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Data center thermal management has become increasingly important because of massive computational
demand in information technology. To advance the understanding of the thermal environment in a data
center, complex computer models are extensively used to simulate temperature distribution maps. However,
due to management policies and time constraints, it is not practical to execute such models in a real time
fashion. In this article, we propose a novel statistical modeling method to perform real-time simulation by
dynamically fusing a base, steady-state solution of a computer model, and real-time thermal sensor data.
The proposed method uses a Kalman filter and stochastic gradient descent method as computational tools
to achieve real-time updating of the base temperature map. We evaluate the performance of the proposed
method through a simulation study and demonstrate its merits in a data center thermal management
application. Supplementary materials for this article are available online.

KEY WORDS: Data fusion; Dynamic Gaussian process; Kalman filter; Online optimization; Stochastic
projected gradient.

1. INTRODUCTION

Data center energy consumption has increased dramatically in
recent years, driven by the massive computing demand in every
sector of the economy. There is great interest in developing data
center thermal management to assist effective operation while
avoiding excessive use of energy (López and Hamann 2011).
Figure 1 shows the layout of a typical data center. Servers and
other IT equipment are mounted in racks on a raised floor.
The data center has alternating “cold aisles” and “hot aisles.”
The inlet side of a server faces a cold aisle, while the exhaust
side faces a hot aisle. Air conditioning units (ACUs) with large
scale fans blow cooled air into the plenum of the data center
thereby pressurizing it. The cooled air is then provided through
perforated tiles that are placed in the cold aisles to the inlets of
the servers. The heated exhaust air from the servers is returned
to the ACUs via the intake locations.

To advance the understanding of thermal environment in data
centers, it is essential to collect relevant environmental infor-
mation, such as temperature, which is subject to change over
time. A set of real-time sensors is used to provide the dynamic
information about the operating conditions in a data center. The
sensor readings of temperature are collected at fixed, short time
intervals. However, because of the cost, these real-time sensors
can only be deployed at a few selected locations. Thus, although
the available sensor readings are in real-time, they lack detailed
spatial information.

A temperature distribution map of high spatial resolution is
typically obtained by the output of physics-based computer

models (López and Hamann 2011). Due to policies and time
constraints, a computer model is usually scheduled to run at
fixed time periods, for example, once per day. Thus, although
such computer model outputs are available at a dense grid in
space, they can only provide a relatively “static” temperature
distribution map.

In an effort to obtain a real-time temperature distribution map
of high resolution, we propose a novel modeling strategy by
leveraging “static” but high-resolution computer model outputs
and sparsely deployed real-time sensor data. Combining com-
puter model output with observed measurement data, known
as “data fusion,” has been well studied in the literature. The
existing work in this field can be generally grouped into two
directions. The first one is so-called Bayesian melding (Raftery,
Givens, and Zeh 1995; Poole and Raftery 2000) where infor-
mation from observational data and computer model output are
combined through a latent data process to yield a Bayesian
posterior distribution of the quantities of interest. McMillan
et al. (2010) extended the Bayesian melding to analyze spatio-
temporal data for air pollution monitoring. Another direction
takes regression approaches where observations are regressed on
computer model output and regression coefficients are allowed
to vary over space (Guillas et al. 2008; Liu, Le, and Zidek 2008)
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Figure 1. The layout of a typical data center (figure adapted with
permission from Hamann et al. 2009).

or space-time (Berrocal, Gelfand, and Holland 2010a, 2010b,
2012).

In this article, we propose a dynamic Gaussian process model
to leverage real-time sensor data to (i) update computer model
outputs in real-time and (ii) issue forecasts that can be used to de-
tect changes and schedule the execution of the computer model.
Key contributions of this work are summarized as follows.

First, much existing “data fusion” work has focused on the
situation where computer model output and observed data are
available simultaneously. In this study, the observed data are
sensor measurements coming in real time while the computer
model is scheduled to run only at fixed time periods. Conse-
quently, the computer model output is not as up-to-date as the
sensor data. Moreover, to detect changes in a data center ther-
mal environment, it is important to issue temperature forecasts.
It is not straightforward to use existing “data fusion” methods
for this purpose. In contrast, the proposed method considers the
computer model output as a “static” base map and develops a
dynamic Gaussian process model to update the base map when-
ever sensor data are brought in. The inference obtained from the
estimated model can be used to issue one-step ahead forecasting
for change detection.

Second, an effective and fast algorithm is essential for real-
time updating of computer model output using sensor data. To
achieve this goal, we take a fully frequentist approach for es-
timation and inference, and derive an online algorithm using
a Kalman filter and stochastic gradient methods. We also de-
velop theoretical justification of the stochastic gradient method
in terms of optimal step size and associated error for the corre-
lated (autocorrelated and spatially correlated) data. While in the
field of “data fusion” existing work mostly relies on Bayesian
computation, in general, Bayesian computation may not be de-
signed for online updating, although a sequential Monte Carlo
method (Doucet, Godsill, and Andrieu 2000; Storvik 2002) can
potentially be applicable.

Finally, the way we model the spatio-temporal bias process
aims at issuing temporal forecasting and spatial prediction si-
multaneously with a fast and stable algorithm. The existing
research work on spatio-temporal modeling either considers
time as continuous and emphasizes more on the spatial predic-
tion (Gneiting 2002; Gneiting and Schlather 2002; Stein 2005;

Gneiting, Genton, and Guttorp 2007; Rodrigues and Diggle
2010; Fonseca and Steel 2011) or focuses more on forecast-
ing the future by extending multivariate time-series models to
spatio-temporal problems (Mardia et al. 1998; Cressie and Wikle
2011; Nobre, Sanso, and Schmidt 2011). The computation of
the latter approach mainly relies on Markov chain Monte Carlo
algorithms, which may not be computationally affordable for
our application.

The remainder of this article is organized as follows. Section
2 details the methodology of the proposed dynamic Gaussian
process model. In Section 3, we describe the procedure of pa-
rameter estimation using the Kalman filter and stochastic gra-
dient algorithm as computational tools. The setup and results
of experiments conducted on simulated data are provided in
Section 4. In Section 5, we demonstrate the proposed method
through its application in a representative data center example.
Concluding remarks and future extensions are given in Section
6.

2. THE PROPOSED MODEL

To fuse the “static” computer model output with real-time sen-
sor data, similar to Bayesian melding (McMillan et al. 2010),
we consider a latent “true” process yR

t (s) in terms of loca-
tion s and time t. Following Kennedy and O’Hagan (2001), we
formulate the relationship between the “true” process and the
computer model as yR

t (s) = yM (s)+ bt (s), where bt (s) is the
corresponding bias process between the computer model output
and the latent “true” process. On the other hand, sensor data
yF

t (s) does not reflect the “true” process perfectly (Kennedy
and O’Hagan 2001; Bayarri et al. 2007) and can be modeled
as yF

t (s) = yR
t (s)+ εF

s,t , where εF
s,t is the measurement error

at time t and location s. Here, we assume that the measure-
ment error is normally distributed with mean 0 and variance σ 2.
Therefore, the relationship between real-time sensor data and
“static” computer model output can be characterized as follows:

yF
t (s) = yM (s)+ bt (s)+ εF

s,t , for t = 1, . . . , T . (1)

Note that we can only observe deviance of the sensor data from
computer model output yF

t (s)− yM (s) at the sensor locations,
which are sparsely located in space.

To make predictions and issue forecasts, the key is to model
the spatio-temporal structure of the underlying bias process
bt (s). We consider that the bias at time t can be correlated
with the bias of the past L time points. Thus, we propose an
autoregressive AR(L) model for bt (s),

bt (s) =
L∑

l=1

αlbt−l(s)+ wt (s), (2)

where αl is the lth autoregressive coefficient jointly defining the
correlation between the model discrepancy at time t and that at
the lth past time point. Here we consider wt (s) as a zero-mean
Gaussian process (GaSP) (Kennedy and O’Hagan 2001) with
covariance function

C(wt (s), wt (s′))=τ 2ρ(s−s′; θ )=τ 2 exp{−θ‖s − s′‖κ}, (3)

where C(·, ·) is the covariance function, θ and κ are specified
values or unknown parameters, and τ 2 is the variance of the
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process. Specifically, given n locations s1, . . . , sn, the process
realization wt = (wt (s1), . . . , wt (sn))′ follows a multivariate
normal distribution N (0, τ 2�θ ). Here�θ is an n× n correlation
matrix specified by (3) as �θ = (ρ(si − sj ; θ ))n×n.

The proposed model in (2) implies that the dynamic change
of model discrepancy is not completely random over time but
autocorrelated. We consider a spatially and dynamically sta-
tionary model for the bias process because the goal is to use
computer model output to capture the nonstationary trends in
the data and the remaining bias is expected to be stationary.
When any significant change occurs in the system setting, the
proposed model is expected to detect this change and automat-
ically update the computer model so that the model bias pro-
cess remains stationary. Moreover, under the correlation func-
tion in (3) for the Gaussian process, we have the following
results.

Theorem 1. Under the assumption that the autoregressive
model in (2) is stationary, the bias process bt (s) has a sep-
arable spatial-temporal covariance function C(bt (s), bt ′ (s′)) =
τ 2ρ(s − s′; θ )γL(t − t ′;α), where γL(t − t ′;α) is an AR(L) au-
tocovariance function of unit variance white noise.

The details of the proof are given in the supplementary mate-
rials. Here we adopt a separable and stationary spatio-temporal
covariance model as our high-quality and relatively simple ap-
proximation. Other useful and flexible covariance models in this
context can be found in research work of the spatio-temporal
covariance model as discussed in Section 1.

3. ESTIMATION

Let yF
t = (yF

t (s1), . . . , yF
t (sn))′ and yM =

(yM (s1), . . . , yM (sn))′ be the vector of sensor data at
time t and computer model output at the sensor locations,
respectively. Denote ut = yF

t − yM as the vector of observed
deviances of real-time sensor measurements from computer
model output and bt = (bt (s1), . . . , bt (sn))′ as the unobserved
model bias. One conventional way to predict the dynamic
bias function is to use the joint distribution of model bias
b0:t = (b0, . . . , bt ) conditional on the past observed deviances
u0:t = (u0, . . . , ut ). However, this joint estimation approach
requires inversion of an n× n matrix �θ and a t × t matrix
�α,t = {γL(ti − tj ;α)}ti ,tj=1,...,t using all the data up to time t.
Although the number of sensor locations n is assumed to be
fixed in our model, the number of time points t will increase
quickly as time goes by. Therefore, the estimation procedure
will become very inefficient since the computational cost of
matrix inversion operation on �α,t is O(t3).

To facilitate computational efficiency, we transform the pro-
posed model (2) into a state-space model representation by tak-
ing advantage of the autoregressive model structure. We there-
fore can use a Kalman filter to predict the bias function bt (s) as
well as to estimate unknown parameters ψ . The key advantage
of a Kalman filter is that it provides a recursive procedure to
avoid the inversion operation on a matrix of increasing size
by using only the most recent data ut as well as the previous
prediction values.

3.1 Kalman Filter

Let the unobserved state vector βt =
(b′t , b′t−1, . . . , b′t−L+1)′ be the model bias of the past L time
points, then the equivalent state-space model representation of
(2) takes the form of

ut = Hβt + εt , εt ∼ N (0, σ 2 In) (4)

βt = Aβt−1 + Rwt ,wt ∼ N (0, τ 2�θ ), (5)

where H = (In, 0, . . . , 0), R = (In, 0, . . . , 0)′, and A =
(

A1 A2:L

In×(L−1) 0
) with A2:L = (A2, . . . , AL) and Al = αl In.

The observation Equation (4) links the observed response
ut with the unobserved state vector βt . The state Equation (5)
describes the dynamics of the state vector βt driven by the
stochastic input wt . Matrices A and �θ depend on unknown
parameters θ and α1, . . . , αL. Under the state-space model rep-
resentation, we can apply the Kalman filter technique (Kalman
1960; Shumway and Stoffer 2000; Durbin and Koopman 2001)
to estimate the unknown state vector βt or equivalently bt in a
recursive fashion. Details of the recursive estimation algorithm
are provided in the supplementary materials.

Moreover, the updated estimation from the Kalman fil-
ter provides a reformulation to the likelihood function,
from which we can estimate the unknown parameters ψ .
Denote f (u0, . . . , uT ;ψ) to be the joint probability den-
sity of u0, . . . , uT , and f (ut |u0:t−1;ψ) to be the condi-
tional probability density of ut |u0:t−1. Since E[ut |u0:t−1] =
bt |t−1 and V [ut |u0:t−1] = H P t |t−1 H ′ + σ 2 In = Ft where
P t1|t2 = V [βt1 |u0:t2 ], the likelihood function of our model can
be rewritten as

log L(ψ) = log f (u0, . . . , uT ;ψ)

= −1

2

T∑
t=1

[
log |Ft | + v′t F−1

t vt

]+ constant,

(6)

where vt = ut − bt |t−1. Using the log-likelihood function in (6),
the estimate of the unknown parameter vectorψ can be obtained
by

ψ̂∗T = arg min
T∑

t=1

log |Ft | + v′t F−1
t vt , (7)

under appropriate constraints. Note that all the elements Ft and
vt in the above objective function are intermediate results from
the Kalman filter algorithm. Therefore, once we obtain updates
from the Kalman filter, the likelihood function in (6) is readily
available to be optimized for the estimation of unknown param-
eters ψ .

However, solving such a nonlinear optimization problem can
be time-consuming because the objective function in (7) is
highly nonconvex and nonsmooth with respect to the parame-
tersψ . To estimate the parameters promptly, in the next section,
we apply the stochastic projected gradient method (Nemirovski
et al. 2009) to update ψ in an online fashion.
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3.2 Online Parameter Estimation

The stochastic projected gradient approach is commonly used
in online optimization (see Nemirovski et al. 2009; Bottou 2010,
and references therein). Here we consider using a batch version
of the stochastic projected gradient method to update ψ . Define
an index set B = {m, . . . , m+Q} of size Q and we update the
parameters ψ when a new batch of data of size Q is available.
Given the previous parameter estimates ψ̂B−1, we update the
parameter vector by

ψ̂B = PG

(
ψ̂B−1 − ηB

∑
t∈B

∂ log f (ut |u0:t−1;ψ)

∂ψ
|ψ̂B−1

)
, (8)

where PG(·) is a projection operator onto the feasible set G and
ηB is the step size for batch B. Note that the objective func-
tion − log f (ut |u0:t−1;ψ) ≡ l(ψ, ut |u0:t−1) is not convex. We
also examine the convergence of the proposed online parameter
estimation under several regular assumptions:

A1. The expectation of the stochastic subgradient g(ψ) =
E[G(ψ, ut |u0:t−1)] = ∂E[l(ψ, ut |u0:t−1)]/∂ψ exists and is
bounded, that is, there exist a positive number M such that
E[‖G(ψ, ut |u0:t−1)‖2

2] ≤ M2,∀ψ ∈ �.

A2. The feasible region of function l(ψ, ut |u0:t−1) can be di-
vided into K convex sets, that is, � = �1 ∪�1 ∪ · · · ∪�K .

A3. The initial value ψ0 is an interior point of the convex region
�k where the optimum value ψ∗ lies.

Theorem 2. Under Assumptions A1–A3, the optimal
step size ηB =

√
2Dk

M
√|B| , where Dk = maxψ,ψ ′∈�k

E[‖ψ − ψ ′‖2
2].

The associated expected error of the objective value is
1
T

[
∑T/|B|

B=1

∑
t∈B E[l(ψ̂B, ut |u0:t−1)− log L(ψ∗)]] ≤

√
2DkM√|B| .

The theorem implies that a large batch size |B| can lead to
a tight bound in terms of errors. However, it also increases the
computational cost for the online updating. On the other hand, a
large value of Dk indicates a large range for the convex regions
�k , which could result in loose error bound given the same batch
size. To achieve the same error bound, one can increase the batch
size. Similar arguments apply to M. When the observed data
contain more noise, the log-likelihood function is less smooth.
It results in a larger value of M, which would increase the error
bound given the same batch size.

3.3 Prediction and Forecasting

In the data center application, sensor data are often measured
at limited locations but the essential interest is to get a full
temperature distribution map of the entire region. Therefore,
it is important to predict the model discrepancy at new loca-
tions. Denote s∗ as a new location to issue the prediction, and
given observed deviances up to current time t, the distribution
of predicted model bias at the new location s∗ is bt (s∗)|u0:t ∼
N (bt |t (s∗), Ct,t |t (s∗)), where bt |t (s∗) = ρ ′θ (s∗)�−1

θ bt |t and
Ct,t |t (s∗)= ρ ′θ (s∗)�−1

θ C t,t |t�−1
θ ρθ (s∗)+ τ 2γL(0;α){1− ρ ′θ (s∗)

�−1
θ ρ(s∗)}. Here ρθ (s∗) = {ρ(s∗ − si ; θ )}i=1,...,n is the correla-

tion vector between the observed location s∗ and the sample
locations s1, . . . , sn and γL(0;α) is the autocovariance func-
tion of unit variance noise at t − t ′ = 0. With a base tem-

perature map based on computer model output yM (s∗), we
can then obtain a bias-corrected prediction of temperature as
yt |t (s∗) = yM (s∗)+ bt |t (s∗).

Similarly, we can derive the distribution of one-step ahead
forecasting is bt+1(s∗)|u0:t ∼ N (bt+1|t (s∗), Ct+1,t+1|t (s∗)). In
addition, we can obtain a prediction interval and one-step ahead
forecasting interval from the following result.

Theorem 3. The unconditional variances of prediction er-
rors and the unconditional variances of forecasting er-
rors are V [bt (s∗)− bt |t (s∗)] = Ct,t |t (s∗) and V [bt+1(s∗)−
bt+1|t (s∗)] = Ct+1,t+1|t (s∗).

4. SIMULATION STUDY

We evaluate the performance of the proposed model in (2)
through a simulation study. In this study, the sensor locations
S = {si ∈ [0, 20]× [0, 20] : i = 1, . . . , n} are randomly sam-
pled from a square [0, 20]× [0, 20] and the computer model
is simulated at grid-points G = {gij = (i − 1/2, j − 1/2) :
i = 1, . . . , 20; j = 1, . . . , 20}. We generated ut (s) = yF

t (s)−
yM (s) at both N = 400 prediction grids and n sensor lo-
cations from the joint distribution ut (s) = bt (s)+ εt,s with
b ∼ GP (0,�α,T ⊗ τ 2�θ ) and ε ∼ N (0, σ 2 I (N+n)T ). Here b =
{bt (s), t = 1, . . . , T ; s ∈ S ∪G} is the “true” model bias vector
to be recovered and ε = {εt,s , t = 1, . . . , T ; s ∈ S ∪G} is the
measurement error. The total number of time points T is 1000
in this simulation study. The true values of model parameters
are shown in Table 1.

The performance of the proposed method is evaluated via
parameter estimation accuracy, prediction and forecasting capa-
bility, and computational time for online and offline methods.
The batch size of the online method Q is 100 in this study.
Here, the offline method is defined as estimating parameters by
directly solving the optimization problem in (7). We examine
the proposed method by considering the following three as-
pects, (i) the density of sample locations measured by the ratio
of the number of sample locations to the number of prediction
grid-points, that is, n/N ; (ii) the signal-to-noise ratio (SNR)
condition defined as the variance of the bias process divided by
the measurement error variance, that is, SNR = τ 2/σ 2; and (iii)
the extent of spatial dependence measured by θ .

To evaluate the prediction performance of the proposed
method, the simulated data at n sampled locations are taken
as observed deviance ut (s) and then we predict the model bias
bt (g) at N grid-points g ∈ G. For the prediction bt |t (g) and
one-step ahead forecasting bt+1|t (g), the prediction accuracy
is measured by the mean squared prediction error (MSPE):
1
N

1
T

∑
g

ij
∈G
∑T

t=1[bt |t (gij )− bt (gij )]2 and mean squared

forecasting error (MSFE): 1
N

1
T−1

∑
g

ij
∈G
∑T−1

t=1 [bt+1|t (gij )−
bt+1(gij )]2, respectively. We also evaluate the accuracy of inter-
val estimation through its coverage defined as the percentage of
predicted values falling into the calculated intervals. Tables 1–3
report the average values and standard deviations of parameter
estimation, the MSPE and the coverage of prediction intervals
(PI), and the MSFE and coverage of one-step ahead forecast-
ing interval (FI) over 100 replications for the offline and online
methods. We summarize our findings as follows.
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Table 1. The means and standard errors (in parentheses) of the model parameters under the offline | online methods

n SNR θ α1 = 0.5 α2 = 0.3 α3 = 0.1

20 10 0.25 0.502 (0.008)|0.489 (0.012) 0.301 (0.010)| 0.303 (0.014) 0.097 (0.009)|0.112 (0.013)
20 10 0.04 0.505 (0.010)|0.473 (0.011) 0.303 (0.012)| 0.298 (0.012) 0.096 (0.012)|0.119 (0.011)
20 5 0.25 0.503 (0.008)|0.476 (0.012) 0.302 (0.011)| 0.304 (0.013) 0.096 (0.010)|0.126 (0.013)
20 5 0.04 0.504 (0.011)|0.452 (0.010) 0.303 (0.012)| 0.295 (0.011) 0.097 (0.012)|0.135 (0.010)
50 10 0.25 0.502 (0.006)|0.486 (0.007) 0.301 (0.006)| 0.302 (0.007) 0.098 (0.006)|0.115 (0.007)
50 10 0.04 0.504 (0.008)|0.475 (0.009) 0.301 (0.010)| 0.298 (0.010) 0.099 (0.008)|0.122 (0.0106)
50 5 0.25 0.503 (0.006)|0.478 (0.016) 0.301 (0.006)| 0.303 (0.016) 0.099 (0.007)|0.125 (0.018)
50 5 0.04 0.504 (0.008)|0.452 (0.009) 0.302 (0.010)| 0.296 (0.009) 0.098 (0.009)|0.135 (0.009)

n SNR θ θ = 0.25(0.04) τ 2 = 0.8 σ 2 = 0.08(0.16)

20 10 0.25 0.252 (0.006)|0.245 (0.011) 0.798 (0.012)|0.794 (0.016) 0.083 (0.005)|0.091 (0.011)
20 10 0.04 0.041 (0.001)|0.039 (0.002) 0.798 (0.013)|0.800 (0.017) 0.082 (0.002)|0.106 (0.010)
20 5 0.25 0.257 (0.007)|0.241 (0.012) 0.799 (0.014)|0.792 (0.019) 0.165 (0.007)|0.187 (0.015)
20 5 0.04 0.042 (0.001)|0.040 (0.002) 0.801 (0.014)|0.803 (0.018) 0.164 (0.003)|0.209 (0.011)
50 10 0.25 0.253 (0.003)|0.247 (0.007) 0.799 (0.007)|0.797 (0.010) 0.082 (0.002)|0.088 (0.007)
50 10 0.04 0.041 (0.000)|0.044 (0.014) 0.795 (0.011)|0.801 (0.015) 0.081 (0.001)|0.092 (0.005)
50 5 0.25 0.255 (0.004)|0.245 (0.008) 0.802 (0.008)|0.798 (0.011) 0.163 (0.003)|0.177 (0.009)
50 5 0.04 0.042 (0.000)|0.039 (0.001) 0.798 (0.011)|0.801 (0.015) 0.162 (0.001)|0.208 (0.007)

Table 2. The means and standard errors (in parentheses) of the MSPE and coverage of 90% and 95% prediction intervals (PI) for prediction
bt |t under the offline | online method

n SNR θ MSPE 90% Coverage 95% Coverage

20 10 0.25 2.215 (0.393)|2.216 (0.393) 0.902 (0.030)|0.900 (0.045) 0.951 (0.021)|0.948 (0.030)
20 10 0.04 0.617 (0.261)|0.619 (0.257) 0.904 (0.057)|0.888 (0.062) 0.952 (0.039)|0.941 (0.045)
20 5 0.25 2.236 (0.395)|2.234 (0.394) 0.903 (0.030)|0.899 (0.045) 0.952 (0.021)|0.948 (0.030)
20 5 0.04 0.677 (0.273)|0.684 (0.272) 0.905 (0.055)|0.878 (0.063) 0.953 (0.038)|0.934 (0.047)
50 10 0.25 1.439 (0.271)|1.440 (0.271) 0.902 (0.029)|0.899 (0.033) 0.952 (0.020)|0.949 (0.023)
50 10 0.04 0.180 (0.071)|0.190 (0.080) 0.884 (0.049)|0.889 (0.064) 0.939 (0.035)|0.940 (0.047)
50 5 0.25 1.513 (0.279)|1.514 (0.280) 0.905 (0.027)|0.901 (0.053) 0.953 (0.019)|0.948 (0.035)
50 5 0.04 0.410 (0.258)|0.418 (0.261) 0.895 (0.069)|0.883 (0.055) 0.942 (0.037)|0.937 (0.041)

Table 3. The means and standard errors (in parentheses) of the MSFE and coverage of 90% and 95% forecasting intervals (FI) for one-step
ahead forecasts bt+1|t under the offline | online methods

n SNR θ MSPE 90% Coverage 95% Coverage

20 10 0.25 2.404 (0.410)|2.406 (0.410) 0.901 (0.030)|0.900 (0.042) 0.951 (0.021)|0.948 (0.029)
20 10 0.04 1.220 (0.440)|1.223 (0.440) 0.900 (0.063)|0.890 (0.066) 0.950 (0.044)|0.943 (0.047)
20 5 0.25 2.415 (0.412)|2.414 (0.411) 0.902 (0.030)|0.899 (0.043) 0.951 (0.021)|0.948 (0.029)
20 5 0.04 1.253 (0.449)|1.261 (0.450) 0.900 (0.062)|0.882 (0.067) 0.950 (0.043)|0.938 (0.049)
50 10 0.25 1.832 (0.309)|1.833 (0.309) 0.901 (0.028)|0.898 (0.031) 0.951 (0.020)|0.949 (0.022)
50 10 0.04 0.909 (0.338)|0.917 (0.340) 0.895 (0.069)|0.896 (0.069) 0.946 (0.049)|0.947 (0.048)
50 5 0.25 1.878 (0.314)|1.883 (0.315) 0.902 (0.028)|0.901 (0.048) 0.952 (0.019)|0.949 (0.031)
50 5 0.04 1.069 (0.426)|1.078 (0.429) 0.895 (0.069)|0.887 (0.071) 0.946 (0.049)|0.941 (0.051)

First, under a more extensive spatial correlation (θ = 0.04),
larger signal-to-noise ratio (SNR = 10) and/or more sample lo-
cations (n = 50), the prediction/forecasting accuracy measured
by MSPE is improved significantly. Second, the accuracy of
parameter estimation and interval estimation does not change
much across various settings. Third, the online method per-
forms reasonably well compared with the offline method. The
accuracy of parameter estimation, prediction/forecasting, and
interval estimation from the online method is very close to that

from the offline method. But we do notice that the standard de-
viation of the online method is slightly larger than the offline
method. This is reasonable since the online method uses fewer
data points each time and can be affected more by the variability
in the data.

Table 4 compares the estimation results of different batch size
Q. Based on the numerical results, the estimation accuracy of
θ and τ is greatly improved as batch size Q increases. Moreover,
the prediction accuracy measured by MSPE and MSFE is also
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Table 4. The means and standard errors (in parentheses) of the estimation results for varying Q (n = 20, SNR = 10, θ = 5)

Q = 5 Q = 10 Q = 50 Q = 100

α1 = 0.5 0.494(0.023) 0.488(0.015) 0.478(0.011) 0.477(0.011)
α2 = 0.3 0.306(0.017) 0.305(0.015) 0.300(0.012) 0.299(0.012)
α3 = 0.1 0.112(0.019) 0.119(0.014) 0.120(0.010) 0.120(0.020)
θ = 0.04 10.505(11.999) 6.952(9.071) 0.119(0.206) 0.041(0.011)
τ = 0.8 0.727(0.049) 0.770(0.026) 0.799(0.206) 0.800(0.017)
σ = 0.08 0.621(0.953) 0.511(0.583) 0.098(0.028) 0.098(0.008)
MSPE 2.348(1.493) 2.111(1.457) 0.859(0.620) 0.623(0.262)
90% PI coverage 0.918(0.073) 0.920(0.080) 0.906(0.077) 0.887(0.070)
95% PI coverage 0.960(0.055) 0.960(0.065) 0.950(0.059) 0.940(0.051)
MSFE 2.508(1.351) 2.330(1.295) 1.401(0.641) 1.225(0.442)
90% FI coverage 0.915(0.068) 0.918(0.066) 0.904(0.045) 0.893(0.066)
95 % FI coverage 0.958(0.047) 0.960(0.045) 0.952(0.045) 0.945(0.047)

improved with the increase of batch size Q. It is worth pointing
out that the accuracy of other parameter estimates is quite stable
with different batch size Q.

The computational efficiency of the offline and online meth-
ods is reported in Table 5. The computation time of the offline
method is referred to as the time of solving the constrained op-
timization problem (7) using data of all T = 1000 time points.
The computation time of the online method is the total time of
updating the parameters across the whole time period. Since we
update the parameters every Q = 100 time points, it is equiv-
alent to the total time needed to solve B = T/Q stochastic
projected gradient descent problems (8). Under all the settings,
we clearly observe that the offline method is very slow for
real-time updating while the online method greatly speeds up
the computation. We thus conclude that the online method can
provide reasonably accurate results and is computationally ef-
ficient, which is crucial for updating computer model output
using sensor data in a real-time fashion.

We also examine the use of model selection (McQuarrie and
Tsai 1998), including Akaike information criterion (AIC) and
Bayesian information criterion (BIC), to select the optimal AR
order L under the setting θ = 0.25 and SNR = 5. Specifically,
they select the order L by minimizing −2 log L(ψ)+ J (L),
where log L(ψ) is the log-likelihood function in (6), and
J (L) = 2L for AIC and J (L) = L log(n) for BIC. Figure S1
in the supplementary materials reports AIC and BIC values for
models of AR orders ranging from 2 to 5. The result indicates
that both information criteria can identify the correct AR order

Table 5. Comparison of the computation time (in seconds) for the
offline and online methods: the mean and the standard deviations

(in parentheses)

n SNR θ Offline Online

20 10 0.25 1940.689(528.685) 4.083(0.838)
20 10 0.04 1944.242(519.749) 3.590(0.282)
20 5 0.25 2023.049(536.360) 4.065(0.816)
20 5 0.04 1910.227(566.626) 2.817(0.190)
50 10 0.25 7223.010(1622.481) 9.417(1.282)
50 10 0.04 5674.745(1580.333) 8.378(1.579)
50 5 0.25 6879.867(2423.806) 10.573(4.049)
50 5 0.04 8073.445(3105.651) 9.975(3.894)

of L = 3. For other settings, AIC and BIC are also expected to
work reasonably well.

5. CASE STUDY

In this section, we present a case study motivated by an in-
dustrial project aiming at better managing data center thermal
system and reducing energy cost (Hamann et al. 2009).

Data Description. As shown in Figure 2(a), the data center in
this case study has 15 racks, labeled R1–R15, and two ACUs.
Unlabeled objects represent equipment without a significant
amount of power consumption. Since cooled air comes out along
inlet sides, it is most critical to monitor the temperature at the
server inlet sides. As an illustration, we presented the results
along the inlet faces of R1–R5. Referring to Figure 2(b), there
are n = 35 sensors marked as solid dots along this inlet face
to monitor the real-time temperature. The temperature outputs
from the computer model are generated at grid points gj , j =
1, . . . , N , which are marked as circles in Figure 2(b).

The detailed temperature data are available for 25 cases cor-
responding to different fan settings of the air conditioning units
(López and Hamann 2011). These cases were used to gener-
ate simulated sensor readings for 1000 time points. They were
designed to represent a network of sparsely located sensors, as
would be typically present in a data center, and represent a re-
alistic scenario in data center energy management systems. The
simulated sensor readings provided input data for the computer
model solver, generating temperature maps along the 1000 time
points.

Figure 3 provides a diagram of the proposed real-time up-
dating and detecting strategy. In Step 1, we initialize the model
parameters using “historical data” and obtain the output from
the computer model given data at t = 0. Step 2 updates the
model parameters whenever a new batch of sensor data are
available and issues bias-corrected temperature prediction (Step
2(b)) at grid points and one-step ahead forecasting (Step 2(c))
at the sensor locations. In Step 3, the one-step ahead fore-
casts are compared with newly arriving sensor data to exam-
ine if any significant change occurs in the current data center
settings.

Online Prediction. Following Step 1(a) in Figure 3, we con-
sider sensor data of the first 300 time points as “historical”
data, and use them to obtain initial estimates ψ̂0. Specifically,
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Figure 2. Sample data center: (a) 2D view from the top; (b) server inlet faces for racks 1–5 where sensor location are marked as solid dots
and the prediction grid-points are marked as circles.

the computer model output is obtained using temperature sen-
sor data and air flow settings at t = 1 to provide input val-
ues for the boundary conditions of PDEs. Given sensor data at
t = 2, . . . , 300, we calculate the deviations of temperature mea-
surements from the computer model output for time t = 1 at the
sensor locations si , that is, ut (si), t = 2, . . . , 300; i = 1, . . . , n.
Finally, these calculated deviations are used to obtain the initial
parameter ψ̂0 through the constrained optimization (7).

The remaining 700 sensor data points are then used as
temperature measurements in real-time. For notation conve-
nience, we denote the time stamps as t ← (t − 301). Then one
can view the “real-time” sensor measurements as collected at
t = 0, 1, . . . , 699. Following Steps 1(b)–(c), we obtain the ini-
tial temperature map from the output of the computer model.

We remark that although in this example, “historical” and “real-
time” are two consecutive time periods, “historical” data can
come from any previous time period since they are simply used
for initial estimation.

Figure 4 displays the prediction results at time t = 5, 55, 105,
respectively. Here, we set the batch size Q = 50 so that the
parameters ψ are updated every 50 time points. To examine
the accuracy of the prediction results, we request the computer
model to be executed at the t = 5, 55, 105 time stamps with
sensor measurements as input of boundary information. Since
it is not realistic to obtain temperature maps from real mea-
surements, such computer model outputs are consider as the
closest scenario to the real temperature maps. From the re-
sults in Figure 4, the predicted bias from our method closely

Figure 3. A diagram of real-time updating the computer model output.
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Figure 4. Prediction of temperature measurements: (a), (c), (e) for the deviance of the computer model output executed at t = 5, 55, 105 from
the base temperature map; (b), (d), (f) for predicted bias from the proposed model.
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Figure 5. Online detection results: (a) true temperature map; (b) one-step ahead temperature forecast map; (c) detected temperature change
at sensor locations highlighted in solid dots; (d) temperature measurements of the sensor circled in (c).

resembles the deviance of the computer model output executed
at t = 5, 55, 105 from the base temperature map.

We also applied a multivariate Portmanteau statistic (Hosking
1980) to test the goodness of fit of the stationary AR(L) model
for the bias process (2). Since we expect changes in the system
settings, the temperature data would only be stationary at the
beginning until certain significant system change occurs. There-
fore, we applied the Portmanteau test to the first 10, 50, 100 time
points, and the results confirm that a stationary AR(L) fits well
to the bias process.

Online Detection. Under the proposed framework, at time
stamp t, we can issue forecasting of the expected temperature
for the next time stamp t + 1 and quantify their uncertainties.
Once the sensor measurements at time t + 1 are available, we
can compare them with our forecasts. If they deviate signifi-
cantly from the issued forecasts, it is very likely that a significant
change occurred in the current operating conditions. This indi-
cates that we need to reexecute the computer model to reflect
the changes in the operating conditions.

In this study, statistical hypothesis testing is applied to ex-
amine if the forecasted temperature yt+1|t (si) are significantly

different from the sensor measurements yt+1(si). Note that
measurements from multiple sensors need to be compared
simultaneously and thus a multiple testing approach is ap-
propriate. In the multiple testing, each test has the null hy-
pothesis H 0

i : yt+1(si)− yt+1|t (si) = 0 against the alternative
H 1

i : yt+1(si)− yt+1|t (si) �= 0 for i = 1, . . . , n. As the spatially
correlated model bias leads to dependent test statistics, we
apply the false discovery ratio (FDR) test (Benjamini and
Hochberg 1995) for multiple testing. It can effectively con-
trol the false discovery rate for dependent testings (Benjamini
and Yekutieli 2001). The key idea of the procedure is as fol-
lows. Under the individual H 0

i , we compute the observed p-
values pi = 2[1−( |yt+1(si )−yt+1|t (si )|√

Ct+1,t+1|t (si )+σ 2
)], where  is the cumu-

lative distribution function of the standard normal distribu-
tion, yt+1|t (si) = yM (si)+ bt+1|t (si) is the forecast of tempera-
ture, and Ct+1,t+1|t (si) is the si th diagonal element of the var-
covariance matrix.

Let p(1) ≤ p(2) ≤ p(n) be the ordered observed p-values.
Given the false discovery rate q, we define k = max{j : p(j ) ≤
j

n
q} and reject H 0

(1), . . . , H
0
(k). If there exists a j such that
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p(j ) ≤ j

n
q, we reject the null hypothesis and conclude that there

is a statistically significant change of temperature in the data
center.

Figure 5 reports one significant change detected under the
proposed framework with q = 0.05 used in the FDR test. Com-
paring Figure 5(b) with Figure 5(a), it is clear that the forecasted
temperature map appears significantly different from the tem-
perature distribution of the computer model output at t = 171.
The FDR test also confirms that 9 out of 35 testings claim to
reject the null hypothesis. In other words, at these nine sensor
locations, highlighted as solid dots in Figure 5(c), the tempera-
ture forecasts based on the conditions at t = 0 are significantly
different from the computer model output based on sensor data
at t = 171. To verify the change in temperature distribution
around the time point t = 171, Figure 5(d) shows the time se-
ries of the temperature measurements at the sensor location
circled in Figure 5(c). There clearly is a large jump in the time
series, which also occurs at the other eight sensors located at the
bottom of the inlet side. As a matter of fact, at t = 171, there was
a change of around 16,700 cubic feet per minute in the amount
of air supplied by the air conditioning units. Once a significant
change is detected, requests of reexecuting the computer mod-
els can be automatically processed via the energy management
system. The procedure will then follow what is summarized in
Figure 3.

6. DISCUSSION

In this work, we proposed an online updating strategy to
achieve three important goals in data center thermal manage-
ment: (i) assess the deviance of a dynamic temperature process
(monitored by real-time thermal sensors) from a base tempera-
ture map (generated from a computer model); (ii) obtain real-
time updates of high-resolution temperature maps by adjusting
the dynamic deviance; and (iii) issue forecasts to detect changes
and automatically schedule the computer model to reexecute. In
the proposed framework, a dynamic Gaussian process model is
developed to leverage the sensor data that are dense in time but
sparse in space to update the high-resolution computer model
output in real-time. To achieve online updating, we cast the dy-
namic Gaussian process model to a state-space representation,
which enables us to use the Kalman filter as a computational
tool. Moreover, the parameters in the dynamic Gaussian process
model are updated in an online fashion through the stochastic
projected gradient method.

The proposed method assumes a separable spatio-temporal
dependence structure. One future research direction is to con-
sider a nonseparable spatial-temporal dependence by, for ex-
ample, allowing autoregressive structure to vary over spatial
locations. Moreover, a more realistic model assumption is that
measurement error variances differ for each sensor, which will
improve the detection accuracy and reduce false alerts. These
extensions can be accommodated into the proposed method
through a Bayesian hierarchical modeling approach and on-
line learning can be achieved via a particle filtering algorithm
(Doucet, Godsill, and Andrieu 2000; Storvik 2002).

Another interesting future research topic is to investigate the
estimation consistency for model parameters. However, deriv-
ing consistency results for parameters in spatial-temporal mod-

els is challenging in general. To our best knowledge, if one only
considers spatial Gaussian process, some consistency results
(Zhang 2004; Kaufman, Schervish, and Nychka 2008) can be
established under the Matern kernel, of which the exponential
spatial covariance model used in our work is a special case.
On the other hand, if we only consider the temporal autore-
gressive model, there are also several theoretical works (Brock-
well, Davis, and Trindade 2004; Basu and Michailidis 2015) on
the consistency of estimated autoregressive coefficients. Under
the state-space model representation, the consistency of autore-
gressive coefficients and covariance matrix has been studied in
Anderson et al. (1969). However, they only focused on least-
square estimation rather than the likelihood estimation used in
the proposed method. Also the covariance matrix in their study
is unstructured while the proposed model assumes a parametric
spatial covariance model. Additionally, in our proposed method,
both autoregressive coefficients and parameters in the covari-
ance structure are estimated simultaneously, which makes the
study of consistency even more challenging.

The forecast outputs from the proposed method can be used
for online change detection. To illustrate this capability, in this
study, we adopt the false discovery rate as a multiple testing
approach. It will be interesting to fully investigate other testing
methods to possibly improve the detection accuracy in terms of
false positive/negative rate.

Finally, Figure 5(a)–5(b) demonstrates a clear edge disconti-
nuity in the temperature map. It will be an interesting research
topic to explore various methods in image processing (Qiu 1998,
2005, 2007; Qiu and Mukherjee 2010) to properly account for
such edge discontinuities.

Although motivated by online updating and scheduling of
computer models for data center thermal management, the pro-
posed method is by no means restricted to the application of
real-time thermal management in data centers. It can be applied
for updating other high-resolution but computationally expen-
sive models with real-time but sparsely sampled observations.

SUPPLEMENTARY MATERIALS

The supplementary material for this article contains the fol-
lowing: (1) details of the recursive estimation algorithm for the
Kalman filter technique discussed in Section 3.1; (2) plots cor-
responding to the simulation study presented in Section 4; (3)
proofs of Theorem 1 (Section 2), Theorem 2 (Section 3.2), and
Theorem 3 (Section 3.3); and R code for implementation of the
proposed method.
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López, V., and Hamann, H. (2011), “Heat Transfer Modeling in Data
Centers,” International Journal of Heat and Mass Transfer, 54, 5306–
5318. [472,477]

Mardia, K., Goodall, C., Redfern, E., and Alonso, F. (1998), “The Kriged
Kalman Filter,” Test, 7, 217–282. [473]

McMillan, N., Holland, D. M., Morara, M., and Feng, J. (2010), “Combining
Numerical Model Output and Particulate Data Using Bayesian Space-Time
Modeling,” Environmetrics, 21, 48–65. [472,473]

McQuarrie, A. D., and Tsai, C.-L. (1998), Regression and Time Series Model
Selection, River Edge, NJ: World Scientific. [477]

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. (2009), “Robust Stochas-
tic Approximation Approach to Stochastic Programming,” SIAM Journal of
Optimization, 19, 1574–1609. [474]

Nobre, A., Sanso, B., and Schmidt, A. (2011), “Spatially Varying Autoregressive
Processes,” Technometrics, 53, 310–321. [473]

Poole, D., and Raftery, A. (2000), “Inference for Deterministic Simulation Mod-
els: the Bayesian Melding Approach,” Journal of the American Statistical
Association, 54, 1244–1255. [472]

Qiu, P. (1998), “Discontinuous Regression Surfaces Fitting,” The Annals of
Statistics, 26, 2218–2245. [481]

——— (2005), Image Processing and Jump Regression Analysis, New York:
Wiley. [481]

——— (2007), “Jump Surface Estimation, Edge Detection, and Image
Restoration,” Journal of the American Statistical Association, 102,
745–756. [481]

Qiu, P., and Mukherjee, P. (2010), “Edge Structure Preserving Image Denois-
ing,” Signal Processing, 90, 2851–2862. [481]

Raftery, A., Givens, G., and Zeh, J. (1995), “Inference from a De-
terministic Population Dynamics Model for Bowhead Whales” (with
discussion), Journal of the American Statistical Association, 90,
402–430. [472]

Rodrigues, A., and Diggle, P. (2010), “A Class of Convolution-Based Models
for Spatio-Temporal Processes with Non-Separable Covariance Structure,”
Scandinavian Journal of Statistics, 37, 553–567. [473]

Shumway, R., and Stoffer, D. S. (2000), Time Series Analysis and Its Applica-
tions, New York: Springer. [474]

Stein, M. L. (2005), “Space-Time Covariance Functions,” Journal of the Amer-
ican Statistical Association, 100, 310–321. [473]

Storvik, G. (2002), “Particle Filters for State-space Models with the Presence
of Unknown Static Parameters,” IEEE Transactions on Signal Processing,
50, 281–289. [473,481]

Zhang, H. (2004), “Inconsistent Estimation and Asymptotically Equal Interpo-
lations in Model-Based Geostatistics,” Journal of the American Statistical
Association, 99, 250–261. [481]

TECHNOMETRICS, NOVEMBER 2016, VOL. 58, NO. 4


	Online Updating of Computer Model Output Using Real-Time Sensor Data
	INTRODUCTION
	THE PROPOSED MODEL
	ESTIMATION
	Kalman Filter
	Online Parameter Estimation
	Prediction and Forecasting

	SIMULATION STUDY
	CASE STUDY
	DISCUSSION
	SUPPLEMENTARY MATERIALS


