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A manufacturing system with both quantitative and qualitative (QQ) quality responses (as a QQ system) is
widely encountered in many cases. For example, in a lapping process of the semiconductor manufacturing,
the quality of wafer’s geometrical characteristics is often measured by the total thickness variation as a
quantitative response and the conformity of site total indicator reading as a binary qualitative response.
The QQ responses are closely associated with each other in a QQ system, but current methodologies often
model the two types of quality responses separately. This article presents a novel modeling approach,
called “QQ models,” to jointly model the QQ responses through a constrained likelihood estimation. The
QQ models can jointly select significant predictors by incorporating inherent features of QQ systems,
leading to accurate variable selection and prediction. Both simulation studies and a case study in a lapping
process are used to evaluate the performance of the proposed method. Supplementary materials to this
article are available online.
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1. INTRODUCTION

In manufacturing systems, both quantitative and qualitative
(QQ) quality responses are often used for quality control. We
call such a system “a QQ system.” QQ systems are widely en-
countered in various manufacturing processes. For example, in
a lapping process of a semiconductor manufacturing, the wafers
are lapped to improve the thickness uniformities and surface fin-
ish as shown in Figure 1 (Ning, Bian, and Liu 2012). The total
thickness variation (TTV) is a quantitative quality response to
characterize the range of the wafer thickness. The conformity
of site total indicator readings (STIR) is a qualitative response
with binary output, which is used to indicate whether the STIR
is larger than the tolerance or not. The STIR is the span of de-
viation readings of the front surface in a predefined site, which
represents the flatness of wafers. The detailed definitions of
TTV and STIR can be found from the semiconductor manufac-
turing industry (O’Mara, Herring, and Hunt 1990). The TTV
and the conformity of STIR are two key measurements for the
quality of wafer geometrical characteristics. Both of them are
affected by the same set of process variables in the lapping man-
ufacturing, such as pressure, rotation speed, and lapping time
(Marinescu, Uhlmann, and Doi 2007). Common root causes of
QQ responses need to be identified for variation reduction and
quality improvement. However, the association between the two
variables is not clear from engineering domain knowledge.

Therefore, joint models of QQ responses are needed for
quality-process modeling in the lapping process. For another ex-
ample, in a solar cell lamination process, solar cells are grouped
and laminated to panels. The panels may have both power loss

and solar cell cracks (Pilla, Galmiche, and Maldague 2002;
Paggi, Corrado, and Rodriguez 2013). The quality of the pro-
cess often considers the power loss as a quantitative response
and uses a binary response to indicate if the panel has cracked
solar cells after the lamination. For quality improvement of solar
cells, it is natural to consider a joint modeling of the power loss
and the crack of the solar cells.

In manufacturing systems, the quantitative quality variables
are widely used for quality control. Meanwhile, the qualitative
quality variables also exist because of heuristic judgment or the
limitation of sensor measurements. For example, the quantita-
tive quality variables cannot be accurately measured in real time
due to sensor limitations. Instead, some qualitative quality re-
sponse variables are relatively easy to collect for facilitating the
real time data collection. For the lapping process in Figure 1,
the sensor is only capable to indicate whether the STIR is within
the tolerance or not, which results in a qualitative quality mea-
surement. With the qualitative quality measurement available,
modeling such responses with respect to the corresponding pre-
dictor variables will be very useful because it can clearly provide
useful information on whether the manufacturing is conform-
ing or not (e.g., a binary indicator for a failed manufacturing is
clearly nonconforming). Such information will be reflected in
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Figure 1. An illustration of a lapping process with QQ responses (redrawn from Ning, Bian, and Liu (2012), and Zhao et al. (2011) with

authors’ permission).

the variable selection in our proposed methods, which will be
discussed later.

Although both QQ quality responses exist in a manufactur-
ing system, current methods often focus on developing quality-
process models separately for the two types of quality responses.
For quantitative quality variables, statistical models and engi-
neering models are widely used to model the quality-process
relationship based on observational data or design of experimen-
tal data (Fong and Lawless 1998; Shi 2006; Wu and Hamada
2009; Jin and Shi 2012). Quality control are performed based
on these models, such as process monitoring (Hawkins 1991,
1993; Woodall 2000; Woodall and Montgomery 2014; Mont-
gomery 2001; Qiu 2014), diagnosis (Apley and Shi 1998; Zhou
et al. 2003; Shi 2006), and control (Joseph 2003; Jin and Ding
2004; Shi 2006; Jin and Shi 2012). Modeling and quality con-
trol methods for qualitative quality variables are also proposed,
such as in the area of design of experiments, statistical pro-
cess control, and run-to-run control for categorical variables
(May, Huang, and Spanos 1991; Spanos and Chen 1997; Wang
and Tsung 2007; Lin and Wang 2011). Qiu (2014) provided a
comprehensive summary on the recent development in statisti-
cal process control. In general, the above modeling and quality
control methods do not account for the association between
the two types of quality responses. In the literature of biomet-
rical study, Fitzmaurice and Laird (1997) investigated a joint
modeling for the association of QQ responses. In their work, a
conditional model of quantitative response is considered condi-
tioned on the qualitative response, leading to marginal regres-
sion models. However, the marginal regression models may
not be useful for quality control in the manufacturing sys-
tems, since they may not provide an accurate prediction of
the quality responses. In the literature of process monitoring,
Qiu (2008) suggested monitoring the mixed responses based
on categorizing the quantitative responses. Thus, the monitor-

ing can be carried out based on the joint distribution of the
categorized responses. It is possible to apply similar strategies
to model the QQ responses without imposing the normality as-
sumption. In manufacturing systems, it often requires to model
the quantitative responses directly for quality control purpose,
as the lapping process discussed earlier. Recently, mixed graph-
ical models (Chen, Witten, and Shojaie 2014; Yang et al. 2014)
have been proposed to study the general association of QQ re-
sponses. They mainly focus on the correlation or partial correla-
tion of the responses, rather than the exact dependency of the QQ
responses.

In this article, we propose a new joint modeling framework,
called “QQ models,” for both QQ quality responses in a QQ sys-
tem. We focus on the qualitative response with binary output,
though it is likely to accommodate the multi-level qualitative
response as discussed in Section 6. We adopt a logistic regres-
sion model for the qualitative response. For the quantitative
response, we consider the linear regression models conditioned
on the qualitative response. To address the association of the
QQ responses, we consider that the conditional linear regres-
sion models are different based on different values of the binary
output. The proposed method enables a more direct and accu-
rate prediction of the quality responses, rather than a prediction
of the expectation of the quantitative response. Note that the
prediction for the qualitative response is usually very informa-
tive in the manufacturing system. We will first construct the
prediction of qualitative response, then predict the quantitative
response conditioned on the estimated qualitative response. Re-
call the lapping process example: the QQ responses of TTV and
STIR indicator are jointly determined by the lapping process
variables and the quality covariates before lapping. When the
STIR indicator is zero (i.e., STIR satisfies the tolerance), the
lapping process is likely to be conforming. Thus, the lapping
process is effective to reduce TTV, and the predictors related
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to process conditions may be more important to affect the TTV
than the quality covariates before lapping. If the STIR indicator
is one (i.e., STIR is too large to satisfy the tolerance), then the
lapping operations may not be conforming. Thus, the quality
covariates before lapping become important to affect the TTV.
Therefore, the coefficients in the conditional regression models
for TTV may vary depending on the values of the STIR indica-
tor. It is beneficial to consider different conditional regression
models for quantitative response under different values of the
qualitative response, reflecting the intrinsic heterogeneity of the
underlying models in the QQ system. This engineering percep-
tion is successfully validated by the results of the case study in
Section 5.

Moreover, the proposed QQ models adopt a joint likelihood
approach for parameter estimation and use the nonnegative gar-
rote approach (Breiman 1995) for efficient variable selection.
The nonnegative garrote approach accommodates the associa-
tion of significant predictors among QQ models through flexible
constraints. The proposed QQ models intend to encourage that
the significant variables in the logistic regression model are kept
as significant in at least one of the conditional linear regression
models. It is because that the significant variables from modeling
the qualitative response are expected to contribute an important
role for modeling other quantitative quality responses. For ex-
ample, in manufacturing scale-up, modeling the binary response
whether the manufacturing is conforming or not will provide
useful information. In this model, a significant variable should
be important for quality control in general, and thus should also
be kept as a significant variable for other quantitative quality re-
sponses. To address the computational consideration of parame-
ter estimation, we also develop a fast computation algorithm by
iteratively approximating the objective function using quadratic
approximations.

The rest of the article is organized as follows. In Section 2, we
detail the proposed QQ models for jointly modeling both types
of responses. In Section 3, we develop an efficient algorithm
for fast computation. In Section 4, simulation studies are con-
ducted to examine the effectiveness in prediction and variable
selection of the proposed QQ models. In Section 5, the proposed
QQ models are applied to the lapping process as a case study.
Finally, we draw our conclusions and discuss the future work in
Section 6.

2. THE PROPOSED QQ MODELS

We start with one quantitative response y and one qualitative
response z with binary output, though it is possible to extend
the models for multiple responses, as discussed in Section 6.
Let us denote the observed data are (x;, y;,z;),i =1,...,n,
where y; € R and z; € {0, 1}. Here the predictor vector x =
(x1,...,xp) contains p predictors, which can be process vari-
ables or initial quality covariates. To jointly model the QQ re-
sponses y and z given x, we follow a joint probability den-
sity function f(y, z|x) = f(y|z, x) f(z|x), where f(-) denotes
a general density function. The conditional model on y|z is con-
sidered to be linear regressions, while the model of z follows a
logistic regression. Specifically, we propose a joint modeling of
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where n = (4, ...
and

,1p) is a vector of parameter coefficients,

ylz,x ~ N (zx'BV + (1 — 2)x'B?, 07), (2.2)

where 8 = (B, ..., BY™Y, m = 1,2. The above proposed
model indicates that y|z=1,x ~ N(x/ﬂ(l),az) and y|z =
0,x ~N (x’ﬂ(z), 0?). We assume the same variances for the
two conditional distributions of y|z = 1,x and y|z =0, x. It
means that the difference between two conditional distributions
are mainly driven by their mean functions. If the two conditional
distributions have different variances, one can easily have two
different variance parameters, which will not change the nature
of the model formulation. Recall that the relationship between
the quantitative response y and its predictors depends on the
output of qualitative response z. To accommodate this consider-
ation, the proposed method incorporates two conditional linear
regression models for y|z = 1, x and y|z = 0, x. If these two
linear models are the same, that is, ,3(1) = ﬁ(z), then the quanti-
tative response y and the qualitative response z are independent.
In this situation, one can model the quantitative response y
regardless of the qualitative response z. Alternatively, it is im-
portant to take accounts of the effects of the qualitative response
z when modeling the quantitative response y. Note that the pro-
posed models in (2.1) and (2.2) provide a joint modeling of
y|z, x and z|x. Now we can also derive the conditional model on
z|y, x. The probability of z conditioned on y can be expressed as
Piz=1ly,x)= f(ylz=1,x)P(z=1,x)/f(y, x). Thus, we

have
—x ()2
S
P(z= 1|y’x)= r @M ) :
exp (*”"ffz )') exp(x'n) + exp (*”‘fzfz : )
(2.3)
It implies that the distribution z|y becomes
)1, wp. py(x)
2y, x = {0, w.p.1—py(x)
with
exp(x'n)
py(x) = d 2.4)

h(y, x)+ exp(x'n)’

where h(y, x) = exp((y — x’ﬂ(z))z)/ exp((y — x' B1)2). There-
fore, the proposed method can provide both conditional models
of y|z, x and z|y, x, which is more flexible for the manufactur-
ing system.

To estimate the parameters in the proposed models, we con-
sider the joint likelihood estimation approach, which enables
the parameter estimation to borrow strength from two models
of QQ responses. The log-likelihood function is

I, BV, BP) = log {1‘[ F@f i |zi>} = log {1‘[ f(z,-)}

i=1 i=1
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up to some constant independent of parameters. Now we can es-
timate the parameters by minimizing the negative log-likelihood
function upon some constraints for pursuing sparse model struc-
tures. A sparse model structure only contains a few significant
variables in the model, which is often called as variable se-
lection (Miller 2002; Hastie, Tibshirani, and Friedman 2009).
It aims to achieve a parsimonious model with meaningful in-
terpretation. Specifically, we consider the nonnegative garrote
approach to pursue a sparse model for both models of QQ re-
sponses. The nonnegative garrote approach is originally intro-
duced by Breiman (1995) for linear models. Several researchers
(Yuan and Lin 2007; Xiong 2012) have further developed the
theoretical properties of nonnegative garrote approach. This ap-
proach is also used in other statistical models, such as logistic
regressions (Makalic and Schmidt 2011) and additive models
(Cantoni, Flemming, and Ronchetti 2011). In the nonnegative
garrote approach, the key idea is to reparameterize the parameter
coefficients such that flexible constraints can be imposed to pur-
sue a parsimonious model. Let " = 6{" 8", g = P>,
and 7, = 1,7, Where ,3,(:), ~,£2), and 7j; are some initial esti-
mations of the model parameters, such as least squares estima-
tion or marginal maximum likelihood estimation (MLE). The
constraints of this optimization problem should encourage the
sparsity of the QQ models, and reflect the engineering percep-
tion. Thus, we consider estimating the parameters through a
constrained optimization problem as follows.

min —21(y, B, B?)
st. B =6"B", B =07 B e = wiins
o0 +67 +u <t k=1,...,p;
<0 +6P k=1,...,p; (2.6)
o >0,67>0,5>0k=1,...,p;

)4
Sy <M, >0.
k=1

Here the parameters for optimization includes 6V =
O, ... 00, 02 =6, ... 09), T=(1,....7,), t =
(t,...,t,), and o2, The parameters #;’s are nuisance parame-
ters to encourage the strong association of the significant vari-
ables in the regression models for y|z and the logistic regression
model for z. Specifically, if a #; = 0, the values of 49,51) s 9,52) ,and
7 will be forced to be zeros simultaneously. It implies that the
kth predictor variable is not significant in the QQ system. Thus,
this variable is not selected by the QQ models, which encourages
the sparsity of the QQ models. The constraints 7 < 9,51) + 8,52) is
to encourage a variable to be selected in at least one of linear

regression models, if this variable appears to be significant in
the logistic regression model. This constraint reflects the engi-
neering perceptions that the predictors for modeling qualitative
response are usually informative for quality control, and they
are also expected to be significant for modeling the quantitative
response in the manufacturing system.

Note that there is a tuning parameter M in (2.6), which needs
to be specified based on the data. An appropriate selection of M
can balance the trade-off between the model fitting and model
parsimoniousness. If the value of M is set to be zero in (2.6), all
values of the estimated parameters will be equal to zeros, that is,
none of predictor variables will be selected in the model. If the
value of M is set to be sufficiently large, the proposed method
will select all predictors in the model. The estimation of pa-
rameters will be the same as the MLE approach. The common
methods to select tuning parameters include cross-validation
and information criterion approaches, such as Akaike informa-
tion criterion (AIC), Bayesian information criterion (BIC), and
C, criteria (Burnham and Anderson 2002). In this work, we use
the BIC to find an optimal value of the tuning parameter M. The
BIC score for the proposed models can be written as

BIC(M) = —2I(t, 0", 0?) + g log(n), (2.7)

where ¢ is the number of nonzero estimates of parameters in
the models. Specifically, we can generate a grid for M, such as
M e C = {my, ..., m,} Foreachgrid pointm; inC, we evaluate
the corresponding BIC scores, and find the optimal choice of M
with the minimal BIC score among all grid points in C.

3. COMPUTATIONAL ALGORITHM

Solving the proposed optimization problem in (2.6) is non-
trivial because of the nonconvexity of the objective function.
It is also likely that there are a large number of parameters to
optimize. To address this challenge, we propose a quadratic ap-
proximation for the original objective function, thus to convert
the optimization in (2.6) to a constrained quadratic optimization
problem. The key idea is based on a sequence of local quadratic
approximation. It is well known that the constrained sequential
quadratic optimization can guarantee a global optimum with
fast computation (Boyd and Vandenberghe 2004).

Denote X = (xy,...,%,) to be the design matrix, z =
(z1,...,z2)7 to be the binary response vector. Without loss
of the generality, we assume that the first n; observations
with binary response z = 1, and the remaining n, observa-
tions with response z = 0, where n = n; + n,. Then, we can
define y;, = (y1, ..., yu,)" and Yoy = Vuy415 - - - yo)' . Simi-
larly, we can correspondingly define X ;) and X ), respectively.
Given an estimate of », we first apply the quadratic approxima-
tion for the log-likelihood function /(y, BV, B%) in (2.6). The
detail of the quadratic approximation for I(, BV, B?) is de-
scribed in Part A of online supplemental materials. Specifically,
we approximate the original objective function in (2.6) by

E—XnTWE — X))+ nlog(c?)
1
T [(J’m - XwB")" (v~ X0,8")
+ (o)~ X0B?) (vo - Xa)ﬂ(z))] N
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Here z = X5, + W™ '(z — p) with W = diag(p(x;, n.)(1 —
P10, -y p(n, 01— p(x,, 1)), and p=
(p(x1,m.), ..., p(x,,n.)) provided by a current estimate
n.. In this case, the above objective function of the ap-
proximate quadratic problem is clearly a convex function
with respect to unknown parameters 8 = (91(1), .., 0y,
0P =062, .... 09V, t=(t,...,1,),and t = (11, ...,1,).
Since the parameter o is not involved in any constraint, by
taking the derivative of the objective function with respect to

o2, we can obtain the estimate of o> explicitly as follows,

. 1
6% = r—l[ (yay — X(l)ﬂ(l))T (ya) — X1)B")

+ (y(2) - X(Z)B(Z))T (J’(z) - X(z)ﬁ(z)) ] (3.2)

Note that the objective function in (3.1) is provided by an
initial estimate 5. = 5,. We can choose a proper value of 5, and
update the estimations in an iterative procedure. The iterative
algorithm is summarized as follows:

Step 1: Set an initial estimate o= 002 > 0, also an initial esti-
mate of 5. = ;.

Step 2: Update the weight W = diag(p(x, n.)(1 — p(x1, 3,)),

.oy p(xp, (1 — p(x,, n.))), and the adjusted response Z =
Xn, + W'z — p), where p = (p(x1,0,), ..., p(Xu, 1))

Step 3: Obtain the estimate 7, B (1), B @ by solving the optimiza-
tion in (3.1).

Step 4: Update the estimate 62 by plugging B (1), B @ obtained
in Step 2 into (3.2).

Step 5: Check if convergence, that is, the maximum abso-
lute differences of each element of 7, B(l), ﬁ(z) and the es-
timates in the last iteration are smaller than tolerance level
8 = 0.001. Otherwise, set 0> = 62, 5, = #}, and go back to
Step 2.

For the initial estimation of > and 5., we simply choose
og as the residual variance by fitting a linear regression model
for the quantitative response, and 1, as the marginal logistic
regression model parameters. For the initial estimation in the
nonnegative approach for reparameterization, we use the least-
square estimates for ,3',((1), N,EZ), and 7j;. When the least-square
estimates is not available, we would choose a ridge regression
estimator (Hoerl and Kennard 1970) for the linear regression

models and the logistic regression model.

4. SIMULATION

To evaluate the performance of the proposed method, we
consider several simulation settings for generating the data with
the underlying models in (2.1) and (2.2). Let I; be the index set
of significant predictor variables in 8" and I, be the index set
of significant variables in B?. Denote B, = {,B,(:) :kel}and
B, = {,3,52) : k € I,}. Similarly, we denote by /; the index set of
significant variables in 5. Denote § = {n; : k € I;}. Specifically,
we consider four examples as follows.

TECHNOMETRICS, AUGUST 2015, VOL. 57, NO. 3

. Example 1. I, and I, are the same, and the values of Bl and
B, are similar.

Example 2. I, and I, are different _(i.e., thf: significant vari-
ables are different), but the values of 8, and B, are similar.

_ Example 3. I, and I, are the same, but the values of /_91 and
B, are different.

. Example 4. I and I, are different, and the values of Bl and
B, are also different.

In each example, the index sets I;, I}, and I, are generated ran-
domly but following the proportion of sparsity s. Here the value
of s represents the proportion of nonzero entries in a parameter
vector. The entry values of parameter vector i) are generated
from uniform distribution U(—2, 2). In Examples 1 and 2, we
first generate the parameter vector B, with each entry value from
normal distribution N (2, 1). Then the entry values of Bz are ob-
tained by adding a small perturbation from N (0, 0.01) onto the
entry values of generated 8,. In Examples 3 and 4, the entry val-
ues of parameter vectors 8, and B, are generated independently
from N(2, 1), respectively.

For each example, we generate a training set and a test set
based on the models in (2.1) and (2.2). The n data points
Xi,...,X, in the training set are independent and identi-
cally distributed (iid) sample generated from N (0, X), where
¥ = (0i;)pxp With (i, j)th entry o;; = p!"~/I and p being a cor-
relation parameter. The n data points of the test dataset are iid
sample generated from U (—2, 2). The sample sizes for the train-
ing dataset and the test dataset are n = 100. The o2 in the model
(2.2) is chosen to be 1.

To systematically investigate the performance of the proposed
method, we consider different scenarios of generating the simu-
lation data by varying the predictor dimensionality p, correlation
parameter p, and proportion of sparsity s. We choose two levels
of p with the values p = 20 and p = 50, two levels of p with the
values p = 0 and p = 0.5, and two levels of s with the values
s = 20% and s = 50%. For every setting of each example, we
conduct 50 simulation replicates.

To evaluate the accuracy of the estimated QQ models, we
compare the proposed method with two benchmark models:
separating modeling using BIC (SMBIC) and modeling with ad-
ditional predictors using BIC (MABIC). The SMBIC approach
ignores the association between the two types of responses.
It fits a linear regression model for the quantitative response
y and a logistic regression model for the qualitative response
z separately, of which both use BIC for variable selection. The
MABIC approach considers adding one of QQ responses as pre-
dictor in modeling the other response. Specifically, the MABIC
is to fit a linear regression model for the quantitative response y
by adding the qualitative response z as an additional predictor,
and fit a logistic regression model for the qualitative response z
by adding the quantitative response y as an additional predictor.
The BIC is also used for the variable selection. For all three
methods in comparison, the models estimated from the train-
ing set are used to compute the prediction errors based on the
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test set. Specifically, the prediction errors for the quantitative
response y is measured by the root mean squared prediction er-
ror as RMSPE = 1 y°2_ 5%\ Ju® — %' 3®y and the prediction error
for the qualitative response z with binary output is measured by
the misclassification error as ME = % Yol 1(zi # 2), where
Z; € {0, 1} is the prediction of binary response z; based on the
logistic regression in (2.1), and /(-) is an indicator function. Fur-
thermore, we also calculate the accuracy of variable selection
for the estimated models. Here we use the total number of falsely
selected variables, denoted by y , as the performance measure.
The y is defined by y = FP + FN, where FP represents the
number of false positives and FN represents the number of false
negatives in variable selection.

Table 1 reports the averages of RMSPEs (or MEs) and stan-
dard errors in parenthesis based on 50 simulation replicates. By
using the efficient computational algorithm in Section 3, the
average of computing time for the proposed method is 3.95 sec
for each simulation replicate (based on a workstation with CPU
Xeon Processor E5-2687W, 3.10 GHz, 64 GB RAM). We denote
the estimated linear regression models by QQy,,, in (2.2) and the
estimated logistic regression model by QQ,oj; in (2.1) from the
proposed QQ models. Similarly, we denote BICy,,, and BIC,gj; as
the corresponding estimated models from the SMBIC approach.
We denote Addyy, and Addig as the corresponding estimated
models from the MABIC approach. For the results of Example
1, the performance of the proposed QQ models is comparable to
the SMBIC approach and the MABIC approach. Note that Ex-
ample 1 considers BV and B being similar. It implies that the
quantitative response y does not depend much on the qualitative
response z. Since there is no hidden association between the QQ
responses, separate modeling QQ responses such as the SMBIC
and the MABIC approaches would give accurate estimation of
parameters. In contrast, Examples 2—4 consider the situations of
B and B® being different with respect to the significant vari-
ables and their values. It means that the two conditional models
ylz =1,x and y|z = 0, x are different, reflecting the depen-
dency between the QQ responses. In these situations, the pro-
posed QQ models generally outperform the SMBIC approach
and the MABIC approach. In particular, the RMSPEs from the
QQ, are much smaller than those from the BIC, and the Addy,.
These findings can be explained by the fact that the proposed
QQ models consider the dependency between the quantitative
response y and qualitative response z through the joint prob-
ability p(y|z, x)p(z|x), while the SMBIC approach considers
the probability independently as p(y|x)p(z|x) and the MABIC
approach only considers a particular dependency of y and z by
treating of one of them as predictor in the modeling. Therefore,
the model structure for QQ,,, based on p(y|z, x) is more fa-
vorable to obtain an accurate model in prediction. We also note
that the MEs from the QQ, are comparable to that from the
BICygj; and the Addiqgj;. Because the QQlogil is obtained based
on marginal distribution p(z) for modeling the binary response,
it is expected that QQ.,; have comparable prediction perfor-
mance to the BIC, and the Addiegi, both of which are also
based on marginal distribution p(z|x) for modeling the binary
response.

Under different design matrices and dimensionality of pa-
rameters, we also observe that the proposed QQ models give
better prediction performance than the SMBIC approach and

the MABIC approach for Examples 2—4. It is because that the
proposed QQ models take the advantage of the association be-
tween the QQ responses regardless of the structure of the design
matrix X. Under two levels of sparsity s with the same corre-
lation parameter p and dimensionality p, we can see that the
QQ,, has smaller RMSPEs than the BIC);,, and the Addy, in
both sparsity levels for p = 20. When the dimensionality be-
comes larger in p = 50, the QQ,,, has much better performance
than the BICy, and the Addy, at sparse level s = 20%, while
the QQ,,, has slightly better performance than the BICy, and the
Add, at sparse level s = 50%. One possible explanation is that
when p = 50, the number of parameters reaches 150, which is
more than the sample size n = 100. Such a situation would be
in favor of QQ models with more sparse levels to gain better
prediction accuracy.

Furthermore, Table 2 examines the performance of variable
selection in terms of the number of false selection for the four ex-
amples. Here the number of false selection for the linear models,
that is, QQ),,, BICi, and Addyy, is calculated by the average of
the number of false selections with respect to the two conditional
linear regression models on y|z = 1 and y|z = 0. The results in
Table 2 show that the proposed QQ models generally have bet-
ter variable selection accuracy than the SMBIC approach and
the MABIC approach. In Examples 1 and 3, note that the linear
models of y|z = 1, x and y|z = 0, x have the same significant
variables. In these situations, it appears that the QQ,; has bet-
ter selection accuracy than the BIC s and the Addeg, while
the variable selection accuracy of QQ,, is comparable to the
BIC, and the Addjy,. An intuitive explanation is that when
the linear models of y|z = 1, x and y|z = 0, x have the same
significant variables, the conditional model y|z, x in (2.2) only
reflects the role of z through the values of estimated coefficients,
not on the role of what the significant variables are. It makes
the variable selection accuracy of QQ,,, comparable to those of
BIC;, and Addyy,. In Examples 2 and 4, when the linear mod-
els of y|z = 1, x and y|z = 0, x become different in significant
variables, one can clearly see that the proposed method gains
the superiority of variable selection accuracy for both QQ,,, and
QQiogit- Moreover, as the dimensionality p increases in these
examples, the advantages of the proposed method on variable
selection become more significant, especially when s = 20%.
With the sample size n = 100 fixed in this study, the increase
of p would make the QQ models having more advantage when
the underlying model is sparse.

To check whether the fitted QQ models are over-sparse or
under-sparse, we also report the number of false positives and the
number of false negatives in Part B of the online supplemental
materials. The results show that the number of false positives
for the QQ models is small in general, indicating that the fitted
QQ models would not be under-sparse. In addition, the number
of false positives from the QQ models is much smaller than
those from the SMBIC and the MABIC approaches in most
cases. For the number of false negatives, we can see that under
the dimensionality s = 20% and p = 20, the number of false
positives for QQ models is generally smaller than those from the
SMBIC and the MABIC approaches. But when the sparsity s =
50% and p = 50, the number of false positives for QQ models
becomes relatively large, indicating that the fitted models can
be over-sparse to some extent. One possible explanation is that
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Table 1. Averages and standard errors of RMSPEs (or MEs) from 50 simulation runs
p=0 p=0.5
Example )4 Method s = 20% s = 50% s =20% s =50%
QQy 0.49 (0.01) 0.50 (0.01) 0.51 (0.01) 0.50 (0.01)
BIC, 0.57 (0.01) 0.59 (0.01) 0.57 (0.01) 0.59 (0.01)
1 20 Addy, 0.57 (0.01) 0.60 (0.01) 0.57 (0.01) 0.60 (0.01)
QQogit 0.10 (0.00) 0.12 (0.01) 0.21 (0.01) 0.12 (0.01)
BICiogit 0.15 (0.01) 0.13 (0.01) 0.14 (0.01) 0.12 (0.01)
Addggi; 0.15 (0.01) 0.12 (0.01) 0.15 (0.01) 0.12 (0.01)
QQy, 0.72 (0.04) 5.36 (0.64) 0.66 (0.02) 1.69 (0.29)
BIC, 0.66 (0.01) 0.80 (0.01) 0.65 (0.01) 0.87 (0.02)
1 50 Addy, 0.66 (0.01) 0.80 (0.01) 0.65 (0.01) 0.88 (0.02)
QQogit 0.20 (0.01) 0.25 (0.01) 0.18 (0.01) 0.21 (0.01)
BICogit 0.17 (0.01) 0.26 (0.01) 0.18 (0.01) 0.24 (0.01)
Addggi 0.18 (0.01) 0.24 (0.01) 0.17 (0.01) 0.20 (0.01)
QQum 0.70 (0.02) 0.71 (0.01) 0.57 (0.01) 0.69 (0.02)
BIC, 3.77 (0.04) 5.37 (0.06) 2.57 (0.03) 3.62 (0.04)
2 20 Addyy, 3.75 (0.04) 5.31 (0.06) 2.56 (0.03) 3.60 (0.04)
QQuoit 0.19 (0.01) 0.16 (0.01) 0.10 (0.00) 0.14 (0.01)
BICogit 0.15 (0.01) 0.12 (0.00) 0.13 (0.01) 0.12 (0.01)
Addiggi 0.15 (0.01) 0.13 (0.01) 0.13 (0.01) 0.12 (0.01)
QQinm 3.02 (0.25) 10.04 (0.22) 3.21(0.17) 8.20 (0.66)
BIC,, 9.05 (0.13) 8.37 (0.12) 8.43 (0.13) 8.48 (0.16)
2 50 Addy, 8.66 (0.13) 8.44 (0.15) 8.46 (0.12) 8.43 (0.15)
QQogit 0.21 (0.01) 0.26 (0.01) 0.25 (0.01) 0.23 (0.01)
BICogit 0.17 (0.01) 0.25 (0.01) 0.18 (0.01) 0.23 (0.01)
Addjogi; 0.18 (0.01) 0.25 (0.01) 0.20 (0.01) 0.23 (0.01)
QQin 0.59 (0.01) 0.69 (0.01) 0.57 (0.01) 0.76 (0.04)
BIC, 2.53 (0.03) 3.35 (0.04) 1.96 (0.02) 3.05 (0.05)
3 20 Addy, 2.54 (0.03) 3.35 (0.04) 1.96 (0.02) 3.00 (0.04)
QQogit 0.11 (0.01) 0.13 (0.01) 0.09 (0.00) 0.14 (0.01)
BICiyg3 0.15 (0.01) 0.13 (0.01) 0.14 (0.01) 0.11 (0.01)
Addjogi; 0.15 (0.01) 0.12 (0.01) 0.14 (0.01) 0.11 (0.01)
QQin 1.53 (0.10) 9.99 (0.33) 2.21 (0.10) 7.78 (0.39)
BIC), 3.52 (0.05) 8.11 (0.15) 4.27 (0.07) 7.93 (0.17)
3 50 Addy, 3.56 (0.06) 8.05 (0.14) 4.29 (0.07) 7.88 (0.15)
QQogit 0.16 (0.01) 0.24 (0.01) 0.16 (0.01) 0.19 (0.01)
BICiqgi 0.19 (0.01) 0.27 (0.01) 0.19 (0.01) 0.24 (0.01)
Addjogig 0.17 (0.01) 0.26 (0.01) 0.18 (0.01) 0.23 (0.01)
QQinm 0.62 (0.01) 1.44 (0.16) 0.59 (0.01) 0.71 (0.03)
BICy, 4.28 (0.06) 5.19 (0.06) 2.78 (0.04) 3.49 (0.04)
4 20 Addy, 4.26 (0.06) 5.18 (0.06) 2.78 (0.04) 3.49 (0.04)
QQogit 0.11 (0.01) 0.18 (0.01) 0.11 (0.01) 0.14 (0.01)
BICogit 0.14 (0.01) 0.12 (0.01) 0.11 (0.01) 0.12 (0.01)
Addggi 0.14 (0.01) 0.13 (0.01) 0.12 (0.01) 0.11 (0.00)
QQim 2.90 (0.17) 10.64 (0.22) 3.09 (0.18) 8.86 (0.42)
BIC, 7.79 (0.11) 12.11 (0.18) 7.82 (0.10) 11.16 (0.15)
4 50 Addy, 7.64 (0.12) 11.77 (0.17) 7.73 (0.10) 10.89 (0.17)
QQogit 0.27 (0.01) 0.25 (0.01) 0.25 (0.01) 0.20 (0.01)
BICogit 0.17 (0.01) 0.27 (0.01) 0.17 (0.01) 0.24 (0.01)
Addggi 0.17 (0.01) 0.26 (0.01) 0.17 (0.01) 0.23 (0.01)
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Table 2. Averages and standard errors of number of false selections from 50 simulation runs

p=0 p=0.5

Example p Method s =20% s = 50% s =20% s = 50%
QQin 1.74(0.15) 2.44(0.13) 5.31(0.24) 1.92(0.16)
BIC), 0.84(0.16) 0.32(0.07) 0.60(0.14) 0.24(0.07)
1 20 Addy, 0.82(0.16) 0.38(0.07) 0.60(0.14) 0.28(0.07)
QQiogit 0.50(0.10) 1.52(0.14) 1.84(0.16) 3.74(0.22)
BICiogi 5.86(0.52) 4.80(0.30) 5.56(0.49) 7.04(0.29)
Addggi; 6.50(0.55) 5.58(0.43) 6.40(0.56) 8.22(0.37)
QQ, 2.88(0.48) 20.79(0.57) 11.34(0.64) 7.28(0.44)
BIC), 3.08(0.40) 1.72(0.25) 2.86(0.34) 3.26(0.35)
1 50 Addyy, 3.04(0.39) 1.72(0.25) 2.90(0.35) 3.44(0.36)
QQuogit 8.04(0.17) 16.72(0.35) 5.74(0.26) 20.50(0.36)
BICy5 9.12(0.45) 23.12(0.45) 11.04(0.44) 26.80(0.40)
Addogic 9.46(0.52) 25.48(0.60) 12.56(0.60) 27.98(0.55)
QQin 1.95(0.15) 1.76(0.19) 0.82(0.09) 1.60(0.10)
BIC, 4.40(0.21) 6.38(0.27) 4.56(0.23) 6.80(0.33)
2 20 Addyy, 4.38(0.20) 6.42(0.28) 4.54(0.23) 6.90(0.31)
QQogit 3.54(0.25) 5.18(0.29) 3.60(0.26) 7.02(0.31)
BICioi 5.58(0.55) 4.96(0.33) 6.12(0.51) 6.78(0.32)
Addegit 6.44(0.60) 5.70(0.36) 6.66(0.54) 7.62(0.40)
QQn 1.12(0.29) 24.24(0.47) 2.28(0.21) 6.46(0.52)
BIC, 14.02(0.73) 16.80(0.73) 14.14(0.60) 17.96(0.65)
2 50 Addy, 14.10(0.75) 17.38(0.75) 14.36(0.61) 18.16(0.68)
QQiopit 10.56(0.32) 20.96(0.43) 10.50(0.34) 22.48(0.45)
BICiogi 9.16(0.41) 22.40(0.47) 11.08(0.41) 26.66(0.40)
Addggi; 9.28(0.40) 23.94(0.61) 11.76(0.42) 27.34(0.53)
QQ, 0.16(0.09) 0.81(0.05) 0.98(0.17) 4.11(0.09)
BIC, 0.72(0.11) 1.00(0.17) 1.14(0.21) 3.02(0.18)
3 20 Addyp, 0.84(0.14) 1.00(0.17) 1.10(0.21) 2.84(0.20)
QQuogit 1.78(0.15) 7.14(0.24) 1.70(0.12) 7.22(0.17)
BICiyg5 5.54(0.52) 4.82(0.34) 5.86(0.56) 6.24(0.28)
Addegit 6.54(0.59) 5.98(0.45) 6.28(0.55) 6.74(0.34)
QQin 2.41(0.47) 23.82(0.47) 2.78(0.32) 17.06(0.40)
BIC, 3.28(0.38) 8.88(0.64) 5.08(0.58) 11.08(0.51)
3 50 Addyy, 3.36(0.42) 8.92(0.67) 5.44(0.60) 11.20(0.52)
QQiogit 6.82(0.30) 17.58(0.36) 7.20(0.22) 16.00(0.34)
BICiogi 9.88(0.44) 23.54(0.39) 11.24(0.48) 25.92(0.38)
Addggi; 10.34(0.53) 24.86(0.55) 11.88(0.58) 28.04(0.61)
QQn 1.96(0.16) 0.35(0.09) 0.09(0.06) 2.23(0.16)
BIC, 4.54(0.25) 5.70(0.32) 4.56(0.23) 5.40(0.27)
4 20 Addj, 4.54(0.25) 5.96(0.33) 4.54(0.23) 5.40(0.27)
QQiopit 2.38(0.26) 6.36(0.33) 3.50(0.17) 5.00(0.34)
BICioi 5.38(0.55) 4.98(0.32) 5.30(0.45) 7.32(0.29)
Addogi; 6.12(0.59) 6.20(0.41) 5.92(0.52) 8.24(0.35)
QQim 2.69(0.40) 19.48(0.44) 4.97(0.21) 11.55(0.49)
BIC;, 14.20(0.70) 21.04(0.72) 15.42(0.70) 21.66(0.62)
4 50 Addyy, 14.60(0.63) 21.98(0.65) 15.34(0.64) 21.88(0.61)
QQiogit 10.58(0.33) 19.42(0.47) 10.96(0.41) 20.34(0.41)
BICiy5 8.70(0.43) 23.48(0.41) 10.34(0.48) 25.98(0.43)
Addiogit 10.02(0.48) 24.84(0.54) 10.98(0.51) 27.14(0.53)
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p = 50 means that the number of parameters in QQ model is
150, larger than the sample size n = 100. In this situation, the
QQ models tend to pursue sparse models to get accuracy on the
predication.

In this work, the proposed QQ models assume a linear model
for the quantitative response y with normal distributed errors.
To evaluate the robustness of the proposed QQ models, we first
conduct a set of simulations to check the normality assumption
of the linear model residuals € = y — zx’BV + (1 — 2)x'B?.
Specifically, we generate the simulation data following the
aforementioned procedure, except changing the distribution
of the linear model residuals from a normal distribution to a
Chi-squares distribution (skewed) and a ¢-distribution (heavy
tail) with degrees of freedom 5, respectively. We also scale the
Chi-square and t-distributions to have the same variance o2 =
1 as the normal distribution used in linear model residuals.
The prediction and variable selection performance of the QQ
models and the SMBIC approach are reported in Part B of the
online Supplemental Materials. We found that the QQ models
generally have more accurate prediction and variable selection
than the SMBIC approach in Examples 2—4, when the under-
lying distributions deviate from a normal distribution. The QQ
models are robust to the normality assumption of residuals to
some extent, since the prediction and variable selection perfor-
mance of the QQ models for chi-squares distributed residuals
and r—distributed residuals are comparable to those of the QQ
models for normally distributed residuals. Second, we evaluate
the robustness of the linear model assumption for the quanti-
tative response y. Specifically, we generate the simulation data
following the aforementioned procedure, but taking cubic of the
regression mean in (2.2) as z(x'B1)? + (1 — 2)(x'B?)3. Thus,
the underlying model for the quantitative response becomes
nonlinear. We fit the data using the QQ models and SMBIC
approach with a linear model for the quantitative response.
From the results in Part B of the online supplemental materials,
both the QQ,, and the BIC, yield large prediction errors
due to the improper assumptions of the model structure. But
the QQ,, gives relatively smaller RMSPEs than the SMBIC
approach, which may be explained by the flexibility of the
QQ models: the quantitative response is conditioned on the
different values of z. For the variable selection performance, the
QQ,,, does not clearly outperform the BIC)y, in various cases. It
appears that when the linear model structure assumption is not
valid, the proposed QQ models may not perform well. Some
discussions are provided in Section 6 on how to address this
issue.

5. CASE STUDY IN THE LAPPING PROCESS

To further illustrate the merits of the QQ models, we analyze
the data from a real case study in the lapping process. Recall the
lapping process introduced in Section 1: there are 10 predictors
and two quality responses, which are summarized in Part C of
the online supplemental materials. In this process, there are four
process variables: pressure, rotation speed, lapping time for low
pressure, and lapping time for high pressure. In addition, there
are six initial quality covariates before the lapping process. This
collected dataset contains 254 wafer observations, where 203
wafers have the STIR indicator as 0 (good), and the remaining
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51 wafers have the STIR indicator as 1 (bad). To evaluate the
performance of the proposed QQ models, we randomly partition
the dataset into a training dataset (50%) and a test dataset (50%)
with a stratified sampling strategy. Such random partitions re-
peat for 50 times. For each partition, the proposed QQ models
and the SMBIC approach are applied to model the quantitative
response TTV and the qualitative response STIR indicator based
on the training dataset. The prediction errors of the test dataset
and the number of selections for each predictor variable of the
training dataset are computed for both methods.

Figure 2 shows the boxplots of RMSPEs (MEs) for the QQ
models and the SMBIC approach under the 50 replicates of data
partitions. We did not compare the performance of the MABIC
approach here because neither of QQ responses will be available
and they need to be predicted in real practice. From Figure 2(a),
it is clear that the proposed QQ models have much smaller RM-
SPEs than the SMBIC approach. Figure 2(b) also shows that the
misclassification errors of the proposed method are also smaller
than that from the SMBIC approach. As shown in Figure 2(c)
and 2(d), the smaller misclassification error of the QQ models
is mainly due to the smaller false positive classification error;
while the false negative classification errors are comparable
for the two methods. The results indicate that the proposed joint
modeling of QQ responses enhanced the prediction performance
in this case.

Table 3 reports the average numbers of selected variables and
their standard errors (in the parenthesis) for both methods. Here
the number of selected variables for the linear models, that is,
QQy, and BICyy, is calculated by the average of the number
of selections with respect to the two conditional linear regres-
sion models on y|z = 1, x and y|z = 0, x. From the results in
Table 3, we can see that the quality covariates xs — xjq are often
selected by QQyy, and QQyy;- While the BIC)y, and BIC o con-
sistently ignore the quality covariates in the models. In fact, the
quality covariates are expected to be important in the model
if the STIR indicator is 1. From the engineering perception,
the lapping process is likely to be nonconforming if the STIR
indicator is 1. In this case, the quality covariates represent-
ing the initial quality of wafers become important factors for
after-lapping wafer quality. The proposed QQ models success-
fully capture such engineering perception. In contrast, the SM-
BIC approach considers modeling the two responses TTV and
STIR indictor separately, which cannot unveil the significance
of quality covariates in this case study. In summary, the pro-
posed QQ models successfully discover this hidden informa-
tion, which can be further used for quality control and process
improvement.

We also evaluate the model assumption for this real-data ex-
ample. The Q-Q normal plots for the residuals in the model
ylz = 1, x and the residuals in the model y|z = 0, x are pro-
vided in Part C of the online supplemental materials. From the
Q-Q plots, we can see that the distribution of the residuals would
be close to normal distribution after a linear transformation. It
appears that the normality assumption of the residuals may not
strictly hold. Note that the prediction performance of the regres-
sion models in QQ models is still better than the benchmark
models. It appears being reasonable to use the proposed models
for prediction. This is also consistent with the conclusion drawn
from the simulation, that the proposed QQ models are robust to
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Figure 2. Comparison of prediction accuracy of the QQ models and SMBIC for the lapping process: (a) root mean squared errors (RMSPE);
(b) misclassification error (ME); (c) false positive classification error (FP); (d) false negative classification errors (FN).

the normally distributed residual assumption. We also examine
the residuals over fitted responses in the model y|z = 1, x and
the model y|z = 0, x; see Part C of the online Supplemental Ma-
terials. It is clear that for both models the residuals have constant
variance, and form several clusters along fitted response. This is
mainly because the lapping data are collected from the design of
experiments settings, where the fitted responses are clustered. In
addition, the random patterns appearing in the residual plots in-
dicate that the linear model assumption seems to be reasonable
for modeling y.

For the two conditional models y|z = 1, x and y|z = 0, x, we
assume that the two models have the same error variance, that is,
var(ylz = 1,x) = var(y|z = 0, x). To check this assumption,
we check if the standard errors in the model y|z = 1, x and the
model y|z = 0, x are the same by using the F-test. Based on
the fitted QQ models, the standard error for the model y|z =
1, x is 0.3135, and the standard error of the error terms for
the model y|z =0, x is 0.2219. The p-value of the F-test is

0.0002, indicating that the standard errors are different in this
case study. Recall the model in (2.2): the proposed method can be
easily extended to allow the two conditional models having two
different variances without changing the nature of the problem.

To check the logistic model assumption in modeling z|x, we
performed model diagnostics by using y? test for deviance. For
the logistic regression obtained from the QQ models, the null
deviance is 433.91, and the model deviance is 398.13. The p-
value of the x? testis 1.7 x 1078, Thus, it shows that the logistic
regression model obtained from the QQ models has a reasonable
goodness of fit for the real data.

6. DISCUSSION

A QQ system is widely encountered in manufacturing pro-
cesses, such as a lapping process, a solar cell lamination process,
and nanostructure synthesis. With both QQ responses of quality
closely associated, the two types of quality responses often share

Table 3. Averages and standard errors of selection percentage from 50 replicates of data partitions for the lapping process

Method X1 X2 X3 X4 X5 X6 X7 Xg X9 X10
QQm 0.74 0.62 0.88 0.88 0.65 0.60 0.68 0.59 0.66 0.65
(0.04) (0.04) (0.03) (0.03) (0.04) (0.04) (0.03) (0.04) (0.03) (0.04)
BIC, 0.52 0.10 1.00 1.00 0.00 0.02 0.02 0.00 0.00 0.08
0.07) (0.04) (0.00) (0.00) (0.00) (0.02) (0.02) (0.00) (0.00) (0.04)
QQioeit 0.44 0.52 0.64 0.70 0.32 0.18 0.36 0.32 0.22 0.44
(0.07) (0.07) (0.07) (0.06) (0.07) (0.05) (0.07) (0.07) (0.06) (0.07)
BICiqgi 0.14 0.04 0.68 0.86 0.00 0.00 0.00 0.04 0.00 0.00
(0.05) (0.03) (0.07) (0.05) (0.00) (0.00) (0.00) (0.03) (0.00) (0.00)
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the same set of potential root causes. Therefore, a joint model-
ing framework is needed for integrating both types of quality
responses. In this article, we propose a joint likelihood modeling
framework called QQ models. The proposed models consider
the joint probability of the QQ responses, while the constrained
likelihood estimation approach is used for parameter estimation
and variable selection. A fast algorithm of parameter estimation
is also developed by quadratic approximation to facilitate fast
computation. We use both simulation studies and a real case
study from the lapping process to demonstrate the effectiveness
of the QQ models. Especially in the case study, the proposed
QQ models yield better prediction and more meaningful vari-
able selection, which reflect the inherent features of the real
manufacturing process.

Note that for complex QQ systems, the quality-process rela-
tionship can be highly nonlinear. The proposed method can be
extended to the nonlinear models. One possibility is to incor-
porate projection pursuit (Friedman and Stuetzle 1981) into the
proposed QQ models to allow more flexibility on the predictive
functions. Specifically, we can extend the models in (2.1) and
(2.2) as

ox = { 1, w.p. p(x) with p(x) = exp(v(x'n)) ’

0, w.p. 1—p(x) 1 + exp(v(x'))
ylz, x ~ Nzhi (' B) + (1 = Dha(x' ), 02),

where h, hy, and v are nonparametric functions. The nonpara-
metric forms of /2 ; and v allow flexible functional structures to be
estimated. For the parameter estimation, an efficient algorithm
can be developed by iterating the estimation between functions
hi, hy, v and parameters 7, BV, B?. Another possibility of ex-
tending the proposed QQ models is to adopt the nonparametric
methods (Qiu 2014) to relax the normality assumption, which
can be an interesting topic for our future research.

Although we focus on one quantitative response and one
qualitative response in this work, the proposed method can be
generalized to the case of multiple responses. Suppose the mul-
tiple quantitative responses are yj, ..., y, and multiple binary
responses are Zi, ..., Z;. For example, a multi-level qualitative
response can be transformed into a set of dummy binary re-
sponses. For m > 1 and t = 1, we can generalize the QQ mod-
els by multi-response regression (Breiman and Friedman 1997)
as

Oty -+, Ym)lz, x ~ N@zx'BD) + (1 — 2)x'B?, X),

where BV, B® are coefficient matrices, and ¥ is a covari-
ance matrix. For m > 1 and ¢t > 1 with multiple binary re-
sponses, considering all 2 conditional models (y1, ..., Yulz1 =
L...,zz=1,...,01, ..., Ymlz1 =0, ..., zz = 0) may only
work for a small 7. Alternatively, we can develop a
two-stage approach by first using independence screen-
ing (Fan and Lv 2008) to select important qualitative re-
sponses; that is, to conduct ¢ independent conditional models
D1y ev s Ymlz)y ooy U1y -5 Yml2e) and select u < t qualita-
tive responses z;’s with best fitting. Then the full conditional
models will be applied for the selected u qualitative responses.
For the joint distribution of u qualitative responses, we can
consider multi-logit models (McCullagh 1980) and Ising mod-
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els (Ravikumar, Wainwright, and Lafferty 2010) as possible
solutions.

The proposed method can be extended to accommodate in-
teraction effects of the predictors. The hierarchical and heredity
principles (Wu and Hamada 2009) can also be incorporated
under the nonnegative garrote approach for variable selection.
Other types of variable selection and group variable selection
techniques, such as lasso (Tibshirani 1996) and group nonneg-
ative garrotes (Yuan and Lin 2006), will be investigated for the
proposed method. A Bayesian modeling framework will also be
developed to integrate information for both types of responses.

We would like to point out that there can be other possi-
bilities to model the joint distribution of QQ responses. In
the proposed QQ models, we have considered the joint dis-
tribution f(y, z|x) = f(y|z, x) f(z|x) for model construction.
Alternatively, one may consider the model construction based
on f(y,z|lx) = f(z|y,x)f(y|x). However, it is not clear how
to appropriately quantify f(z|y,x) in a general formulation,
which can be an interesting topic for future research. When the
association of QQ responses becomes more complicated than
the conditional distribution, it may not be appropriate to use
the QQ models. Other techniques such as nonparametric meth-
ods can be potentially useful to deal with the related research
problems.

SUPPLEMENTARY MATERIALS

The online supplementary materials include the description of
quadratic approximation in (2.6) of the main paper, simulation
results in Section 4 of the main paper, and the list of variables
and analysis results in Section 5 of the main paper.
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