2 compares the performances of different models in
terms of the same measurements as above. The results are
similar to the ones in Table 1. The AHM has a better pre-
diction performance than other methods in terms of MSCV

and MSCVnorm under different true simulation models but
IV. The R2, AICc, and MSE values show that the AHM ranks
with the best fitting models in all scenarios. For the model
generating models I, IV, and V, the 2nd_MM have comparable
fitting performance as the AHM. The model size of the AHM
is larger than that of the 1st_MM but smaller than that of the
2nd_MM.

4.2. Constrained MoM Experiments

There have been many mixture experiments with additional
constraints imposed on the components. Here we also consider
simulations where certain lower and upper bounds are placed on



TECHNOMETRICS 7

Table 1. Performance comparisons of models under the unconstrained MoM experiment using I-optimal design for major components from 100 simulation replications
(means and standard errors (in parenthesis)).

Model R2 MSE MSCV MSCVnorm AICc Size

I 1st_MM 0.970 (0.002) 14.98 (0.86) 15.47 (0.90) 0.30 (0.02) 519.8 (11.0) 6.0 (0.0)
2nd_MM 0.976 (0.001) 12.86 (0.42) 14.28 (0.52) 0.28 (0.02) 506.1 (6.3) 18.0 (0.0)
AHM 0.975 (0.001) 12.65 (0.30) 13.20 (0.28) 0.26 (0.02) 491.1 (4.4) 8.5 (1.5)
MajorLinear 0.970 (0.002) 14.98 (0.82) 15.21 (0.83) 0.30 (0.02) 516.5 (10.3) 3.0 (0.0)
MajorQuad 0.975 (0.001) 12.84 (0.22) 13.26 (0.23) 0.26 (0.02) 490.9 (3.3) 6.0 (0.0)
MultipleScheffe 0.973 (0.002) 15.23 (0.98) 17.85 (1.37) 0.35 (0.03) 546.7 (12.1) 24.0 (0.0)
trueModel 0.974 (0.001) 12.85 (0.15) 13.13 (0.15) 0.26 (0.02) 488.9 (2.2) 4.0 (0.0)

II 1st_MM 0.988 (0.000) 16.56 (0.24) 17.10 (0.25) 0.26 (0.02) 539.0 (2.8) 6.0 (0.0)
2nd_MM 0.989 (0.000) 16.54 (0.55) 18.34 (0.64) 0.28 (0.02) 553.7 (6.4) 18.0 (0.0)
AHM 0.988 (0.000) 16.37 (0.41) 17.09 (0.41) 0.26 (0.02) 539.8 (4.5) 8.5 (1.3)
MajorLinear 0.980 (0.001) 27.30 (1.62) 27.81 (1.66) 0.42 (0.03) 629.9 (11.3) 3.0 (0.0)
MajorQuad 0.980 (0.001) 27.46 (1.67) 28.41 (1.74) 0.43 (0.03) 634.2 (11.6) 6.0 (0.0)
MultipleScheffe 0.989 (0.000) 16.62 (0.57) 19.34 (0.80) 0.29 (0.02) 563.4 (6.6) 24.0 (0.0)
trueModel 0.988 (0.000) 16.56 (0.24) 17.10 (0.25) 0.26 (0.02) 539.0 (2.8) 6.0 (0.0)

III 1st_MM 0.922 (0.005) 159.18 (8.99) 164.45 (9.31) 0.31 (0.02) 966.5 (10.7) 6.0 (0.0)
2nd_MM 0.939 (0.003) 133.82 (4.59) 148.35 (5.47) 0.28 (0.02) 948.9 (6.5) 18.0 (0.0)
AHM 0.937 (0.003) 132.72 (3.37) 138.92 (3.34) 0.26 (0.02) 936.5 (4.7) 9.5 (1.4)
MajorLinear 0.816 (0.011) 371.83 (23.25) 377.82 (23.64) 0.71 (0.03) 1123.4 (11.9) 3.0 (0.0)
MajorQuad 0.825 (0.011) 359.80 (22.41) 371.58 (23.16) 0.70 (0.04) 1120.5 (11.9) 6.0 (0.0)
MultipleScheffe 0.930 (0.005) 160.31 (9.95) 189.79 (13.42) 0.36 (0.03) 991.5 (11.8) 24.0 (0.0)
trueModel 0.935 (0.003) 133.50 (1.74) 137.12 (1.83) 0.26 (0.02) 932.4 (2.5) 5.0 (0.0)

IV 1st_MM 0.840 (0.011) 289.58 (21.96) 302.55 (22.87) 0.63 (0.03) 1079.3 (14.4) 6.0 (0.0)
2nd_MM 0.861 (0.011) 270.02 (21.18) 296.74 (22.96) 0.62 (0.04) 1081.1 (14.9) 18.0 (0.0)
AHM 0.845 (0.012) 281.78 (21.85) 293.94 (22.50) 0.61 (0.03) 1075.1 (14.5) 6.9 (1.2)
MajorLinear 0.834 (0.012) 296.36 (21.88) 302.38 (22.32) 0.63 (0.03) 1080.4 (14.0) 3.0 (0.0)
MajorQuad 0.835 (0.012) 299.17 (22.29) 309.86 (23.07) 0.64 (0.03) 1085.5 (14.1) 6.0 (0.0)
MultipleScheffe 0.939 (0.003) 123.07 (4.39) 144.79 (5.62) 0.30 (0.02) 941.8 (6.8) 24.0 (0.0)
trueModel 0.932 (0.003) 122.95 (1.91) 126.35 (2.03) 0.26 (0.02) 916.8 (3.0) 5.0 (0.0)

V 1st_MM 0.964 (0.003) 18.66 (1.51) 19.27 (1.56) 0.44 (0.04) 561.0 (15.5) 6.0 (0.0)
2nd_MM 0.967 (0.003) 18.52 (1.57) 19.91 (1.63) 0.46 (0.04) 574.6 (16.2) 18.0 (0.0)
AHM 0.980 (0.001) 10.78 (0.29) 11.28 (0.30) 0.26 (0.02) 463.1 (5.0) 10.5 (1.2)
MajorLinear 0.964 (0.003) 18.55 (1.49) 18.96 (1.54) 0.43 (0.04) 556.5 (15.4) 3.0 (0.0)
MajorQuad 0.965 (0.003) 18.02 (1.44) 18.68 (1.50) 0.43 (0.03) 554.4 (15.2) 6.0 (0.0)
MultipleScheffe 0.966 (0.003) 19.52 (1.66) 22.99 (2.09) 0.53 (0.05) 593.2 (16.3) 24.0 (0.0)
trueModel 0.979 (0.001) 10.82 (0.17) 11.12 (0.19) 0.26 (0.02) 457.4 (3.0) 5.0 (0.0)

both major and minor components. Specifically, we assume that
the major and minor components have to satisfy the following
constraints:

c1 + c2 + c3 = 1, 0.2 ≤ c1 ≤ 0.45,
0.4 ≤ c2 ≤ 0.6, 0.1 ≤ c3 ≤ 0.25,
x11 + x12 = 1, 0.5 ≤ x11 ≤ 0.85, (11)

x21 + x22 = 1, 0.73 ≤ x21 ≤ 0.95,
x31 + x32 = 1, 0.68 ≤ x31 ≤ 0.92.

Figure 1(C) shows the I-optimal design for the second-order
Scheffé model for the major components in the constrained
mixture experiment. The design is generated by the AlgDe-
sign package in R software. Figure 1(D) shows the maximin
distance design for the major components in the constrained
mixture experiment. The comparison results for using the I-
optimal design and the maximin distance design for the major
components are reported in Tables 3 and 4, respectively. From
both tables, we can conclude that the AHM, the 1st_MM, and
the 2nd_MM all have competitive prediction performance.

It is worth noting that in the simulation with data generat-
ing model IV, the AHM has a comparable prediction perfor-
mance as the true model, which is an improvement from the
unconstrained MoM case. This phenomenon is likely due to
the additional constraints which make the design space more

complicated, and thus the flexibility of the AHM is more advan-
tageous than its counterparts for the true underlying model IV.
The AHM has similar R2, AICc, and MSE values as the 1st_MM
for simulation models I–V. The model size of the AHM is larger
than that of the 1st_MM but smaller than that of the 2nd_MM.
Note that the simulation results and conclusions for the type
(b) MoM experiments in the supplemental materials are quite
similar to those of the type (a) MoM experiments.

5. Real-Data Analysis

In this section, we analyze two real-data problems studied pre-
viously in the literature, the photoresist-coating experiment
(Cornell and Ramsey 1998) and the Pringles experiment (Kang,
Joseph, and Brenneman 2011), to evaluate the model perfor-
mance of the proposed AHM.

5.1. Photoresist-Coating Experiment

The objective of the photoresist-coating experiment is to deter-
mine the effect of proportions of resins in the formulation on
the photoresist material’s characteristic of interest (Cornell and
Ramsey 1998). The two major components (c1 and c2) are the
base resin types, and the minor components are the minor resins
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Table 2. Performance comparisons of models under the unconstrained MoM experiment using the maximin distance design for major components from 100 simulation
replications (means and standard errors (in parenthesis)).

Model R2 MSE MSCV MSCVnorm AICc Size

I 1st_MM 0.973 (0.004) 13.54 (2.19) 13.93 (2.25) 0.30 (0.02) 567.9 (40.2) 6.0 (0.0)
2nd_MM 0.978 (0.003) 11.80 (1.73) 12.90 (1.89) 0.28 (0.02) 553.4 (36.8) 18.0 (0.0)
AHM 0.977 (0.003) 11.66 (1.69) 12.13 (1.75) 0.26 (0.01) 539.5 (36.7) 8.8 (1.5)
MajorLinear 0.973 (0.004) 13.51 (2.17) 13.70 (2.20) 0.29 (0.02) 564.2 (39.9) 3.0 (0.0)
MajorQuad 0.976 (0.003) 11.80 (1.69) 12.13 (1.74) 0.26 (0.01) 538.8 (36.1) 6.0 (0.0)
MultipleScheffe 0.975 (0.004) 13.67 (2.27) 15.69 (2.67) 0.33 (0.03) 592.8 (41.2) 24.0 (0.0)
trueModel 0.976 (0.003) 11.80 (1.69) 12.02 (1.72) 0.26 (0.01) 536.6 (36.1) 4.0 (0.0)

II 1st_MM 0.989 (0.001) 15.24 (2.23) 15.68 (2.30) 0.26 (0.02) 593.9 (37.9) 6.0 (0.0)
2nd_MM 0.990 (0.001) 15.25 (2.27) 16.66 (2.48) 0.27 (0.02) 608.6 (38.6) 18.0 (0.0)
AHM 0.989 (0.001) 15.10 (2.22) 15.69 (2.31) 0.26 (0.02) 594.7 (38.3) 8.4 (1.4)
MajorLinear 0.981 (0.002) 25.56 (3.62) 25.96 (3.67) 0.43 (0.03) 702.8 (34.2) 3.0 (0.0)
MajorQuad 0.981 (0.002) 25.71 (3.64) 26.48 (3.74) 0.44 (0.03) 707.3 (34.2) 6.0 (0.0)
MultipleScheffe 0.990 (0.001) 15.26 (2.29) 17.38 (2.60) 0.29 (0.02) 617.0 (38.6) 24.0 (0.0)
trueModel 0.989 (0.001) 15.24 (2.23) 15.68 (2.30) 0.26 (0.02) 593.9 (37.9) 6.0 (0.0)

III 1st_MM 0.929 (0.007) 149.03 (15.58) 153.36 (16.05) 0.31 (0.02) 1088.1 (23.6) 6.0 (0.0)
2nd_MM 0.943 (0.004) 127.12 (9.87) 139.07 (10.99) 0.28 (0.02) 1069.0 (17.4) 18.0 (0.0)
AHM 0.942 (0.004) 123.48 (8.62) 128.68 (8.96) 0.26 (0.02) 1052.2 (15.4) 9.5 (1.5)
MajorLinear 0.827 (0.012) 359.67 (34.80) 364.74 (35.17) 0.73 (0.04) 1275.4 (21.0) 3.0 (0.0)
MajorQuad 0.834 (0.011) 350.05 (33.99) 360.07 (34.70) 0.72 (0.05) 1272.8 (20.9) 6.0 (0.0)
MultipleScheffe 0.937 (0.007) 146.10 (16.10) 168.50 (19.52) 0.34 (0.03) 1106.6 (24.8) 24.0 (0.0)
trueModel 0.941 (0.004) 124.18 (8.67) 127.12 (8.88) 0.25 (0.01) 1048.3 (15.8) 5.0 (0.0)

IV 1st_MM 0.846 (0.013) 275.88 (30.50) 286.01 (31.66) 0.62 (0.05) 1221.0 (25.2) 6.0 (0.0)
2nd_MM 0.872 (0.015) 243.74 (34.31) 265.99 (36.78) 0.58 (0.06) 1207.9 (33.3) 18.0 (0.0)
AHM 0.867 (0.016) 241.91 (34.45) 252.98 (35.77) 0.55 (0.06) 1194.4 (32.3) 8.4 (1.4)
MajorLinear 0.839 (0.011) 285.12 (27.88) 289.93 (28.40) 0.63 (0.05) 1225.1 (21.8) 3.0 (0.0)
MajorQuad 0.840 (0.011) 287.56 (28.17) 296.60 (29.14) 0.65 (0.05) 1230.3 (21.8) 6.0 (0.0)
MultipleScheffe 0.941 (0.006) 115.03 (11.83) 131.51 (13.60) 0.29 (0.02) 1055.1 (23.9) 24.0 (0.0)
trueModel 0.936 (0.006) 114.74 (10.66) 117.50 (10.90) 0.26 (0.02) 1030.7 (21.8) 5.0 (0.0)

V 1st_MM 0.967 (0.006) 17.03 (3.03) 17.49 (3.11) 0.43 (0.05) 616.5 (45.6) 6.0 (0.0)
2nd_MM 0.969 (0.006) 16.90 (3.09) 18.08 (3.25) 0.45 (0.05) 629.4 (46.6) 18.0 (0.0)
AHM 0.981 (0.002) 9.96 (1.36) 10.37 (1.42) 0.26 (0.02) 508.0 (33.7) 10.7 (1.4)
MajorLinear 0.967 (0.006) 16.92 (3.00) 17.23 (3.05) 0.43 (0.05) 612.0 (45.3) 3.0 (0.0)
MajorQuad 0.968 (0.006) 16.50 (2.98) 17.04 (3.08) 0.42 (0.05) 609.6 (46.3) 6.0 (0.0)
MultipleScheffe 0.969 (0.006) 17.67 (3.19) 20.19 (3.63) 0.50 (0.06) 647.4 (45.9) 24.0 (0.0)
trueModel 0.980 (0.002) 10.00 (1.34) 10.24 (1.37) 0.25 (0.02) 502.4 (33.1) 5.0 (0.0)

possessing different dissolution rates (slow and fast) denoted
as x11, x12, and x21, x22, respectively. The range of values for
all components is [0, 1]. All possible settings of (c1, c2) are
(0.75, 0.25), (0.5, 0.5), and (0.25, 0.75). For (xk1, xk2) with k =
1, 2, three settings (1, 0), (0.5, 0.5), and (0, 1) are chosen. The
overall design is a crossed design of the three designs containing
3 × 3 × 3 = 27 design points. In total, 42 measurements are
observed with replications at certain design points.

Table 5 compares the performances of different models. The
AHM has the smallest MSCV and AICc values among all. The
MajorLinear and MajorQuad model have the worst prediction
performance, indicating that the minor components play an
important role. The 2nd_MM has better prediction and model
fitting than the 1st_MM and the MultipleScheffe. The model size
of the AHM is larger than that of the 1st_MM and 2nd_MM, but
smaller than that of the MultipleScheffe.

The fitted AHM is

y = 25.919c1 + 29.21c2 − 6.536c1.1
1 x11 + 23.616c1.1

1 x12

− 5.58c1.1
2 x21 + 30.706c1.1

2 x22 − 38.974c1c2

− 18.818(c1.1
1 )2x11x12 − 19.363(c1.1

2 )2x21x22.

Based on the estimated parameters in the fitted AHM, the
major components have significant effects on the response, and
both main and interaction effects of the minor components

depend on their respective major components. These results
are consistent with the findings in the article (Cornell and
Ramsey 1998). However, the AHM reveals that the inter-major-
component blending property exists via the interaction term
between the major components, c1c2, which is different from the
multiple Scheffé model results (Cornell and Ramsey 1998). The
multiple Scheffé model assumes that the blending properties of
the minor components of one major component also depend
on the presence of minor components of other major compo-
nents. The reason for this different interpretation is that AHM
considers all the inter-major-component interactions only at
the major-component level, and all the inter-minor-component
interactions are restricted within the minor components nested
under the same major component. As a result, no inter-minor-
component-interactions are considered for the minor compo-
nents nested under different major components.

5.2. Pringles Experiment

The goal of Pringles® experiment is to develop a new kind of
Pringles® potato crisp such that the percentage of fat and the
hardness in the potato crisps are optimized. There are three
major components A, B, and C, whose proportion are denoted
by c1, c2, and c3. The major component A is composed of two
minor components A1 and A2 with proportion x11 and x12 with
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Table 3. Performance comparisons of models under the constrained MoM experiment using I-optimal design for major components from 100 simulation replications
(means and standard errors (in parenthesis)).

Model R2 MSE MSCV MSCVnorm AICc Size

I 1st_MM 0.999 (0.000) 0.47 (0.01) 0.49 (0.01) 0.26 (0.02) −152.8 (4.9) 6.0 (0.0)
2nd_MM 0.999 (0.000) 0.47 (0.01) 0.51 (0.02) 0.27 (0.02) −142.1 (6.6) 18.0 (0.0)
AHM 0.999 (0.000) 0.47 (0.01) 0.48 (0.01) 0.26 (0.02) −153.5 (6.1) 8.9 (2.0)
MajorLinear 0.999 (0.000) 0.47 (0.01) 0.48 (0.01) 0.26 (0.02) −156.3 (3.8) 3.0 (0.0)
MajorQuad 0.999 (0.000) 0.47 (0.01) 0.48 (0.01) 0.26 (0.02) −156.5 (3.9) 6.0 (0.0)
MultipleScheffe 0.999 (0.000) 0.47 (0.02) 0.54 (0.02) 0.29 (0.02) −130.1 (7.8) 24.0 (0.0)
trueModel 0.999 (0.000) 0.47 (0.01) 0.48 (0.01) 0.26 (0.02) −158.5 (3.0) 4.0 (0.0)

II 1st_MM 0.999 (0.000) 1.14 (0.02) 1.17 (0.02) 0.26 (0.02) 36.6 (3.3) 6.0 (0.0)
2nd_MM 0.999 (0.000) 1.14 (0.03) 1.24 (0.03) 0.27 (0.02) 50.8 (5.4) 18.0 (0.0)
AHM 0.999 (0.000) 1.13 (0.02) 1.17 (0.02) 0.26 (0.02) 38.6 (4.9) 8.8 (1.4)
MajorLinear 0.999 (0.000) 1.68 (0.11) 1.70 (0.12) 0.37 (0.02) 116.3 (14.7) 3.0 (0.0)
MajorQuad 0.999 (0.000) 1.68 (0.12) 1.73 (0.12) 0.38 (0.02) 120.4 (15.0) 6.0 (0.0)
MultipleScheffe 0.999 (0.000) 1.14 (0.04) 1.30 (0.05) 0.28 (0.02) 58.8 (7.4) 24.0 (0.0)
trueModel 0.999 (0.000) 1.14 (0.02) 1.17 (0.02) 0.26 (0.02) 36.6 (3.3) 6.0 (0.0)

III 1st_MM 0.998 (0.000) 8.53 (0.20) 8.78 (0.21) 0.26 (0.01) 471.5 (5.2) 6.0 (0.0)
2nd_MM 0.998 (0.000) 8.33 (0.25) 9.10 (0.28) 0.27 (0.02) 480.9 (6.7) 18.0 (0.0)
AHM 0.998 (0.000) 8.37 (0.18) 8.53 (0.17) 0.26 (0.01) 470.9 (5.1) 9.2 (1.3)
MajorLinear 0.994 (0.000) 26.73 (1.49) 27.11 (1.51) 0.81 (0.03) 714.6 (12.2) 3.0 (0.0)
MajorQuad 0.994 (0.000) 26.96 (1.49) 27.73 (1.54) 0.83 (0.03) 719.7 (12.1) 6.0 (0.0)
MultipleScheffe 0.998 (0.000) 8.35 (0.31) 9.50 (0.39) 0.29 (0.02) 489.6 (8.1) 24.0 (0.0)
trueModel 0.998 (0.000) 8.35 (0.10) 8.55 (0.10) 0.26 (0.01) 465.7 (2.6) 5.0 (0.0)

IV 1st_MM 0.994 (0.000) 12.11 (0.56) 12.48 (0.58) 0.30 (0.02) 547.0 (10.0) 6.0 (0.0)
2nd_MM 0.995 (0.000) 10.42 (0.30) 11.39 (0.35) 0.28 (0.02) 529.2 (6.3) 18.0 (0.0)
AHM 0.995 (0.000) 10.71 (0.30) 11.01 (0.31) 0.27 (0.02) 523.6 (6.4) 8.7 (1.1)
MajorLinear 0.989 (0.001) 24.46 (1.68) 24.81 (1.70) 0.60 (0.03) 695.2 (14.8) 3.0 (0.0)
MajorQuad 0.989 (0.001) 24.65 (1.70) 25.36 (1.74) 0.61 (0.03) 700.2 (14.8) 6.0 (0.0)
MultipleScheffe 0.996 (0.000) 10.33 (0.30) 11.76 (0.41) 0.29 (0.02) 535.7 (6.3) 24.0 (0.0)
trueModel 0.995 (0.000) 10.31 (0.14) 10.55 (0.15) 0.26 (0.02) 511.3 (3.0) 5.0 (0.0)

V 1st_MM 0.999 (0.000) 0.39 (0.01) 0.41 (0.01) 0.27 (0.02) −192.4 (7.2) 6.0 (0.0)
2nd_MM 0.999 (0.000) 0.38 (0.02) 0.42 (0.02) 0.28 (0.02) −185.9 (8.6) 18.0 (0.0)
AHM 0.999 (0.000) 0.37 (0.01) 0.38 (0.01) 0.26 (0.02) −200.7 (4.6) 9.8 (1.4)
MajorLinear 0.999 (0.000) 0.50 (0.03) 0.51 (0.03) 0.34 (0.02) −145.6 (14.9) 3.0 (0.0)
MajorQuad 0.999 (0.000) 0.49 (0.03) 0.51 (0.04) 0.34 (0.02) −145.0 (15.3) 6.0 (0.0)
MultipleScheffe 0.999 (0.000) 0.39 (0.02) 0.45 (0.02) 0.30 (0.02) −171.8 (10.1) 24.0 (0.0)
trueModel 0.999 (0.000) 0.37 (0.01) 0.38 (0.01) 0.26 (0.02) −206.3 (3.0) 5.0 (0.0)

respect to c1, and B is composed of two minor components B1
and B2 with proportion x21 and x22 with respect to c2. Compo-
nent C is pure material which can be considered to have only
a single minor component. The constraints on the components
are given by

c1 + c2 + c3 = 1, 0.601 ≤ c1 ≤ 0.643,
0.34 ≤ c2 ≤ 0.38, 0.017 ≤ c3 ≤ 0.019,

x11 + x12 = 1, x21 + x22 = 1,
0.835 ≤ x11 ≤ 0.905, 0.095 ≤ x12 ≤ 0.165,

0.9 ≤ x21 ≤ 0.98, 0.02 ≤ x22 ≤ 0.1.

The hardness of the potato chip (Hardness) and the percentage
of fat (%Fat) are the two response variables. The experimental
design is illustrated in Kang, Joseph, and Brenneman (2011) in
details.

Table 6 compares the model performances for the Pringles
experiment. For both responses “Hardness” and “%Fat,” com-
pared to the 1st_MM, the AHM has a smaller MSCV value, but a
larger AICc value, suggesting better prediction performance but
worse fitting performance. The MajorLinear and MajorQuad
model have the largest MSCV values, indicating that the minor
components play an important role in this study. The Multi-
pleScheffe model and the 2nd_MM has largest AICc values. The

model size of the AHM is larger than that of the 1st_MM, but
smaller than that of the 2nd_MM.

We use the fitted AHM to find the optimal settings to maxi-
mize the response “Hardness.” The fitted AHM is

ŷhardness = 9.745c1 − 5.115c2 + 6.916c1.3
1 x11 − 11.184c1.3

2 x21

+ 27.203c1.3
2 x22 + 21.176(c1.3

2 )2x21x22.

The 1st_MM proposed by Kang, Joseph, and Brenneman (2011)
is

ŷhardness = 8.786c1 + 20.966c2 + 13.506c3

+ 8.658c1x11 − 37.641c2x21.

Compared to the 1st_MM, the fitted AHM does not contain the
third major component c3. Similarly, we can also use the fitted
AHM to find the minimizer of “%Fat.” Table 7 shows the optimal
settings to minimize the response “%Fat” and to maximize
the response “Hardness,” respectively. The optimization can be
performed using the constrained nonlinear optimization in R
software. These optimal settings agree well with Kang, Joseph,
and Brenneman (2011). This experiment is a preliminary
study, and in the follow-up experiments, larger experiments
should be conducted around the optimal settings to find better
formulations.
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Table 4. Performance comparisons of models under the constrained MoM experiment using the maximin distance design for major components from 100 simulation
replications (means and standard errors (in parenthesis)).

Model R2 MSE MSCV MSCVnorm AICc Size

I 1st_MM 0.999 (0.000) 0.45 (0.05) 0.46 (0.05) 0.26 (0.02) −167.4 (24.0) 6.0 (0.0)
2nd_MM 0.999 (0.000) 0.44 (0.05) 0.48 (0.05) 0.27 (0.02) −155.3 (24.3) 18.0 (0.0)
AHM 0.999 (0.000) 0.44 (0.05) 0.45 (0.05) 0.26 (0.02) −167.4 (24.6) 9.0 (1.8)
MajorLinear 0.999 (0.000) 0.45 (0.05) 0.45 (0.05) 0.26 (0.01) −170.9 (24.0) 3.0 (0.0)
MajorQuad 0.999 (0.000) 0.44 (0.05) 0.45 (0.05) 0.26 (0.01) −170.2 (24.2) 6.0 (0.0)
MultipleScheffe 0.999 (0.000) 0.45 (0.05) 0.51 (0.06) 0.29 (0.02) −141.0 (25.5) 26.5 (1.1)
trueModel 0.999 (0.000) 0.44 (0.05) 0.45 (0.05) 0.26 (0.01) −172.4 (24.2) 4.0 (0.0)

II 1st_MM 0.999 (0.000) 1.07 (0.09) 1.10 (0.10) 0.26 (0.02) 21.6 (19.6) 6.0 (0.0)
2nd_MM 0.999 (0.000) 1.06 (0.09) 1.16 (0.10) 0.27 (0.02) 35.3 (19.9) 18.0 (0.0)
AHM 0.999 (0.000) 1.06 (0.09) 1.09 (0.10) 0.26 (0.02) 23.9 (20.0) 8.9 (1.4)
MajorLinear 0.999 (0.000) 1.59 (0.16) 1.62 (0.16) 0.38 (0.03) 104.9 (21.4) 3.0 (0.0)
MajorQuad 0.999 (0.000) 1.60 (0.16) 1.65 (0.16) 0.39 (0.03) 109.2 (21.7) 6.0 (0.0)
MultipleScheffe 0.999 (0.000) 1.07 (0.10) 1.22 (0.12) 0.29 (0.02) 47.8 (21.4) 26.5 (1.1)
trueModel 0.999 (0.000) 1.07 (0.09) 1.10 (0.10) 0.26 (0.02) 21.6 (19.6) 6.0 (0.0)

III 1st_MM 0.998 (0.000) 8.44 (0.31) 8.68 (0.32) 0.26 (0.02) 469.0 (7.9) 6.0 (0.0)
2nd_MM 0.998 (0.000) 8.32 (0.31) 9.10 (0.35) 0.28 (0.02) 480.6 (8.2) 18.0 (0.0)
AHM 0.998 (0.000) 8.35 (0.28) 8.50 (0.28) 0.26 (0.02) 470.4 (7.3) 9.3 (1.0)
MajorLinear 0.994 (0.000) 26.70 (1.80) 27.08 (1.82) 0.82 (0.03) 714.2 (14.7) 3.0 (0.0)
MajorQuad 0.994 (0.000) 26.96 (1.82) 27.73 (1.87) 0.84 (0.03) 719.5 (14.7) 6.0 (0.0)
MultipleScheffe 0.998 (0.000) 8.34 (0.36) 9.65 (0.49) 0.29 (0.02) 493.0 (9.8) 26.5 (1.1)
trueModel 0.998 (0.000) 8.31 (0.24) 8.51 (0.25) 0.26 (0.02) 464.6 (6.4) 5.0 (0.0)

IV 1st_MM 0.995 (0.000) 11.11 (0.81) 11.44 (0.83) 0.30 (0.02) 528.0 (16.1) 6.0 (0.0)
2nd_MM 0.996 (0.000) 9.63 (0.54) 10.53 (0.59) 0.28 (0.02) 512.1 (12.2) 18.0 (0.0)
AHM 0.995 (0.000) 9.92 (0.58) 10.21 (0.60) 0.27 (0.02) 506.8 (12.9) 8.7 (1.2)
MajorLinear 0.989 (0.001) 23.49 (1.62) 23.82 (1.64) 0.62 (0.04) 686.4 (15.0) 3.0 (0.0)
MajorQuad 0.989 (0.001) 23.68 (1.65) 24.36 (1.70) 0.64 (0.04) 691.5 (15.1) 6.0 (0.0)
MultipleScheffe 0.996 (0.000) 9.57 (0.56) 11.01 (0.69) 0.29 (0.02) 522.7 (12.8) 26.5 (1.1)
trueModel 0.996 (0.000) 9.58 (0.46) 9.80 (0.47) 0.26 (0.02) 495.1 (10.6) 5.0 (0.0)

V 1st_MM 0.999 (0.000) 0.35 (0.03) 0.36 (0.03) 0.27 (0.02) −218.3 (20.4) 6.0 (0.0)
2nd_MM 0.999 (0.000) 0.34 (0.03) 0.37 (0.03) 0.28 (0.02) −209.1 (20.5) 18.0 (0.0)
AHM 0.999 (0.000) 0.33 (0.03) 0.34 (0.03) 0.26 (0.02) −225.7 (20.4) 9.8 (1.5)
MajorLinear 0.999 (0.000) 0.46 (0.04) 0.47 (0.05) 0.35 (0.02) −162.7 (21.2) 3.0 (0.0)
MajorQuad 0.999 (0.000) 0.46 (0.04) 0.47 (0.05) 0.36 (0.03) −161.3 (21.3) 6.0 (0.0)
MultipleScheffe 0.999 (0.000) 0.35 (0.03) 0.40 (0.04) 0.30 (0.02) −193.5 (20.9) 26.5 (1.1)
trueModel 0.999 (0.000) 0.33 (0.03) 0.34 (0.03) 0.26 (0.01) −231.5 (19.9) 5.0 (0.0)

Table 5. Performance comparisons of models in the photoresist-coating experi-
ment.

Model R2 MSE MSCV AICc Size

AHM 0.998 1.929 2.324 44.552 9
MultipleScheffe 1.000 0.159 35.193 60.378 27

MajorLinear 0.902 90.321 95.529 193.724 2
MajorQuad 0.903 91.312 98.336 195.569 3

1st_MM 0.995 4.591 5.294 71.477 4
2nd_MM 0.998 2.425 2.860 51.952 8

6. Discussion

The intrinsic relationship between the major and minor
components is a key feature in the MoM experiment. This
work proposes an AHM with a meaningful interpretation of the
model structure for MoM experiments. The AHM considers the
effects of major and minor components in an additive fashion
and employs the hierarchical and heredity principles by the
nonnegative garrote technique for model selection. The AHM
incorporates the dependence between the major and minor
components via the coefficients of minor components. The
coefficient functions represent various types of knowledge. For
example, when one major component is not included, all of
its corresponding minor components are excluded from the
model. According to the numerical studies, the AHM provides

superior prediction performances compared to the benchmark
models.

It is worth remarking that the MoM experiment is closely
related to the multilevel model. The multilevel model usually
has two types of variables, the group-level variables and the
individual-level variables (Dedrick et al. 2009). The individual-
level variable has a direct effect on the response, while the group-
level variable contributes to the response in both direct and indi-
rect ways. For the example of using the random intercept in the
multilevel model, the intercept term will be dependent upon the
group-level variable, representing the direct contribution of the
group-level variable. The interaction between the individual-
level variable and the group-level variable represents the indi-
rect contribution of the group-level variable. However, in the
proposed AHM, the contribution of the minor components (the
individual-level variable) is made through a function depending
on the major components (the group-level variable).

The proposed AHM can be extended to the general varying-
coefficient models (Hastie and Tibshirani 1993; Fan and Zhang
1999). For example, one can consider the coefficients for the
minor components to be nonparametric functions of the cor-
responding major components. In this work, we adopted a
parametric power function of order h to express the structural
dependence between the major and minor components. This
power function is monotonic and bounded on the domain of
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Table 6. Comparison between proposed models.

Response Model R2 MSE MSCV AICc Size

AHM 1.000 0.261 0.362 10.048 8
MultipleScheffe 1.000 0.230 0.794 101.560 12

MajorLinear 0.999 1.426 1.757 14.068 3
MajorQuad 0.999 1.569 3.508 22.131 5

1st_MM 1.000 0.296 0.421 −6.202 5

%Fat

2nd_MM 1.000 0.102 0.590 87.772 12

AHM 0.996 0.157 0.174 −12.439 6
MultipleScheffe 0.999 0.069 0.235 81.138 12

MajorLinear 0.985 0.487 0.600 −4.194 3
MajorQuad 0.986 0.546 0.856 4.195 5

1st_MM 0.997 0.128 0.183 −20.474 5

Hardness

2nd_MM 0.999 0.130 0.428 91.823 12

Table 7. Optimal settings from the AHMs.

Response c1 c2 c3 x11 x12 x21 x22

%Fat 0.641 0.34 0.019 0.892 0.108 0.9 0.1
Hardness 0.643 0.34 0.017 0.905 0.095 0.9 0.1

ck. It will be interesting to investigate how to incorporate an
appropriate nonparametric form, allowing flexible structures to
describe the structural dependence of minor components on
their corresponding major components.

Supplementary Materials

The online supplementary materials include the lemma for the relationship
between the major–minor model and the additive model, the algorithm of
generating maximin distance designs for major components, and simula-
tion results for the type (b) MoM experiments in Section 4 of the main
article.
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