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A B S T R A C T

Finite element analysis (FEA) has been widely adopted to identify potential defects in additive manufacturing
(AM) processes. For personalized product realization, it is necessary to validate a number of heterogeneous
product and process designs before or during manufacturing by using FEA. Multi-fidelity FEA simulations can be
readily implemented with different capabilities in terms of simulation accuracy. However, due to its complexity,
high-fidelity FEA simulation is time-consuming and decreases the efficiency of product realization in AM, while
low-fidelity FEA simulation has fast computation speed yet limited capability. Hence, our objective is to improve
the capability of FEA by providing an efficient data-driven model. In this research, a Gaussian process-con-
strained general path model is proposed to approximate the high-fidelity FEA simulation results based on low-
fidelity results voxel-by-voxel. The proposed model quantifies the heterogeneous discrepancies between low- and
high-fidelity FEA simulation results by incorporating the product design information (e.g., Cartesian coordinates
of deposition sequence) and process design information from inputs of FEA simulation (e.g., input heat).
Therefore, it enables the validation of new product and process designs based on the simulation results with the
desired capability in a timely manner. The advantages of the proposed method are illustrated by FEA simulations
of the fused deposition modeling (FDM) process with two levels of fidelity (i.e., low- and high-fidelity).

1. Introduction

In recent years, additive manufacturing (AM) becomes a driving
force for personalized product realization [1], such as customized
brackets in aircraft and automotive manufacturing [2], and biomedical
devices conforming to patient anatomy [3]. Despite advancements in
AM for facilitating personalized manufacturing, it is important to va-
lidate a number of heterogeneous products and process designs in a
timely manner. In the literature, there are usually two ways to validate
AM designs: i) traditional run-to-run studies to physically quantify the
quality/functional performance of the product and process designs
through the design of experiments (DOE) [4–6]; and ii) high-fidelity
simulations to predict the corresponding quality/functional perfor-
mance of designs [7–9]. The DOE approach can be inefficient and ex-
pensive as different customized AM designs have different underlying
mechanisms [10]. For each individual design, one needs to physically
conduct DOE to collect sufficient samples to estimate the model. Al-
ternatively, simulations have been widely adopted to identify potential
defects in AM processes by simulating the physical mechanisms of the
manufacturing processes [7–9]. However, a high-fidelity FEA

simulation can be computationally expensive and thus cannot be easily
used to validate AM designs in a timely manner. On the other hand, a
low-fidelity simulation provides affordable computation time. The ac-
curacy of low-fidelity simulations might not be satisfactory due to their
low meshing resolutions.
In this work, the objective is to improve the accuracy of the low-

fidelity FEA simulation results by predicting high-fidelity simulation
results to facilitate and accelerate the AM design validation with het-
erogeneous product and process features (e.g., different geometries or
process settings). Let us take the example of the thermal distribution
analysis of the fused deposition modeling (FDM), which is a material
extrusion AM process. An infrared camera cannot capture the external
spatial-temporal thermal distribution of the product since the extruder
will block the vision of infrared camera during the process. In addition,
the internal thermal distribution is not measurable. However, the
thermal distribution is very important in the FDM process as it is closely
related to the quality/defect of AM products, such as residual stress
[11] and geometric deviation [12]. In such a case where sensing cap-
ability is limited, FEA simulation can help the validation of product and
process designs as well as understanding the process-quality
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relationship in AM processes [13]. There are different levels of fidelity
for FEA simulations, as compared briefly in Table 1 for a 3D transient
thermal field evolution FEA simulation in FDM with the same design.
A high-fidelity FEA simulation can be computationally intensive

(more than 20 hours for a single product with one specific process
design), which cannot be affordable to validate a large number of
personalized AM designs with heterogeneous geometries and process
settings. Thus it is useful to develop a model that can approximate the
high-fidelity FEA simulation results based on the low-fidelity FEA re-
sults. Such a model can boost the capability of low-fidelity FEA simu-
lation and efficiently facilitate the personalized product and process
design validation (i.e., identifications of manufacturability or func-
tionality for varied geometries under different process setting combi-
nations) in AM.
There are a few challenges in modeling the relationship between

low- and high-fidelity FEA simulation results. First, along the deposition
sequence, the length of thermal history for each location varies in an
AM process. For example, Fig. 1 demonstrates a 3D transient FEA for
the thermal field evolution results of three locations (i.e., A, B and C) on

a square product which is modified based on the NIST standard part
[14] and built by PLA in a FDM process [13]. Arrows represent the
deposition sequence of the FDM process. In Fig. 1, it can be observed
that each location has a different length of thermal history. This is
because that each location on the product is deposited at a different
time point following the pre-defined deposition sequence. According to
the sequence shown in Fig. 1(a), when location A has been deposited on
the platform, B and C have not been deposited yet. This inconsistency of
thermal history sequences length among different locations restricts
many existing data-driven methods [15,16] with the assumption of the
same sequence length. Second, the discrepancies between low- and
high-fidelity FEA simulation results are heterogeneous among different
locations over time. As shown in Fig. 1(a), in terms of geometries in one
layer, the Euclidean distance between point A and point B is the same as
that between point A and point C. However, it can be found that the
discrepancy patterns between low- and high-fidelity FEA simulation
results vary along the deposition sequence. For example, the predicted
thermal evolution histories from low-fidelity FEA simulation results in
Fig. 1(b) and (c) have relatively low errors by comparing with high-
fidelity results. But for Fig. 1(d), it can be observed at the beginning of
the predicted thermal evolution history, the accuracy of the low-fidelity
simulation is very inaccurate. Moreover, in the middle of these three
predicted thermal histories, it can be seen that for Fig. 1(b) and (c), the
prediction results from the high-fidelity simulation are larger than the
low-fidelity simulation, while for Fig. 1(d), it is opposite. These het-
erogeneous discrepancies are significant since the numerical value of
the difference between low- and high-fidelity simulation is larger than
the simulation accuracy (i.e., 5 Kelvin (K) in terms of root-mean-

Table 1
Examples of low- and high-fidelity FEA simulation based on a National Institute
of Standards and Technology (NIST) standard design [13].

Variable name Low-fidelity High-fidelity

Meshing size (maximum) 1 mm 0.3 mm
No. of elements 16743 424743
Computation time 30 min 21 h

Fig. 1. Temperatures from different locations in a FDM process for high- and low-fidelity simulation.((a) Deposition sequence; (b) Simulation results for location A;
(c) Simulation results for location B; (d) Simulation results for location C).
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squared-error) [17]. Therefore, even if two locations have the same
Euclidean distance with the same reference point, the discrepancies are
heterogeneous and cannot be modeled by a stationary process. This
heterogeneity is difficult to be quantified by functional data analysis
methods with the assumption of thermal history sequences having si-
milar patterns in temporal correlation [18]. Third, one-of-a-kind pro-
ducts in highly personalized manufacturing provide limited historical
data to effectively support the model estimation by using most of the
existing data-driven models.
Therefore, the authors propose a Gaussian process-constrained

general path (GPGP) model to improve the capability of low-fidelity
FEA simulation in terms of simulation accuracy and computational ef-
ficiency. The GPGP model can effectively predict the high-fidelity FEA
simulation results based on the low-fidelity simulation by modeling the
heterogeneous discrepancies between low- and high-fidelity results via
general path models. As shown in Fig. 1, the AM product can be de-
composed into individual locations, and data at each location are
treated as one sample in this study. For different locations, general path
models are estimated with Gaussian process model-based constraints to
quantify correlation among locations. When two paths have similar
covariates, they tend to have similar discrepancy patterns, which lead
to highly correlated model coefficients (see Section 4 for validation). In
this manner, the estimated GPGP model (trained from the historical
data in other designs) can make a prediction on the high-fidelity FEA
simulation results for a new design based on low-fidelity simulation
with the use of the product design and process design features.
There are several advantages of the proposed method. First, the

proposed method is to model discrepancies between low- and high-fi-
delity FEA simulation results at each individual location regardless of
lengths. It can mitigate the dependency on geometric characteristics of
products to improve the generality of the model. Second, we use the
general path model to parameterize discrepancies between low- and
high-fidelity FEA simulation results at each location through one or
several paths. The general path model considers a general function form
(e.g., polynomial function) with few coefficients to approximate a se-
quence [19]. Note that the discrepancy between low- and high-fidelity
simulation within each path can be roughly approximated by a general
function form (e.g., a polynomial function). Therefore, the hetero-
geneity of discrepancies among locations is decomposed into individual
discrepancies within each path and further modeled by a parametric
model. Third, recall that the simulation results shown in Fig. 1(b) and
(c), and define the low- and high-fidelity simulation results from two
locations as two paths. Since the discrepancies between the two paths
are similar, it also leads to similar model coefficients of the general path
models. This similarity can be represented by product design informa-
tion (e.g., Cartesian coordinates of deposition sequence) and process
design information from inputs of low-fidelity FEA simulation (e.g.,
input heat). To enforce similar correlation structures among general
path models and correlation structure among covariates in different
paths, Gaussian process models are adopted as constraints in the esti-
mation of coefficients for individual general path models. In a short
summary, the proposed GPGP model can facilitate the validation for
heterogeneous AM designs by efficiently reducing the computational
cost of FEA simulation with reasonable accuracy based on the historical
simulation results. Benefit from the flexibility of FEA simulation, the
proposed model can be potentially extended to other AM processes
which have a similar mechanism (i.e., layer-wise deposition of mate-
rial) such as selective laser melting (SLM).
The rest of the article is organized as follows. Section 2 demon-

strates the state-of-the-art of FEA simulations in AM processes and
statistical methods to improve the FEA simulation accuracy. Section 3
introduces the proposed GPGP model in detail. Section 4 demonstrates
the proposed method via the case study of thermal field simulation in
the FDM process. Lastly, Section 5 summarizes the contributions of this
work and discuss future work.

2. Literature review

In the literature, the FEA simulation for AM processes has been
intensively studied. For example, Heigel et al. introduced a thermo-
mechanical FEA simulation model to predict the thermal gradient of the
product in AM processes [20]. Chen et al. proposed a multiscale process
FEA simulation framework to efficiently and accurately estimate the
residual distortion and stress of AM products based on the modified
inherent strain model [21]. Bhandari and Lopez-Anido introduced a
space frame lattice and shell FEA simulation model to estimate the
linearly elastic responses (i.e., elastic modulus, shear modulus, and
Poisson's ratio) and further support the design and optimize of AM
products [22]. Kao et al. presented a study to investigate the bending
behaviors of a bi-material structure (BMS) built by the AM process via
finite element analysis, which can help to validate the overall me-
chanical properties of the composite [23]. In summary, there are many
effective FEA methods to accurately predict the product quality of AM
product and further validate the design in different aspects (e.g.,
thermal distribution, mechanical properties, functionalities, and etc.).
However, the computational intensity of these methods is significantly
high as shown in Table 1. Even though there are some studies to im-
prove the computation efficiency of FEA methods for AM processes such
as utilizing the Graphical Processing Units (GPU) to accelerate the si-
mulation [24], it still needs to re-compile the existing methods and also
time-consuming and complicated. Therefore, how to improve the effi-
ciency of the FEA simulation for AM processes without sacrificing the
accuracy and abandoning the existing simulation framework is im-
portant to better support product and process design validation in AM.
On the other hand, various statistical methods have been proposed

to improve the FEA simulation accuracy. One type of methods is
computer model calibration [25–27], which can statistically model the
variability of computer experiments, calibrate simulation parameters,
and compensate inadequate physics in a simulator [27,28]. These
methods have been widely used to reduce the uncertainty in the com-
puter model by optimizing calibration parameters, such as the un-
certainty introduced from the initial conditions and the important
physical parameters [28]. However, no calibration parameter can be
defined to quantify the heterogeneous discrepancy between low- and
high-fidelity FEA simulation results. Besides, data-driven models have
been proposed to enhance the accuracy of low-fidelity experimental or
simulation results based on non-parametric model frameworks, such as
hierarchical Gaussian process model [29–33]. However, these methods
concentrate on limited existing types of product and process designs.
Therefore, it is unclear how to model product and process designs of
free-form. On the other hand, transfer learning models can help to
transfer the knowledge from one domain to another domain, where
domains may share similar-but-non-identical distributions [34–36].
However, large sample sizes from the source and target domain are
required to train an accurate model for the target domain. In AM, where
the products are typically one-of-a-kind, the requirement of adequate
samples may not be affordable. With a limited sample size, it might not
be efficient to identify the amount of information or what the common
features can be transferred from one product to another product.

3. Methodology

In this section, the proposed GPGP model is introduced. In order to
clarify the scope of this study, three assumptions are made: 1) the low-
and high-fidelity FEA simulation results are collected from the FEA si-
mulations of same manufacturing process. The high-fidelity results are
collected from the FEA simulation with relatively high meshing re-
solutions after the calibration [25]. The low-fidelity results are col-
lected from the FEA simulation with lower meshing resolutions after the
calibration [25]; 2) for each path defined by a group of data from low-
and high-fidelity FEA simulation results, the relationship between low-
and high-fidelity results can be quantified as a general path model with
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a first-order polynomial form; and 3) model coefficients of general path
models share a similarity structure that can be quantified by product
design information and process design information among different
paths. These assumptions will be validated in Section 4.
In order to reduce the possible numerical errors from FEA simula-

tion for each location, the weighted average of simulation results
among spatially adjacent locations is employed to interpolate the FEA
simulation results for each location along the deposition sequence
[37,38]. This interpolation procedure aims at registering the low- and
high-fidelity FEA simulation results together in the same set of locations
since their meshing resolutions are different.

3.1. Gaussian process-constrained general path model

Denote a group of high-fidelity FEA simulation results (i.e., tem-
peratures) and corresponding low-fidelity results (i.e., temperatures)
for the ith path as y x( , )i i , where = …i m1, , ; m is the total number of
paths; = … …[ ]y y y y, , , ,i i1 ij iti ; = … …[ ]x x x x, , , ,i i1 ij iti ; =j t1, ..., i; ti is the
total time-stamps for path i. Note that there can be multiple paths in
one location, as illustrated in Section 4.2. To model the relationship
between low- and high-fidelity FEA simulation results for path i at time-
stamp j, a first-order polynomial form of general path model is em-
ployed based on the assumption. Other terms can be easily adopted in
this model framework, such as lags or differentiation information of
data [39]. Specifically, the relationship between low- and high-fidelity
FEA simulation results for path i at time-stamp j can be modeled as
follows:

= + +y x t, (0, ),i ii j 0 1 ij i j i j
2 (1)

where = … …[ , , , , ]i m0 10 0 0 and = … …[ , , , , ]i m1 11 1 1 are the cor-
responding vectors of model coefficients; For the error term i j, we
employ the Student-t distribution which has a fatter tail to improve the
robustness of the general path model among different paths, in contrast
with using the normal distribution [40]. Note that the outliers may be
caused by irregular element shapes or numerical errors from the low-
fidelity FEA simulation results. 2 is the variance of the error term.
Recall the assumption for model coefficients, we enforce the simi-

larity structure among model coefficients by adopting Gaussian process
models as constraints in the estimation of general path models as fol-
lows:

l 1
l 1

Z µ K
Z µ K

( )| , GP( , ),
( )| , GP( , ),

m

m

0 0 0 0 0

1 1 1 1 1 (2)

where Z are the covariates, including summary statistics of product
design information (e.g., Cartesian coordinates of deposition sequence)
and process design information from the inputs of low-fidelity FEA si-
mulation (e.g., input heat); The summary statistics include path length,
standard deviation, skewness, kurtosis, mean value, the average of
magnitude, entropy, max and min value, max value for 2nd differential
of path, max value for 3rd differential of path, and variance for 2nd
differential of path; 0 and 1 are amplitude factors of kernel functions; w
is the total number of covariates; = …l l l[ , , ]w0 01 0 and = …l l l[ , , ]w1 11 1
are lengthscale factors of kernel functions; µ0 and µ1 are the mean value
for the model coefficients. 1m is an m-dimensional column vector of 1s.
In this study, the exponential kernel function [41] is selected. It is an
universal kernel that can be integrated efficiently with only two hy-
perparameters [42]. Other kernel functions such as Matérn kernel, ra-
tional quadratic kernel, and non-stationary kernels such as dot-product
kernel can also be easily employed in this framework [43]. K0 and K1
are the covariance matrices, where = ×( ( ))z zK Z Z k( , ) ,i i m m0 0 ,

= ×( ( ))z zK Z Z k( , ) ,i i m m1 1 . To calculate the covariance matrix, specifi-
cally, the kernel functions k0 and k1 can be written as follows:
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where = …z z z[ , , ]i i1 iw and = …[ ]z z z, ,i i i w1 are vectors of covariates
for path i and i , respectively; = …z z zZ [ , , , ]m1 2 . The proper posteriors
rely on proper prior of hyperparameters [41]. Therefore, the following
priors are chosen [29]:

p p
p l p l

p µ a b p µ a b p

( ) IG( , ), ( ) IG( , ),
( ) IG( , ), ( ) IG( , ),

( ) ( , ), ( ) ( , ), ( ) IG( , ),
s s s s s s

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0
2

1 1 1
2 2

2 2 (4)

where = …s w1, , ; IG( , ) is the inverse gamma distribution [44]
parameterized by shape and scale to serve as an non-informative
prior with finite support to constrain the model coefficients within a
certain region; a b( , )2 is the normal distribution parameterized by
mean a and variance b2.

3.2. Model estimation and inference

The traditional Markov chain Monte Carlo (MCMC) samplers, such
as Gibbs [44], usually lead to a large fraction of rejected samples.
Therefore, in this study, the Hamiltonian Monte Carlo based No-U-Turn
Sampler (NUTS) [45] is employed for model estimation. Specifically,
the probability density function of Eq. (1) can be shown as follows:

= +
+ +( )

( )

p y x

y x

( | , , , , )

1
( )

,

i i

ij i i ij

ij ij 0 1
2

1
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(5)

where is the degrees of freedom with a prior information:
(0, 0.5)1 [40], (·,·) is a uniform distribution. Moreover, the

probability density functions of Eq. (2) can be shown as follows:
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By collecting all the hyperparameters into = l lµ µ[ , , , , , , , ]0 0 0 1 1 1
2 ,

the predictive density function can be formulated as follows:

… …

= … …

y y x x

y y x x

p

p p d d

( , , | , , , )

( , , | , , , , , ) ( , | ) .
m m

m m

1 1

, 1 1 0 1 0 1 0 1
0 1 (7)

For prediction perspective, the model coefficients =* [ *, *]0 1 for a
testing sample with covariates z* can be estimated as follows [43]:

+ +

+ +

z l
1

z l
1

p Z
K K I µ K K K I K

p Z
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where = …z z z zK k k* [ ( , *), , ( , *)]m0 0 1 0 , = …z z z zK k k* [ ( , *), , ( , *)]m1 1 1 1 ; Im
is the ×m m identity matrix; = z zK k** ( *, *)0 0 , = z zK k** ( *, *)1 1 . Fi-
nally, based on the predicted model coefficients of general path model,
we can directly feed the low-fidelity FEA simulation results into the
equation to predict the high-fidelity FEA simulation results as:

= +ŷ x* * * *.ij i i ij0 1 (9)

The procedures of training and testing for the proposed GPGP model
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is shown in Fig. 2. In the training stage, after the spatial-temporal re-
gistration for both low- and high-fidelity simulation results, we feed the
simulation results and corresponding covariates among different paths
into the GPGP model estimator to train the model. On the other hand, in
the testing stage, only the results from the low-fidelity FEA simulation
and the corresponding covariates are required. Based on the GPGP
model, the coefficients of general path model can be predicted, which
further predicts the high-fidelity FEA simulation results based on the
low-fidelity results.

4. Case study

The objective of this section is to evaluate the prediction perfor-
mance of the proposed model in comparison with other benchmark
methods. The four benchmark methods are Lasso regression [46],
tensor regression [47], functional linear regression [18] and variational
autoencoder [48]. Furthermore, to validate whether the proposed
model can accurately predict the high-fidelity simulation results for a
new design based on the historical data, two testing scenarios are em-
ployed (i.e., “cross-layers” and “cross-designs”). In addition, the as-
sumptions of the proposed model demonstrated in Section 3 are ex-
amined via this case study.

4.1. Experiments setup

In order to evaluate the performance of the proposed GPGP model,
we apply the proposed model to a FDM process and conduct the FEA
simulation for corresponding manufacturing process under both low-
and high-fidelity conditions. Specifically, the FEA simulation is a 3D
transient coupled thermo-mechanical FEA model for the thermal field
evolution of FDM processes following the simulation procedures by
[13]. As shown in Fig. 3, three different product designs are in-
vestigated in the case study: standard d( ),1 peanut d( ),2 and gear d( )3 .
The size of d( )1 is × ×44.45 44.45 2.5 mm3, which is modified based on
the NIST standard part [14]; for d( )2 , the contour of peanut is generated
according to the Polar coordinate function: =r r( ) (1 sin cos )0 ,

where is the polar angle [0 , 360 ]; polar radius =r 20 mm. The
height of d( )2 is 2 mm; for d( )3 , the outer diameter of gear is 55 mm, and
the height is 2 mm. The deposition sequences of these three designs
contain representative deposition patterns, such as straight lines, cir-
cles, sharp corners, concave curves, etc. Note that more complex geo-
metries, such as lattice structure, can be built upon the 2D slices which
consist of the aforementioned representative deposition patterns. These
designs are thus chosen to validate the potential of the proposed
method for extending to more complex geometries in AM. The filament
material is semi-crystalline poly-lactic acid (PLA). The simulation and
fabrication time for these parts are shown in Table 2. In this 3D tran-
sient coupled thermo-mechanical FEA model for the thermal field
evolution of the FDM process, the boundary condition for the bottom
surface is maintained at the same with the FDM platform denoted as
Tbed. The convective heat flux for all the other surfaces for transfer heat
is qA, where =q h T T( )A bed env ; h is the convective heat transfer coef-
ficient; Tenv is the environment temperature (i.e., 298.15K). The max-
imum element size for all three designs are fixed in the same fidelity
simulation model (i.e., 1mm for low-fidelity and 0.3mm for high-fide-
lity as shown in Table 1). Moreover, to better demonstrate the thermal
mechanism and characteristic of the deposition region, the meshing size
of elements should be fine enough. Such a high density of elements is
not required for the regions that far from the deposition region.
Therefore, an adaptive meshing method is implemented to adjust the
elements’ size adaptive to the local temperature gradients during the
deposition process [49,50]. An example of adaptive meshing in this
case study is shown in Fig. 4. Finally, a Bayesian calibration method
[25] is conducted based on actual experimental observations.

4.2. Data pre-processing

In order to better understand the spatial-temporal correlation of
simulation results among different locations, as shown in Fig. 5, the
simulation results for the standard part d( )1 are organized into a lower
triangular matrix. In the lower triangular matrix, each column re-
presents a full thermal history for a specific location (e.g., location n as
shown in Fig. 5(a)) during the manufacturing process, and each row

Fig. 2. A training and testing flowchart for the proposed method.

Fig. 3. Three product designs: (a) d :1 standard; (b) d :2 peanut; (c) d :3 gear.
(Redrawn from [13] with authors’ permission).

Table 2
Simulation time and fabrication time for different designs.

Standard (d1) Peanut (d2) Gear (d3)

Total layer number 10 8 8
Fabrication time 5 min 6 min 5 min
Simulation time (high-fidelity) 22 h 21 h 23 h
Simulation time (low-fidelity) 31 min 33 min 38 min
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represents a specific time-stamp. For example, as shown in Fig. 5(b),
two axes represent the row and the column in the lower triangular
matrix, A B C D, , , are four elements in the matrix. Moreover, points
A j n( , ) and D j n( , ) are both temperatures for location n, but at time j
and j respectively. Similarly, point B j n( , ) and C j n( , ) are tempera-
tures for location n at different time-stamps j and j.
From Fig. 5(c), this lower triangular matrix gives a better inter-

pretation of the simulation results since it shows that the adjacent

columns tend to have a similar trend of thermal histories after regis-
tration according to the deposition sequence. It also can be found that
the overall trends of temperatures variation are similar between low-
and high-fidelity FEA simulation results. Such a spatial-temporal re-
gistration of data preserves the correlation of data over the deposition
sequence, which contains all the information from a specific product
and process design to better visualize and analyze the low- and high-
fidelity FEA simulation results.
For a specific column of the lower triangular matrix from Fig. 5(c),

the simulation results are shown on the left of Fig. 6. It can be found
that re-heating happened on both low- and high-fidelity FEA simulation
results. According to the engineering domain knowledge, the re-heating
occurs when the extruder moves back to the neighbor of extruded lo-
cations [51]. The thermal energy on the extruder can re-heat its sur-
rounding area rapidly. On the other hand, without re-heating, the
temperature of extruded locations should be decreasing based on the
thermal diffusion physical mechanism [52]. Since the shapes and sizes
of elements from the low-fidelity FEA simulation are irregular, the re-
heating usually cannot be simulated accurately compared with the
high-fidelity FEA simulation. Therefore, as shown in Fig. 6, the FEA
simulation results are truncated based on the input heat to guarantee
that in each segment, no re-heating but only one thermal diffusion

Fig. 4. An Example of the Adaptive Meshing in FEA simulation. (Re-drawn from
[13] with authors’ permission).

Fig. 5. (a) Examples of raw simulation results of temperature history of a voxel (location j) (b) The illustration of the lower triangular matrix. (c) Examples of lower
triangular matrix for both low- and high-fidelity FEA simulation results.
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process exists. In the case study, each segment of simulation results is
treated as one path (please note that the definition of a path is in-
troduced in Section 1).

4.3. Model evaluation

To comprehensively evaluate the performance of the proposed
model, two training-testing scenarios are employed: i) “cross-layers”,
which iteratively uses each one layer from each design as the training
set, and the rest layers from the same design are used as testing set; and
ii) “cross-designs”, which iteratively uses all layers from each one de-
sign as the training set, and other two new designs are used as the
testing set. These two scenarios can help validate whether the proposed
model is able to accurately predict the simulation results for a new
design (i.e., testing set) only based on the historical data (i.e., training
set). The root-mean-square errors (RMSEs) are used to measure the

prediction performance as: = =

=

ŷ y

t

( )i
m

j
ti

i
m i

1 1 i j i j 2

1
. It represents the aver-

aged errors of the predictions for paths from each location in different
layers and designs. Based on distribution of ordinary least squares
coefficients fitted from training data set, hyperparameters for priors can
be identify. Specifically, in this case study, =[ , ] [2, 2]0 1 ;

=[ , ] [1, 1]0 1 ; = …= = = …= = 2w w01 0 11 1 ; = …= =w01 0
= …= = 1w11 1 ; =a 00 ; =b 0.20

2 ; =a 01 ; =b 0.51
2 ; = 22 ; = 12 .

To better demonstrate the advantages of the proposed method, four
benchmarks are employed: (1) Lasso regression [46], which is a clas-
sical linear regression method. In the case study, all covariates and
results from the low-fidelity FEA simulation are used as predictors; (2)
tensor regression [47], which considers the local spatial and temporal
correlation of paths. In the case study, the covariates among paths and
the path from the low-fidelity FEA simulation results are formed as

matrices, and these matrices are further stacked as a tensor; (3) func-
tional linear regression [18], which is a classical method for functional
data analysis. In the case study, the path for each location from the low-
fidelity FEA simulation results are treated as the predictors; and (4)
VAE [48] which is a deep learning method aiming to generate dense
representations of the path. In the case study, the long short term
memory (LSTM) neural network structure is employed [53]. The en-
coder will first encode the low-fidelity FEA simulation results as dense
vectors. Then, through the decoder, the corresponding high-fidelity FEA
simulation results can be predicted.

4.4. Results and discussion

The RMSEs for two testing scenarios are shown in Tables 3 and 4 ,
respectively. It can be observed that for both testing scenarios, the
proposed method outperforms all benchmarks. The superior perfor-
mance indicates that the proposed GPGP model can better model the
heterogeneous discrepancies between low- and high-fidelity FEA si-
mulation results because it employs the general path model to quantify
the individual discrepancies for each path. It further adopts the Gaus-
sian process model as constraints in coefficient estimation for general
path models to enforce the similarity structure among model coeffi-
cients which can be quantified by design information and process in-
formation among paths. On the other hand, Lasso regression obtains the
worst performance among all methods since it neither considers the
spatial-temporal relationship among samples nor has dynamic model
coefficients for different paths. Tensor regression has a better perfor-
mance than Lasso regression since it can partially explain the hetero-
geneous discrepancy by demonstrating the spatial-temporal relation-
ship, however, restricted by the size and dimension of the tensor, a
limited proportion of discrepancy can be explained. Similarly, the

Fig. 6. Signal truncation according to the input heat information.

Table 3
Prediction performance for cross-layers scenario: Testing RMSEs (unit: K).

Design name Lasso regression Tensor regression Functional linear regression Variational autoencoder Proposed

Standard 12.75 7.46 9.44 9.63 4.32
Peanut 10.51 6.58 7.07 11.64 4.04
Gear 12.49 9.71 8.53 9.63 4.45

Table 4
Prediction performance for cross-designs scenario: Testing RMSEs (unit: K)

Design Name Lasso Regression Tensor Regression Functional Linear Regression Variational Autoencoder Proposed

Standard 15.14 11.41 10.72 12.91 5.19
Peanut 13.28 10.03 9.52 12.07 4.84
Gear 15.86 12.37 10.53 11.63 5.67
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functional linear regression can better demonstrate the temporal re-
lationship of the data. However, it is still difficult to provide a group of
accurate basis functions for all paths since they are indeed hetero-
geneous. For VAE, it is difficult to involve the natural spatial-temporal
correlation among paths due to the complex network structure to ex-
plicitly improve the performance of the model. Moreover, even it em-
ployed a more complex model structure, it may not be sufficient to
comprehensively quantify the heterogeneous discrepancy among all
paths without any interpretable model structure.
In order to validate the assumption that the relationship between

low- and high-fidelity FEA simulation results can be modeled as a
general path model with a first-order polynomial form, the residuals are
checked based on the training results of the case study. Fig. 7 shows the

residual plot for a location from the standard design. It can be con-
cluded that the residual (i.e., ˆy y *

ij ij as defined in Section 2) of the
general path model follows a normal distribution; the average of the
residuals is close to zero; and the residuals are independent. These
conclusions validate the assumption. On the other hand, it can be found
that the residual term has heteroscedasticity which indicate the samples
might have different variability across different locations on the pro-
duct. One possible reason is that we only employ the first-order poly-
nomial function for the general path model, whose performance is good
enough comparing with the benchmarks. In future, we will investigate
to optimize the general function form for the general path model based
on heterogeneous discrepancies among paths. The heteroscedasticity
might be also due to the numerical errors in low-fidelity FEA simulation
results which introduce more disturbances in model estimation. This
type of numerical errors directly relates to the characteristics of the
simulation solver and FEA, which is out-of-scope in this study.
Moreover, to validate the assumption that there is a similarity

structure among model coefficients of general path models, and this
similarity can be represented by product design information and pro-
cess design information, the correlation between covariates and model
coefficients among different paths are presented in Fig. 8. In the figure,
the Euclidean distance between covariates vectors is defined as

= z zd D ( , )C i i where zi and zi are the covariates vectors for path i and i
respectively. Similarly, the Euclidean distance among model coeffi-
cients is defined as = [ ]d D ([ , ] , , )B i i i i0 1 0 1 . From Fig. 8, it can be
observed that if the distance between two covariates vectors becomes
larger, the distance between the two sets of model coefficients will
increase correspondingly, vise versa, which validates the assumption.

4.5. Application and limitations

The proposed GPGP model adopts general path models for the
heterogeneous discrepancies between low- and high-fidelity FEA

Fig. 7. Linear model assumption check for the proposed linear general path model ((a) histogram of residual; (b) Q-Q plot; (c) residuals vs. fitted values; (d) lag-1
residual plot).

Fig. 8. Pair-wise correlation between covariates and model coefficients.
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simulation for each paths among locations. In order to apply the pro-
posed model to boost the capability of FEA simulations in other case
studies, a general function form (e.g., a polynomial function) to roughly
approximate these discrepancies needs to be firstly identified manually
or by fitting polynomial functions. Next, the covariates extracted from
product design and process design are required to feed in Gaussian
process model-based constraints to enforce the correlation structure of
general path models among different paths. The covariates can be ex-
tracted from different sources of data such as product design informa-
tion and process information. These covariates are expected to directly
or indirectly correlate with the root-cause of heterogeneous dis-
crepancies between low- and high-fidelity FEA simulation results. As a
general method, the GPGP model can be readily extended to other types
of simulation or data sets that satisfy all three assumptions, such as
residual stress analysis [54], product strain and deviation analysis [55],
etc.
However, limitations exist in the proposed model. First, this study

does not investigate the lower bound of FEA fidelity levels (i.e.,
meshing resolutions in this study). For example, if the meshing re-
solution of the low-fidelity FEA simulation cannot provide rough
thermal history trends in each location, the GPGP model may not ac-
curately model heterogeneous discrepancies due to the lack of in-
formation. Furthermore, the proposed method shows the potential to
identify the lower bound for FEA fidelity levels by setting a desired
GPGP prediction accuracy and inversely optimizing the meshing size,
which will be investigated in the future. Second, the pre-determined
general function form (i.e., a first-order polynomial function in this
study) may not be optimal. Tuning the selection of general function
form requires the exploration of a few feasible functions, which may
lead to a high computation workload in repeatedly estimating GPGP
models with different general function forms. Although similar func-
tions, in practice, result in similar prediction performance, auto-
matically optimizing the general function form is expected to further
improve the performance.

5. Conclusion

FEA has been widely adopted to validate the process and product
design in AM to identify potential defects in AM process. Different fi-
delity levels for FEA are available to be implemented according to
different objectives and demands. High-fidelity FEA simulation has
satisfactory accuracy but yields high computation workload and huge
time-consumption, which may not be affordable. On the other hand,
low-fidelity FEA simulation is efficient but with limited capability in
terms of accuracy. In this study, we propose a GPGP model to predict
high-fidelity simulation results from low-fidelity simulation results by
quantifying their heterogeneous discrepancies. In the GPGP model, we
quantify these discrepancies through general path models. The re-
lationships among model coefficients are constrained by a Gaussian
process model via incorporating the product design information and
process design information. The proposed method was validated in a
real case study via a FDM process with three different designs for two
training-testing scenarios (i.e., cross-layers and cross-designs). The re-
sults show that the proposed model outperforms the benchmark
methods with validated assumptions in both scenarios. Therefore, it can
boost capability of low-fidelity FEA simulation, especially to validate a
new product and process design via boosted low-fidelity simulation
with satisfactory accuracy in a timely manner. The independence from
geometric designs and physical mechanisms enables GPGP model to be
applied to other types of simulation or data sets that satisfy all three
assumptions, such as residual stress analysis [54], product strain and
deviation analysis [55], etc.
This paper leads to some future research directions. First, we will

study the lower bounds of FEA fidelity levels by setting a desired GPGP
prediction accuracy and inversely optimizing the meshing size. Next,
we would like to investigate a spline regression model with variable

selection to optimize the general function form based on heterogeneous
discrepancies. Moreover, we will validate more complex geometries of
AM design and other types of AM processes such as lattice structure and
SLM. Lastly, the proposed model might be possible to be combined with
the computer experiment calibration to facilitate the accuracy im-
provement process by jointly estimating the calibration parameters and
model coefficients under a hierarchical Gaussian process model fra-
mework [28].
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