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Maximizing data information requires careful selection, termed design, of the
points at which data are observed. Experimental design is reviewed here for broad
classes of data collection and analysis problems, including: fractioning techniques
based on orthogonal arrays, Latin hypercube designs and their variants for com-
puter experimentation, efficient design for data mining and machine learning
applications, and sequential design for active learning. C© 2012 Wiley Periodicals, Inc.
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DESIGN FOR EFFICIENT KNOWLEDGE
DISCOVERY

E xperimental design is the subfield of statistics
concerned with information optimization in sci-

entific investigations. Design activities frequently take
place prior to data collection in the following broadly
described framework. There is a response variable y
of interest, and there are controllable variables x =
(x1, x2, . . . , xp) conjectured to affect that response.
The design problem is to select values of x, say
xi = (xi1, xi2, . . . , xip) for i = 1, . . ., N, at which to
observe values of y. This selection is guided by max-
imizing one or more measures of information that
will be gained on y and its relationship with the xjs.
Design techniques for data mining applications, in
which large amounts of data (yi , xi ) could be, will, or
have already been, collected, have the goal of more
efficient exploration of relationships in that data. In-
cluded are restricted data mining situations in which
a vast amount of data could potentially be gathered,
but cost or other considerations demand a much more
frugal approach. In restricted situations, design strate-
gies can foster keen insight into the y, x relationship
while collecting a very small fraction of the possible
data.

A useful construct is that of a factorial exper-
iment, or experiment with factorial treatment struc-
ture, which is just an experiment with p controllable
variables as described above. Let Sj be the collection
of possible values for factor xj and, for simplicity,
assume that all members of S = S1 × S2 × · · · × Sp

are candidates for x. The design problem of choos-
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ing x1, . . . , xN at which to measure y has the goal
of understanding (some features of) the relation-
ship y = f (x) + ε, ε representing measurement noise.
Each Sj may be finite, countable, or uncountably in-
finite. Regardless, the number of possible data loca-
tions |S| can be unmanageably large. The design prob-
lem in a restricted data mining situation is to ‘mine’
the data field S in such a way that a faithful represen-
tation of f (x), x ∈ S can be created.

Design’s historical roots stretch back to the birth
of statistics, with many fundamental concepts origi-
nating with Fisher.1 Rigorous study of optimal de-
sign selection grew rapidly from the seminal works
of Elfving,2 Kiefer,3 Kiefer and Wolfowitz,4 and Box
and Draper,5 among others. In brief, if the functional
form of f is known up to parameters β = (β1, . . . , βk),
then information assessment can be based on the
inverse of the covariance matrix for estimators β̂

of β, commonly called the information matrix, de-
noted as I(β). Assuming I(β) has the same, maxi-
mal rank k for all competing designs (designs yield-
ing smaller rank are eliminated), denote its nonzero
eigenvalues by λ1, λ2, . . ., λk. Popular optimality
measures for information content, all of which are
direct measures of variance magnitude and so are
to be minimized, are A = ∑k

i=1 λ−1
i , D = �k

i=1λ
−1
i ,

and E = maxi λ−1
i . These are proportional respec-

tively to the average variance of the β̂i , volume of
the confidence ellipsoid for β̂, and maximal variance
over all normalized linear combinations of the β̂i .
Variants on these and many other criteria are dis-
cussed by, for example, Atkinson et al.,6 Morgan
and Wang,7 and Gilmour and Trinca.8 If the pos-
tulated form of f is incorrect then β̂ will be biased
for β and design considerations can incorporate no-
tions of bias abatement, taken up for fractions in the
following.
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FINITE DATA FIELDS AND
FRACTIONAL FACTORIAL DESIGNS

If each Sj is finite, |Sj| = sj, then we have a |S| =
s1 × s2 × · · · × sp factorial. In many arms of scientific
endeavor, it is not uncommon to replace any interval
Sj with an appropriately spaced subset of its points
to arrive at this situation. At the boundary of this
approach is the commonly employed 2p framework
in which each factor is considered at sj = 2 levels,
these covering, or nearly covering, the actual ranges of
the factors. Use of two-level factors minimizes |S| for
given p, yet even then the cost of data collection may
preclude measuring at every point in S. Fractioning is
a technique for dealing with this restricted situation.

For finite S, the values f (x) relating y to
x may be thought of as a finite collection of
arbitrary means f (x1, x2, . . . , xp) = μx1x2...xp . Index-
ing the values of xj by 0, 1,. . .,sj − 1, these
means may be collectively written as the vector
μ = (μ00...0, μ00...1, . . . , μs1−1,s2−1,...,sp−1). Fractioning
takes advantage of the fact that μ may admit a lower-
dimensional representation. Let J be the set of 2p

subsets of the indices {j1, j2, . . ., jp}. For J ∈ J there
are �j∈Jsj marginal means defined as the average of
μ j1 j2··· jp over all values of the p − |J| subscripts not
in J; there is one such mean if |J| = 0, and otherwise
one such mean for each distinct set of values for jls in
J. A main effects model represents μ j1 j2··· jp as a linear
combination of the marginal means for which |J| ≤
1. For q ≥ 2, a q-factor interaction model represents
μ j1 j2··· jp as a linear combination of the marginal means
for which |J| ≤ q. Explicit expressions based on or-
thogonal parameterizations may be found in Dey and
Mukerjee9 or Hedayat et al.10 A p-factor interaction
model is equivalent to arbitrary μ.

A q-factor interaction model for q ≤ p can be
unbiasedly fit without mining all points in S, pro-
vided the correct points are selected. For simplicity,
we proceed with sj = s for all j, and |S| = s p. An
orthogonal array (OA) of strength t, OA(N, sp, t),
is a collection of N points in S which, when writ-
ten as the rows of an N × p matrix, contains as the
rows of each N × t submatrix each of the st combi-
nations of the corresponding t factors with frequency
N/st (see Figure 1). Observation at the points (rows)
of an OA of strength t will unbiasedly estimate any
f (x) that can be expressed as a u-factor interaction
model for some u ≤ �t/2�. Moreover, this estimation
is optimal with respect to the A, D, and E criteria and
many others.11,12 The orthogonality property implies
that model reduction via removal of any subset of the
terms in the u-factor model will not affect the esti-
mates for the remaining terms. Orthogonal arrays are

FIGURE 1 | Two orthogonal arrays.

by a wide measure the most commonly employed of
the fractional factorial designs.

OAs have been extensively studied for several
decades (see the book-length treatment,10 the on-
line orthogonal array catalogs,13,14 and the recent
survey15). Use of OA fractions of strength t when u >

�t/2� will introduce bias which can be minimized in
any of several reasonable senses by choice of partic-
ular OAs; especially popular have been various ver-
sions of the minimum aberration criterion.16–19 Inter-
estingly, blended criteria that incorporate measures
of both variance and bias can lead to designs other
than OAs as best.20 In any case, the real value of frac-
tioning via OAs rests on the empirical fact that many
data situations do not demand a fully general model,
rather they are amenable to a lower-order interac-
tion model, to gain an adequate representation. Even
with u > �t/2� biases may be sufficiently mild that the
essential behavior of f (x) is not obscured.

When considering many factors (large p),
screening designs employ the main effects model with
only s = 2 levels per factor to economically determine
which factors exert strong (main) effects. The two-
level OAs of strength 2, OA(N, 2p, 2), must have N a
multiple of 4 and can accommodate up to p = N − 1
factors. These arrays have been fully enumerated for
up to N = 20 runs,21 for N = 24 and p ≤ 7, for N =
28 and p ≤ 6, and for N = 32 and p ≤ 6.22 Full enu-
meration enables design selection through exhaustive
comparisons of bias measures and projection prop-
erties. Depending on the criterion selected, the best
OAs for a range of larger values of N and p have been
determined without full enumeration.23–26

Supersaturated designs have p ≥ N and hence
necessarily risk bias even should a main effects model
hold. They have nonetheless proven to be a valu-
able experimental tool when relatively few of the
factors are expected to exert significant influence
on the response y. Many techniques for devising
effective supersaturated designs, including many
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FIGURE 2 | A four-dimensional, nine-level Latin hypercube and its two-dimensional projections.

based on modifications of two-level OAs, have been
devised.27–34

COMPUTER EXPERIMENTS

Highly complex physical phenomena on many scales,
from weather systems to artificial limb function, have
increasingly become subjects of investigation through
computer modeling. Elaborate, deterministic mathe-
matical models are proposed and coded for computa-
tion, usually involving numerous differential and/or
integral equations and boundary conditions, and
depending on numerous inputs x = (x1, . . . , xp). A
single computer run for a model with a single in-
put x may be quite time-consuming, and regardless,
the design space S is usually infinite. Thus from the
potentially infinite set of observations (y, x), and sim-
ilar to the fractioning problem explored above, we
are faced with the restricted problem of selecting the
points x1, . . . , xN at which runs will actually be made.
But the truly distinguishing feature of a computer ex-
periment is the lack of error: all runs at the same input
x will produce the same output y. Consequently, repli-
cation of inputs is to be avoided, even on subsets of the
input variables x, for should the relationship y = f (x)
not involve some of the predictors, replication on
the remaining subset provides no information. Both
modeling and design issues for computer experiments
are taken up at length by Santner et al.35 and Fang
et al.36 Selection of N is discussed by Loeppky
et al.37 Popular design strategies will be reviewed
here.

McKay et al.38 introduced Latin hypercube de-
signs (LHDs) for computer experimentation. The
range of each xj is divided into N intervals of equal
length. These intervals are numbered by their mid-
points, randomly ordered, then assigned as columns
of the N × p design matrix X . Rows of X are the N
inputs x1, x2, . . . , xN of the LHD (see Figure 2).

LHDs are simple to construct and have the
desired uniformly distributed, nonreplicated, one-
dimensional projections. These two attributes have
made them very popular, and several modifications
to impose additional, desirable properties on the ba-
sic design have followed. A space-filling or maximin
LHD39–42 is a LHD which, for given p and N, max-
imizes the minimum Euclidean distance between any
two xi . The intent of space filling is to achieve an
improved representation of f (x) by more evenly cov-
ering the space S. Orthogonal LHDs (OLHDs)43–47

have orthogonality of the columns of X , assuring or-
thogonal estimation of effects in a first-order polyno-
mial model for f (x). In some cases, orthogonality un-
der higher-order polynomial models is also achieved.
More flexible are the transparently named nearly or-
thogonal Latin hypercube designs (NOLHDs).48–50

Stratification in t-dimensional margins of a Latin hy-
percube for t ≥ 1 can be achieved by constructions
based on OAs of strength t.51–53 The LHD in Figure 2
is of this type, based on the second OA in Figure 1
(viewing each 9 × 9 margin as a 3 × 3 array of 3
× 3 subarrays, each subarray contains exactly one
point). A sliced Latin hypercube design (SLHD) X
with slices X1, . . . , Xk is a LHD for which the whole
design X = (X ′

1, X ′
2, . . . , X ′

k)′ is an LHD, and each

166 Volume 2, March /Apr i l 2012c© 2012 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Experimental design

slice Xk is an LHD. SLHDs can incorporate qualita-
tive predictors.54 LHDs have also been developed for
various sequential strategies.55,56

Alternatively, one may directly optimize choice
of xi s with respect to a space-filling criterion. Included
here are sliced space-filling designs57 and Sudoku-
based space-filling designs.58 Uniform designs36,59,60

also take a space-filling approach. Thinking of the
xi s as a random sample, a uniform design minimizes
a measure of the distance of the empirical distribu-
tion function of this sample from that of a continu-
ous uniform distribution in p-space. Not surprisingly,
the designs obtained depend on the distance measure
employed.

DATA MINING AND MACHINE
LEARNING

Again, the techniques of experimental design are built
around ideas of effective data collection. The value
of design strategies in data mining applications is
found in tying the notion of effective collection from
S with that of efficient exploration of relationships in
(yi , xi ). Design can advance the effectiveness of ma-
chine learning methods by enhancing accuracy and
reducing variability.

Design for model discrimination has been well
studied.61 Methods have been developed to dis-
criminate among candidate models, for instance,
nested polynomial regression models with different
orders.62,63 Bingham and Chipman64 take an opti-
mal design approach for discriminating models un-
der a Bayesian formulation for the linear model
y = Xβ + ε, where y = (y1, . . . , yn)′ is the vector of
responses, X as above is the N-rowed design matrix,
β is the parameter vector, and ε is a vector of random
errors. Label the possible models as M1, . . ., MK. To
evaluate a design’s capability of discriminating mod-
els, they employ the distance criterion

HD =
∑
i< j

P(Mi )P(Mj )H( fi , f j ),

where P(Mi) is probability of model Mi and
H( fi , f j ) = ∫

( f 1/2
i − f 1/2

j )2dy is the Bhattacharyya–
Hellinger distance65–67 between the predictive densi-
ties fi and fj of the response y under models Mi and
Mj. A design maximizing HD will more readily iden-
tify a set of active predictors. However, the number
of models that can be entertained in this framework
is relatively small.

With advancing technology, fields as disparate
as biology and financial services are working with
massive, high dimensional data, where both N and

p can be very large. This calls for variable selec-
tion to identify significant xis for the model. Regular-
ization methods for variable selection have received
considerable attention, including Lasso,68 nonnega-
tive garrotes,69 SCAD,70 LARS,71 and the Dantzig
selector72 among many others. The great number of
candidate models in these situations precludes more
traditional design approaches for model discrimina-
tion discussed above. Now the design perspective pro-
vides value by pinpointing data subsets with desirable
structures, helping identify significant variables more
efficiently.

Deng et al.73 consider selection of the design ma-
trix X for the Lasso procedure. For the linear model
y = Xβ + ε, the Lasso estimates β by

β̂ = arg min
β

(y − Xβ)T(y − Xβ) + λ‖β‖l1 ,

where ‖β‖l1 = ∑p
i=1 |βi | and λ is a tuning parameter.

Because the l1 norm ‖ · ‖l1 is singular at the origin,
some coefficients of β̂ are exactly zero, leading to si-
multaneous estimation and model selection. Deng et
al.73 take X to be a nearly orthogonal LHD. Owing
to their orthogonality and stratification properties,
the use of NOLHDs in the Lasso can significantly im-
prove accuracy in identifying active predictors. Xing
et al.74 provide an optimal design strategy for vari-
able selection under Lasso for two-level designs. For
observational data, one seeks a well-structured subset
of the data to improve Lasso variable selection.

For data where a linear model is not realistic,
machine learning techniques are valuable tools. Here,
too, experimental design concepts can be incorpo-
rated to improve performance. MacKay75 and Cohn76

applied optimal design techniques to neural networks
using linear approximations of neural network mod-
els. However, a first-order approximation can be
overly rough for a complicated model. Gilardi and
Faraj77 developed a query-by-committee method78

to select design points for the multilayer perceptron
(MLP) model79 in a regression setting. Given a train-
ing set T = {(x1, y1), . . . , (xn, yn)}, with the goal of
modeling the unknown f (x), the problem is to select
new data points achieving maximal modeling infor-
mation. A committee of m models f̂ (1), . . . , f̂ (m) is
constructed using the training set T , then new points
selected which maximize disagreement among those
models. Disagreement D(x) is calculated using a sam-
ple variance of the estimates at x:

D(x) = 1
m

m∑
i=1

(ŷ(i) − ȳ)2,
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where ŷ(i) = f̂ (i)(x) is the prediction at x using f̂ (i),
and ȳ = (1/m)

∑m
i=1 ŷ(i) is the mean of the estimates

from the committee. This strategy is expected to max-
imize information gain by selecting points that effi-
ciently drive convergence toward a single MLP re-
gression model.

Support vector machines (SVMs) are another
valuable technique for nonlinear models in classifica-
tion and regression.80 SVMs often need to specify val-
ues of meta-parameters, which can have a profound
effect on prediction performance. Experimental de-
sign principles can be used to identify optimal param-
eter settings more effectively than an exhaustive grid
search. For example, Staelin81 employs design con-
cepts for selecting meta-parameter values, which is
robust and works efficiently on a variety of problems.

In data mining and machine learning, cross-
validation is widely used to assess prediction error.82

For a loss function L(y, f̂ ) measuring the discrep-
ancy between the predicted response f̂ and the ac-
tual response y, the prediction error is defined to be
γ = E{L(y, f̂ (x))}. The objective of cross-validation
is to estimate γ based on a training sample T =
{(x1, y1), . . . , (xn, yn)}. This is done by partitioning
the sample T into k folds, C1, . . . , Ck, then iteratively
holding onefold Cu for testing the prediction accuracy
of f̂ constructed with data in the other folds. Specifi-
cally, the estimate γ̂ is computed as

γ̂ = 1
n

k∑
u=1

∑
i∈Cu

L(yi , f̂T−Cu
(xi )),

where cross-validation iteration u uses T−Cu = T \Cu

for model building and Cu for model testing. From
a design perspective, it is helpful to embed desir-
able structure into the partitioned data such that the
points in each fold have attractive properties. Deng
and Qian83 introduce sliced cross-validation (SCV)
for efficiently estimating the prediction error for clas-
sification. SCV uses SLHDs X to impose a slicing
structure for the inputs in T so that the input values
Xk in each fold are well spread in the whole space.
By embedding each slice Xk into a corresponding fold
Ck, SCV can reduce the fold-to-fold variation on the
input values, thereby significantly reducing variability
of the cross-validation error estimate of a classifica-
tion rule.

SEQUENTIAL DESIGN AND ACTIVE
LEARNING

In knowledge discovery, obtaining an informative
training set is crucial to efficiently explore the data

structure. Instead of a fixed sampling approach, an
adaptive and sequential strategy can be more ben-
eficial. This calls for active learning75,84,85 in ma-
chine learning applications, whereby the learner ac-
tively selects data points from the predictor database
S to be added to the training set. A standard ap-
proach in active learning using SVMs for classifica-
tion is selection of the next data point with largest ex-
pectation of improvement.86–88 Yu et al.89 developed
active learning using design ideas for regression mod-
els. A Bayesian sequential optimal design for sparse
linear models90 uses certain information-based loss
functions.

Active learning is closely related to sequential
experimental design. In sequential design, the data
points are chosen sequentially, that is, xN+1 is selected
based on x1, x2, . . . , xN and their corresponding re-
sponses y1, y2, . . . , yN. There are two general ap-
proaches for generating sequential designs: stochastic
approximation and variance optimization.

In stochastic approximation methods, explained
here for p = 1 predictor, the xs are chosen such that xN

converges to the root of a certain function as N → ∞.
As a pattern classification method, stochastic approx-
imation is widely used in many fields.91 Consider the
problem of stochastic root finding in sequential de-
signs, that is, of estimating the value x at which f(x)
= E(y|x) attains a specified value α. Suppose the col-
lected data are (x1, y1), . . ., (xN, yN). Robbins and
Monro92 proposed the stochastic approximation pro-
cedure

xN+1 = xN − aN(yN − α),

where {aN} is a prespecified sequence of positive con-
stants. They also established the conditions under
which xN converges to the root of f(x) − α. Joseph93

developed an efficient Robbins–Monro procedure for
binary data. Wu94 proposed a stochastic approxima-
tion method for binary data known as the ‘logit-MLE’
method, in which f(x) is approximated by a logit
function e(x−μ)/σ /(1 + e(x−μ)/σ ). Then, determination
of xN+1 is by xN+1 = μ̂N + σ̂N log α

1−α
, where μ̂N, σ̂N

are maximum likelihood estimates of μ, σ based on
(x1, y1), (x2, y2), . . ., (xN, yN). Ying and Wu95 show
the almost sure convergence of xN to the root irre-
spective of the function f(x). Joseph et al.96 improves
Wu’s logit-MLE method by giving more weight to
data points closer to the root via a Bayesian scheme.
When the design space S is multidimensional, mul-
tivariate stochastic approximation procedures have
been studied by several researchers.97–99 An overview
of stochastic approximation methods and their theo-
retical properties can be found in Kushner and Yin100

and Lai.101
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In variance optimization methods for sequen-
tial design, a parametric model is postulated for the
unknown function f. Points x are then chosen sequen-
tially according to an optimality criterion such as A-,
D-, or E-optimality. For example, Neyer102 develops a
sequential D-based design: the point xN+1 is chosen to
maximize the determinant of the estimated informa-
tion matrix. The root is solved from the final estimate
of the function f(x). Employing the D-criterion and
a Bayesian analysis, Dror and Steinberg103 offer a se-
quential design procedure for generalized linear mod-
els that can handle multiple predictors (p > 1) and can
be applied for both fully sequential and group sequen-
tial settings. Lewi et al.104 develop sequential optimal
design for neurophysiology experiments by selecting
data points to maximize the mutual information be-
tween the data and the unknown parameters of a gen-
eralized linear model. Sequential optimal design meth-
ods have been applied in many other areas including
microarray105,106 and psychophysical107 studies.

Effectiveness of the variance optimization ap-
proach is model dependent: it performs best when
the assumed model is the true model, and degrades
with increasing deviation from the true model. Sev-
eral methods on robust optimal design have been
proposed to address the model uncertainties.108,109

Understandably, the performance of the stochastic ap-
proximation method is not as good when the assumed
model is correct. Deng et al.110 introduce active learn-
ing via sequential design, which combines the advan-
tages of both stochastic approximation and variance
optimization methods.

The adaptive nature of sequential design and ac-
tive learning is also embedded in the well-developed
techniques of response surface methodology (RSM).
Akin to techniques discussed earlier in this section,

the objective of RSM is to identify settings of input
variables x that optimize (typically, maximize) the
expected response f (x) = E(y|x). As introduced by
Box and Wilson,111 RSM uses a sequence of designed
experiments to attain an optimal response by fitting
locally quadratic functions, with a new design gen-
erated at each step of a hill-climbing algorithm. For
many industrial and biometric applications, RSM iter-
ative learning can efficiently improve systems to max-
imize production. A comprehensive introduction is
provided by Box and Draper.112

THE DESIGN HORIZON

As stated at the top of this article, experimental design
seeks to optimize information garnered in scientific
work. As indicated throughout this article the reach
of design tools extends across the scientific spectrum.
Meticulous data collection, that is, careful design, in-
variably improves the effectiveness of modeling and
analysis techniques, and so enhances capacity to draw
meaningful conclusions. With technological advance
allowing ever larger amounts of data to be gathered
on ever larger numbers of variables, design techniques
are evolving to handle the increasingly complex data-
collection and data-reduction problems entailed. To
reiterate just two problems mentioned earlier, de-
sign matrix X choice for effective variable selection
(with Lasso, SCAD, etc.), and SCV for building ma-
chine learners, are beginning to generate considerable
interest, and offer many open avenues for innova-
tion and improvement. The early efforts described
here for extending design techniques to data min-
ing and machine learning applications have the po-
tential to engender a new interface between the two
fields.
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