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Modeling data with multivariate count responses is a challenging problem because of

the discrete nature of the responses. Existing methods for univariate count response

cannot be easily extended to the multivariate case since the dependence among mul-

tiple responses needs to be properly accommodated. In this paper, we propose a

multivariate Poisson log-normal regression model for multivariate count responses

by using latent variables. By simultaneously estimating the regression coefficients

and inverse covariance matrix over the latent variables with an efficient Monte Carlo

EM algorithm, the proposed model takes advantage of the association among mul-

tiple count responses to improve the model prediction accuracy. Simulation studies

and applications to real-world data are conducted to systematically evaluate the

performance of the proposed method in comparison with conventional methods.
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1 INTRODUCTION

In this decade of data science, multivariate response observa-

tions are routinely encountered in various contexts. To model

such datasets, multivariate regression and multitask learn-

ing models are common techniques to study and investigate

relationships between q ≥ 2 responses and p predictors. The

former class of methods (eg, refs. [23,24,27,31]) estimates

the p × q regression coefficients and recovers the correlation

structure among response variables using regularization. The

latter class of methods focuses on learning the shared fea-

tures [13–15,18] or common underlying structure(s) among

multiple tasks [1,2,5,21,36] using regression approaches and

enforcing regularization controls over the coefficient matrix.

However, all such multivariate regression or multitask learn-

ing models discussed above often deal with continuous

responses and are not applicable to count responses.

When responses are count variables, the Poisson model is

a natural approach to model them, for example, in domains

such as influenza case count modeling [32], traffic accident

analysis [7,25], and consumer services [30]. However, Pois-

son regression models developed in these works are either

univariate or inferred via Bayesian approaches, and neither

sparsity nor feature selection is typically enforced over the

inferred coefficients. When count responses are multivariate,

it is challenging to quantify associations among them because

of the discrete nature of the data. One approach is to model

each dimension of count variables as the sum of independent

Poisson variables with some common Poisson variables cap-

turing dependencies [19]. A drawback of this method is that it

can only model positive correlations. Recent literature [16,35]

models multivariate count data with novel Poisson graphical

models that can handle both positive and negative dependen-

cies. However, these works do not consider multivariate count

data in the context of regression.

To develop a joint model for data with multivariate count

responses, it is important to properly exploit potential hidden

associations among the count responses. One way to con-

sider such a joint model of multivariate count responses is

via penalty-based model selection from the perspective of

parameter regularization. The key idea is to allow the count

responses to be independent of each other, while the regres-

sion coefficients are required to obey a certain common sparse

structure. Hence joint modeling is enabled here because of the

joint estimation of regression coefficients through appropriate

penalties. Such a modeling strategy leads to an explicit loss
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function with tractable computational characteristics. How-

ever, this method overlooks essential dependences among

multiple count responses, which could result in poor pre-

diction performance. There are also several recent papers

that develop models of multivariate count data from the

lens of conditional dependency. But these methods are typ-

ically restricted to approximated likelihood functions under

the framework of generalized linear models.

In this paper, we propose a novel multivariate Poisson

log-normal model for data with multiple count responses.

The motivation of adopting a log-normal model is to bor-

row strength from regression under the multivariate normal

assumption, which can simultaneously estimate regression

coefficients and the covariance structure. For the proposed

model, the logarithm of the Poisson rate parameters is mod-

eled as a multivariate normal with a sparse inverse covariance

matrix, which combines the strengths of sparse regression

and graphical model to improve prediction performance.

Thus, this approach can fully exploit the conditional depen-

dency among multiple count responses. Our key contribu-

tions to model data with multivariate counts response are as

follows:

• The method proposed here combines the strengths of

regression and graphical models to improve prediction for

multivariate regression.

• The method proposed here also enables interpretable mod-

els in terms of the predictors by reducing the number of

regression parameters via the Lasso penalty.

• A simple Monte Carlo EM (MCEM) algorithm is devel-

oped to facilitate the estimation of parameters, which

allows the iterative estimation of regression coefficients

by Lasso and the inverse covariance matrix by graphical

Lasso.

• By applying the proposed model to real-world

influenza-like-illness (ILI) datasets, we study the depen-

dencies between different types of flu viruses in 2 Latin

American countries, and demonstrate the effectiveness of

the proposed method when modeling multivariate data

with count responses.

It is worth pointing out that the proposed method is not

restricted to using the Lasso penalty for regression param-

eters. It can be easily extended to other penalties such as

the adaptive Lasso, group Lasso, or fused Lasso [11]. While

covariance matrix estimation and inverse covariance matrix

estimation have attracted significant attention in the literature

[10,24,27], here we use this idea in the context of a mul-

tivariate regression for count data. Thus inverse covariance

matrix estimation is conducted here to improve prediction

performance, not just as an unsupervised procedure. One may

call such a strategy supervised covariance estimation, which

has not been widely studied in the literature. (One excep-

tion is the work on multivariate regression for continuous

responses [27,34].) Therefore, to the best of our knowledge,

our proposed method is a first work to incorporate covariance

matrix estimation into a multivariate regression model of

count responses.

The rest of the paper is organized as follows. Section 2

elaborates the proposed method. Section 3 focuses on devel-

oping an efficient MCEM algorithm for parameter estima-

tion. The simulation study is conducted in Section 4, and a

real case study is covered in Section 5. Some discussion of

related work is given in Section 6. We conclude the work in

Section 7.

2 MULTIVARIATE POISSON
LOG-NORMAL MODEL

In this section, we formally specify the multivariate Pois-

son log-normal (MVPLN) model, and describe the proposed

MCEM algorithm for parameter estimation in detail. For

convenience, we use the following notation to present the pro-

posed MVPLN model in the rest of the paper. Normal lower

case letters, for example, x and y, represent scalars, while

bold lower case letters, for example, x and y, are used to

represent column vectors, and bold upper case letters in the

calligraphic font, for example,  and  , denote random col-

umn vectors. Let letters with superscript in parentheses, for

example, x(i), denote the ith component of the corresponding

vector X. Matrices are represented by bold upper case letters

in normal font, for example, X and Y. Letters in lower case

with 2 subscripts, for example, xi, j, denote the (i, j)th entry of

the corresponding matrix X.

2.1 The proposed model

Consider the multivariate random variable  = [ (1),

 (2), … , (q)]T ∈ q
+, where the superscript T denotes the

transpose, and + represents the set of all positive integers.

For count data, it is reasonable to make the assumption that

 follows the multivariate Poisson distribution. Without loss

of generality, let us assume that each dimension of  , say

 (i), follows the univariate Poisson distribution with parame-

ter 𝜃(i), and is conditionally independent of other dimensions

given 𝜃(i). That is

 (i) ∼ Poisson(𝜃(i)), 𝜃(i) ∈ +,∀i = 1, 2, … , q. (1)

Let x= [x(1), x(2), … , x(p)]T ∈p denote the predictor vec-

tor. In order to establish relationship between  and x, we

consider the following regression model:

𝜽 = exp(BTx + 𝜀),
𝜀 ∼ N(0,𝚺), (2)

where B is a p × q coefficient matrix, and 𝚺 is the

q × q covariance matrix which captures the covariance struc-

ture of variable 𝜽= [𝜃(1), 𝜃(2), … , 𝜃(q)]T given x. Notice

that the exponential function in Equation (2) is evalu-

ated element-wise. Through the variable 𝜽, we model the
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FIGURE 1 Plate notation of the proposed multivariate Poisson log-normal

model

covariance structure of the count variable  indirectly.

Figure 1 shows the plate notation of the proposed MVPLN

model.

With the conditional independence assumption, the prob-

ability mass function for the multivariate Poisson random

variable  is

p( = y ∣ 𝜽) =
q∏

i=1

p( (i) = y(i) ∣ 𝜃(i))

=
q∏

i=1

(𝜃(i))y(i) exp(−𝜃(i))
y(i)!

. (3)

From the specification of the MVPLN model in

Equation (2), since 𝜺 ∼ N(0, 𝚺), if we let 𝜸 =BTx + 𝜺, we

know that 𝜸 follows the multivariate normal distribution

N(BTx, 𝚺) with density function

p(𝜸 ∣ x) = 1

(2𝜋)q∕2|𝚺|1∕2
exp

(
−1

2
(𝜸−BTx)T𝚺−1(𝜸−BTx)

)
.

Since 𝜽= exp(𝜸)= exp(BTx+ 𝜺), 𝜽∣x follows the multivari-

ate log-normal distribution, and we can derive that the density

function of 𝜽∣x is

p(𝜽 ∣ x) = p𝜸(log(𝜽) ∣ x)
||||diag

(
1

𝜃(i)

)||||
=

exp
(
− 1

2
(log𝜽 − BTx)T𝚺−1(log𝜽 − BTx)

)
(2𝜋)q∕2|𝚺|1∕2

q∏
i=1

𝜃(i)
. (4)

Given n observations of the predictor X = [x1, x2,… ,

xn]T and corresponding responses Y = [y1, y2,… , yn]T , the

log-likelihood of the MVPLN model is

(B,𝚺) =
n∑

j=1

log p( = yj ∣ xj), (5)

where

p( = y ∣ x) = ∫𝜽p( = y,𝜽 ∣ x)d𝜽

= ∫𝜽p( = y ∣ 𝜽)p(𝜽 ∣ x)d𝜽. (6)

Here, p( = y ∣ 𝜽) and p(𝜽∣X) follow multivariate Poisson

distribution and multivariate log-normal distribution speci-

fied in Equations (3) and (4), respectively. To jointly infer

the sparse estimations of the coefficient matrix B and the

inverse covariance matrix 𝚺−1, we adopt the regularized neg-

ative log-likelihood function with l1 penalties as our loss

function. Log-likelihood has been a widely used objective

function when estimating regression models, and it has been

shown in many research works [29] that the l1 penalties are

able to enforce and recover sparse structures in the model

and also help to prevent overfitting. By combining these 2

ingredients together to form the loss function of the proposed

models, it achieves our goal of sparse estimations of model

parameters B and 𝚺. To be specific, the loss function could be

written as

p(B,𝚺) = −(B,𝚺) + 𝜆1‖B‖1 + 𝜆2‖𝚺−1‖1, (7)

where ||⋅||1 denote the l1 matrix norm which is defined as‖B‖1 =
∑
i,j

∣ bi,j ∣, and 𝜆1 > 0, 𝜆2 > 0 are 2 tuning parameters.

2.2 Selection of tuning parameters

To determine the optimal values of the tuning parameters 𝜆1

and 𝜆2, we adopt the extended Bayesian information crite-

rion (EBIC) approach proposed by Chen and Chen [4] and

extended to Gaussian graphical models by Foygel and Drton

[8]. Assume B𝜆1,𝜆2
and 𝛀𝜆1,𝜆2

denote the maximum likelihood

estimation (MLE) of the model parameters B and 𝛀 with reg-

ularization parameters 𝜆1 and 𝜆2, where 𝛀=𝚺−1 represents

the inverse of the covariance matrix. The EBIC value for this

model is given by the following equation:

EBIC𝛾 (𝜆1, 𝜆2) = −2Q̃(B𝜆1,𝜆2
,𝛀𝜆1,𝜆2

) + [v(B𝜆1,𝜆2
)

+v(𝛀𝜆1,𝜆2
)] log n + 2𝛾𝑣(B𝜆1,𝜆2

) log(𝑝𝑞)
+4𝛾𝑣(𝛀𝜆1,𝜆2

) log q, (8)

where Q̃(B𝜆1,𝜆2
,𝛀𝜆1,𝜆2

) is the approximate expected

log-likelihood in Equation (13); v(B𝜆1,𝜆2
) and v(𝛀𝜆1,𝜆2

) denote

the number of nonzero entries in B𝜆1,𝜆2
and 𝛀𝜆1,𝜆2

, respec-

tively; and n is the number of training observations. With

EBIC, the optimal values for 𝜆1 and 𝜆2 are selected by

(𝜆1, 𝜆2) = argmin
𝜆1,𝜆2

EBIC𝛾 (𝜆1, 𝜆2).

3 MONTE CARLO EM ALGORITHM FOR
PARAMETER ESTIMATION

In order to obtain the estimates of MVPLN model parameters

B and 𝚺, we could simply solve the following optimization

problem:

B̂, �̂� = argmin
B,𝚺

p(B,𝚺). (9)

However, it is difficult to directly minimize the objective

function defined above because of the complicated integral in

Equation (6). Thus, we turn to an iterative approach for the

solution. We treat 𝜽 as latent random variables, and apply the

EM algorithm to obtain the maximum likelihood parameter

estimates (MLEs).
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3.1 E-step

Suppose at iteration t + 1, the conditional distribution of the

latent variable 𝜽 given X, y, B(t), and 𝚺(t) is

p(𝜽 ∣  = y, x;B(t),𝚺(t)) =
p( = y,𝜽 ∣ x;B(t),𝚺(t))
p( = y ∣ x;B(t),𝚺(t))

. (10)

Here, B(t) and Σ(t) represent the current estimates of the

matrices B and Σ at the iteration t of the EM algorithm,

respectively. Then, the expected log-likelihood would be

Q(B,𝚺 ∣ B(t),𝚺(t)) = Ep(𝜽∣=y,x)[(B,𝚺)]
=

n∑
j=1

Ep(𝜽j∣=yj,xj)[log p( = yj,𝜽j ∣ xj;B,𝚺)]. (11)

3.2 M-step

Find the estimations for the parameters B and 𝚺 at iteration

t + 1 by solving the following optimization problem:

B(t+1),𝚺(t+1) = argmin
B,𝚺

{
−Q

(
B,𝚺 ∣ B(t),𝚺(t))

+𝜆1‖B‖1 + 𝜆2‖𝚺−1‖1

}
. (12)

The E-step and M-step are repeated alternatively until con-

vergence.

However, it is difficult to directly derive the analytical form

of the expected log-likelihood of the model because of the

integral in Equation (6) and thus to solve the correspond-

ing optimization problem in the M-step. Here, we adopt a

Monte Carlo variant of the EM algorithm for an approximate

solution where MCMC techniques are applied in the E-step

to obtain an approximate expected log-likelihood function.

Then, in the M-step, the MLE of the model parameters is

obtained by maximizing the penalized approximate expected

log-likelihood.

In our implementation, we take 300 MC samples in the MC

E-step and discard first 10% of samples since we observe that

with the tailored proposal distribution, the MCMC procedure

usually begins to converge within tens of iterations. For the

EM algorithm, we consider that it converges if the average

element-wise changes of matrix B and 𝚺−1 are both within a

given epsilon, or it reaches the maximum allowed number of

iterations, for example, max_iters. We set max_iters to be 100

in the implementation.

3.3 Monte Carlo E-step

In the iteration t + 1 of the MC E-step, instead of trying to

derive the closed form of the conditional probability distri-

bution of 𝜽j, we draw m random samples of 𝜽j, say 𝚯j =
[𝜽(1)j ,𝜽(2)j , … ,𝜽(m)

j ]T , from p(𝜽j ∣  = yj, xj;B(t),𝚺(t)), and

approximate the expected log-likelihood function with

Q̃(B,𝚺 ∣ B(t),𝚺(t))

=
n∑

j=1

1

m

m∑
𝜏=1

log p( = yj,𝜽
(𝜏)
j ∣ xj;B(t),𝚺(t)). (13)

Drawing random samples of 𝜽j can be achieved with the

Metropolis Hasting algorithm. In iteration t + 1 of the MC

E-step, yj, xj, B(t), and 𝚺(t) are all known values, which makes

p( = yj ∣ xj;B(t),𝚺(t)) a constant. In this case, Equation (10)

yields

p(𝜽j ∣  = yj, xj;B(t),𝚺(t)) ∝ p( = yj,𝜽j ∣ xj;B(t),𝚺(t)).

Let f (𝜽j) = p( = yj,𝜽j ∣ xj;B(t),𝚺(t)), and g(𝜽*∣𝜽) be

the density function of the proposal distribution. Algorithm 1

illustrates the Metropolis Hasting algorithm for sampling 𝜽j
from p(𝜽j ∣  = yj, xj;B(t),𝚺(t)).

In order to reduce the burn-in period of the Metropo-

lis Hasting algorithm, we adopt the tailored normal distri-

bution [6] as our proposal distribution. The initial value

of the location parameter for the tailored normal distribu-

tion should be the mode of p(𝜽j ∣  = yj, xj;B(t),𝚺(t)),
which is

𝜽(0)j = argmax
𝜽j

{log f (𝜽j)}, (14)

and the covariance matrix is 𝜏(−H(𝜽(0)j ))−1, where H(𝜽(0)j )
denotes the Hessian matrix of log f (𝜽j) evaluated at 𝜽(0)j , and

𝜏 is a tuning parameter. To solve the optimization problem in

Equation (14), let

F(𝜽j) = log f (𝜽j) = log (p( = yj ∣ 𝜽j, xj;B(t),𝚺(t))

× p(𝜽j ∣ xj;B(t),𝚺(t))).

By combining Equations (3) and (4), we can derive

that

F(𝜽j) = (yj − 1)T log𝜽j −
1

2
(log𝜽j − B(t)Txj)T𝚺(t)−1

× log𝜽j − B(t)Txj) − 1T𝜽j + C, (15)

where 1 denotes a column vector of 1’s, and C represents the

sum of all the constants in log f (𝜽j). Then, the first-order and
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second-order derivatives of F(𝜽j) w.r.t. 𝜽j are

𝛻F(𝜽j) =
𝑑𝐹 (𝜽j)

d𝜽j
= diag

⎛⎜⎜⎝ 1

𝜃
(i)
j

⎞⎟⎟⎠
×
[
(yj − 1) − 𝚺(t)−1(log𝜽j − B(t)Txj)

]
− 1, (16)

H(𝜽j) = diag
⎛⎜⎜⎝−

y(i)j − 1

𝜃
(i)2
j

⎞⎟⎟⎠ + diag
⎛⎜⎜⎝− 1

𝜃
(i)2
j

⎞⎟⎟⎠
× diag(𝚺(t)−1(log𝜽j − B(t)Txj))

+ diag
⎛⎜⎜⎝ 1

𝜃
(i)
j

⎞⎟⎟⎠𝚺(t)−1diag
⎛⎜⎜⎝ 1

𝜃
(i)
j

⎞⎟⎟⎠ . (17)

Letting 𝛻F(𝜽j)= 0, we could get that the initial value 𝜽(0)j
of the location parameter for the tailored normal distribution

is the solution to the following equation:

𝜽j + 𝚺(t)−1 log𝜽j = yj − 1 + 𝚺(t)−1B(t)Txj, (18)

which can be solved by any numerical root discovery algo-

rithms. However, taking the performance issue into account,

we let 𝜿j = log𝜽j, and adopt a linear approximation to e𝜿 j with

its first-order Taylor expansion at 𝜿(0)j = log yj. In this case,

Equation (18) becomes

e𝜿
(0)
j +diag

(
e𝜿

(0)
j

)(
𝜿j − 𝜿(0)j

)
+𝚺(t)−1𝜿j= yj−1+𝚺(t)−1B(t)Txj.

(19)

By solving Equation (19) for 𝜿j, the location parameter

(mean) 𝜽j of the tailored normal distribution is given by 𝜽(0)j =
e𝜿 j , where

𝜿j =
(

diag
(

e𝜿
(0)
j

)
+ 𝚺(t)−1

)−1

×
(

yj − 1 + 𝚺(t)−1B(t)Txj + diag(e𝜿
(0)
j )𝜿(0)j − e𝜿

(0)
j

)
,

and the covariance matrix is given by 𝜏(−H(𝜽(0)j ))−1. In case

the covariance matrix 𝜏(−H(𝜽(0)j ))−1 is not positive semidefi-

nite, the nearest positive semidefinite matrix to 𝜏(−H(𝜽(0)j ))−1

is used instead [17].

3.4 M-step: Maximize the approximate penalized
expected log-likelihood

With the MC approximation, we can reformulate the approx-

imate expected log-likelihood as

Q̃(B,𝚺 ∣ B(t),𝚺(t)) = −1

n

n∑
j=1

1

m

m∑
𝜏=1

×
[(

log𝜽(𝜏)j − BTxj

)T
𝛀

(
log𝜽(𝜏)j − BTxj

)
− log |𝛀|] ,

(20)

where 𝛀=𝚺−1. If we further let 𝝋𝜏,j = (log𝜽(𝜏)j − BTxj), the

optimization problem we need to solve in the M-step of the

MCEM algorithm can be written as

B(t+1),𝚺(t+1) = argmin
B,𝛀

{
1

𝑚𝑛
tr(𝚽T𝚽𝛀) − log |𝛀|

+ 𝜆1‖B‖1 + 𝜆2‖𝛀‖1}, (21)

where 𝚽= [𝝋1, 1, 𝝋2, 1, … , 𝝋m, 1, 𝝋1, 2, 𝝋2, 2, … , 𝝋m, 2, … ,

𝝋m, n]T . The optimization problem defined in Equation (21) is

not convex. However, it is convex w.r.t. either B or 𝛀 with the

other fixed [27]. Thus, we present an iterative algorithm that

optimizes the objective function in Equation (21) alternatively

w.r.t. B and 𝛀.

With B fixed at B0, the optimization problem in

Equation (21) yields

𝛀(B0) = argmin
𝛀

{
1

𝑚𝑛
tr(𝚽T𝚽𝛀) − log |𝛀| + 𝜆2‖𝛀‖1

}
,

(22)

which is similar to the problem studied by Friedman et al.

[10]. We solve this problem with the graphical Lasso

approach.

When 𝛀 is fixed at 𝛀0, we have the following optimization

problem:

B(𝛀0) = argmin
B

{
1

𝑚𝑛
tr(𝚽T𝚽𝛀0) + 𝜆1‖B‖1

}
, (23)

which is similar to the problem solved by Lasso, and we could

adopt the cyclical coordinate descent algorithm [9] to obtain

the estimate of B. However, considering the computational

burden already brought in by the MCMC approximation in the

MC E-step, we propose an approach to solve the optimization

problem in Equation (23) with a quadratic approximation to

the l1 matrix norm ||B||1.

Let B̂ denote the current estimation of B, and 1∕
√

∣ B̂ ∣
represent the matrix in which each entry is the inverse

of the square root of the absolute value of the corre-

sponding entry in B̂. Then, the l1 matrix norm penalty in

Equation (23) could be approximated with the following

approach:

𝜆1‖B‖1 ≈ 𝜆1tr(B′TB′), where B′ = B◦ 1√
∣ B̂ ∣

.

Here, ◦ denotes the Hadamard (element-wise) product. If

we write 𝚽 into the block matrix

𝚽 =

⎡⎢⎢⎢⎢⎢⎣

log𝚯1 − x1B

log𝚯2 − x2B
⋮

log𝚯n − xnB

⎤⎥⎥⎥⎥⎥⎦
,

where Xj is m × p matrix with each row being xj for all j= 1,

2, … , n, the objective function of the optimization problem

in Equation (23) can be written as

𝜂(B) = 𝜆1tr(B′TB′) + 1

𝑚𝑛

n∑
j=1

× tr((log𝚯j − xjB)T (log𝚯j − xjB)𝛀0). (24)
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Taking the first-order derivative of 𝜂(B) w.r.t. B and setting

it to zero, we have( n∑
j=1

XT
j Xj

)
B𝛀0 + B◦𝜆1𝑚𝑛

∣ B̂ ∣
=

( n∑
j=1

XT
j (log𝚯j)

)
𝛀0.

(25)

If we let

(
n∑

j=1

XT
j (log𝚯j)

)
𝛀0 = H and

n∑
j=1

XT
j Xj = S, and

apply the matrix vectorization operator vec(⋅) to both sides of

Equation (25), we have

(𝛀T
0 ⊗ S)vec(B) + vec

(
𝜆1𝑚𝑛

∣ B̂ ∣

)
◦ vec(B) = vec(H).

Here, ⊗ represents the Kronecker product. By pulling

vec(B) out from the left-hand side of the above equation,

we can get the solution to the optimization problem in

Equation (23) as

vec(B) =
[
𝛀0 ⊗ S + diag

(
vec

(
𝜆1𝑚𝑛

∣ B ∣

))]−1

vec(H),

(26)

and the estimated coefficient matrix B can be obtained by

reorganizing the vec(B) in the above equation.

By solving B and 𝛀 alternatively with the other fixed at the

value of the last estimate until convergence, we can obtain

the MLE of the coefficient matrix B and inverse covari-

ance matrix 𝛀 for the current iteration of MCEM algorithm.

Algorithm 2 summarizes the M-step of the MCEM algorithm.

4 SIMULATION STUDY

In this simulation study, we compare the proposed MVPLN

model with a univariate Lasso regularized Poisson regres-

sion model (GLMNET model) (eg, as implemented in the

R glmnet package [12]). (The regularized univariate Pois-

son regression is applied to each response dimension.) Note

that the EBIC was proposed to address the inconsistency

issue of BIC when the parameter space is large. When the

parameter space is relatively small, both BIC and EBIC are

consistent and would produce similar results [4]. For conve-

nience, BIC is used to select the regularization parameters

for the GLMNET model since the parameter space for the

univariate Poisson regression is not very large. The simula-

tion data are generated with the following approach. Each

data observation in the n × p predictor matrix X is inde-

pendently sampled from a multivariate normal distribution

N(𝝁X , 𝜎XI), where the location parameter 𝝁X is sampled from

a uniform distribution Unif(𝝁min,𝝁max). The corresponding

observations in the n × q response matrix Y are generated fol-

lowing the definition of the MVPLN model in Equations (1)

and (2). In order to enforce sparsity, a fixed number of

zeros are randomly placed into each column of the coeffi-

cient matrix B. The other nonzero entries of B are indepen-

dently sampled from a univariate normal distribution N(𝜇B,

𝜎B).

In reference to the inverse covariance matrix 𝛀=𝚺−1 for

𝜺, we consider 4 scenarios: (1) Random 𝛀, where the inverse

covariance matrix is generated by𝛀=𝚿T𝚿 to ensure the pos-

itive semidefinite property. Each entry in 𝚿 is independently

sampled from a uniform distribution Unif (−1, 1); (2) Banded

𝛀, where the sparsity is enforced by the modified Cholesky

decomposition [22]: 𝛀=TTD−1 T. Here, T is a lower trian-

gular matrix with 1
′
s on the diagonal, and D is a diagonal

matrix. The nonzero off-diagonal elements in T and diagonal

elements in D are independently sampled from the uniform

distributions Unif (−1, 1) and Unif (0, 1), respectively; (3)

sparse 𝛀, where the 𝛀 matrix is generated by performing

some random row and column permutations over the banded

𝛀 matrix; (4) Diagonal 𝛀, where the diagonal elements are

sampled independently from the standard uniform distribu-

tion. In order to make sure that the elements in the response

matrix Y are within a reasonable range, we scale the matrix

𝚺 to make the largest element equal to 𝜓 . By tuning the syn-

thetic data generation parameters 𝝁min, 𝝁max, 𝜎X , 𝜇B, 𝜎B, and

𝜓 , we could adjust the range and variations in the generated

response Y.

In our experiments, we fix the number of observations in

the training data at n= 50 and the number of observations in

the test data at 20. We consider 2 scenarios: (1) the dimen-

sion of predictors is less than the number of observations in

training data (p< n), and (2) the dimension of predictors is

greater than or equal to the number of observations in train-

ing data (p≥ n). We let p= 30, q= 5 for the case p< n, and

p= 70, q= 5 for the case p ≥ n. For each parameter set-

ting, the simulation is repeated 60 times, and the reported

results are averaged across the 60 replications to alleviate the

randomness.

4.1 Estimation accuracy

To measure the model estimation accuracy w.r.t. B and 𝛀,

we report the estimation errors by computing the distance
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TABLE 1 Estimation errors w.r.t. B and 𝛀

l(B, B̂) l(𝛀, �̂�)
p<n p>n p<n p>n

𝛀 𝝍 GLMNET MVPLN GLMNET MVPLN GLMNET MVPLN GLMNET MVPLN

Random 0.4 2.25607 1.19936 1.61016 1.44383 NA 0.99550 NA 0.99595

(0.04547) (0.01277) (0.01830) (0.01076) (0.00131) (0.00100)

1.0 4.35649 1.70326 2.41644 1.74861 NA 0.99033 NA 0.99151

(0.09258) (0.03620) (0.03039) (0.02796) (0.00153) (0.00200)

1.6 5.37513 1.80392 2.87839 1.94325 NA 0.98928 NA 0.98561

(0.12519) (0.03618) (0.04629) (0.02844) (0.00211) (0.00452)

2.2 6.32172 1.99852 3.21878 2.12487 NA 0.99214 NA 0.98343

(0.17932) (0.04246) (0.05822) (0.04339) (0.00126) (0.00328)

Banded 0.4 2.12650 1.16671 1.49028 1.38619 NA 0.98029 NA 0.98500

(0.05377) (0.01882) (0.01747) (0.01133) (0.00204) (0.00148)

1.0 3.57945 1.59062 2.13400 1.59255 NA 0.95796 NA 0.94881

(0.10031) (0.04760) (0.03313) (0.02344) (0.00508) (0.00563)

1.6 4.41182 1.80692 2.59768 1.78361 NA 0.93159 NA 0.92380

(0.13408) (0.06746) (0.05930) (0.02981) (0.00811) (0.00874)

2.2 5.21359 2.04397 2.84779 2.01992 NA 0.93695 NA 0.90552

(0.18171) (0.07308) (0.07824) (0.05492) (0.00681) (0.00838)

Sparse 0.4 1.98327 1.11950 1.52410 1.40847 NA 0.98277 NA 0.98205

(0.06026) (0.01556) (0.02270) (0.01107) (0.00259) (0.00201)

1.0 3.43339 1.50384 2.13721 1.60572 NA 0.95978 NA 0.96085

(0.11127) (0.04915) (0.03966) (0.02315) (0.00597) (0.00425)

1.6 4.69189 1.88319 2.54446 1.76144 NA 0.92684 NA 0.92349

(0.15989) (0.07134) (0.05723) (0.02705) (0.00880) (0.00852)

2.2 5.09710 2.12963 2.74681 1.91288 NA 0.96626 NA 0.90581

(0.21733) (0.07617) (0.08444) (0.04085) (0.01344) (0.00957)

Diagonal 0.4 1.86103 1.10292 1.43937 1.34607 NA 0.96841 NA 0.97068

(0.05898) (0.01452) (0.01870) (0.01274) (0.00324) (0.00413)

1.0 3.29868 1.53224 2.01567 1.56539 NA 0.88673 NA 0.89628

(0.09724) (0.04655) (0.04295) (0.02745) (0.01313) (0.01510)

1.6 4.33160 1.84269 2.39551 1.70712 NA 0.81895 NA 0.84071

(0.13345) (0.06302) (0.05794) (0.04889) (0.01851) (0.02020)

2.2 5.00582 1.95903 2.56122 1.76716 NA 0.88405 NA 0.81663

(0.23160) (0.08481) (0.08119) (0.03930) (0.02031) (0.02034)

Abbreviations: GLMNET, a univariate Lasso regularized Poisson regression model; MVPLN, multivariate Poisson log-normal.

The standard errors are shown in the parentheses.

between B and B̂ (or 𝛀=𝚺−1 and �̂� = �̂�
−1

) using the

normalized matrix Frobenius norm

l(B, B̂) = ‖B − B̂‖F‖B‖F
.

Here, B denotes the true value of the coefficient matrix,

and B̂ represents the estimation provided by the MVPLN or

GLMNET models. Table 1 shows the estimation errors of

coefficient matrix B and inverse covariance matrix 𝛀 in var-

ious parameter settings. Since the GLMNET model cannot

infer the inverse covariance matrix, we omit the correspond-

ing results here. We can see that the proposed MVPLN model

consistently outperforms the GLMNET model in all param-

eter settings, especially when the variation in the simulated

data is large (𝜓 is large). Such promising results demonstrate

that the proposed MVPLN model leverages the dependence

structures between the multidimensional count responses to

improve the estimation accuracy.

4.2 Prediction accuracy

To evaluate the prediction performance of the proposed

model, we report the average root-mean-square error (rMSE)

across all the response dimensions over the test data. Figures 2

and 3 show the average rMSE for the cases when p< n
and p ≥ n, respectively. These figures show that when the

variations in the simulated data are small (𝜓 is small), the

prediction performances of the proposed MVPLN model and

GLMNET model are comparable. As the variations in the data

increase, the prediction performance of the proposed MVPLN
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FIGURE 2 Average root-mean-square error (rMSE) across response dimensions over test data when 𝛀 is random, sparse, banded, and diagonal (from left to

right), and p< n. The vertical error bars indicate the standard deviation, and the Y-axis is in log scale

FIGURE 3 Average root-mean-square error (rMSE) across response dimensions over test data when 𝛀 is random, sparse, banded, and diagonal (from left to

right), and p ≥ n. The vertical error bars indicate the standard deviation

(A) (B)

FIGURE 4 Convergence ratio of univariate Lasso regularized Poisson regression model (GLMNET) and multivariate Poisson log-normal (MVPLN) model

when p< n (A) and p> n (B). Since MVPLN model always converges, we use a single line to represent these 4 scenarios

model becomes better than that of the GLMNET model. This

demonstrates that by incorporating the dependence structures

between the count responses, the proposed MVPLN model

improves its prediction performance. However, when the vari-

ations in data are small, it is difficult for the MVPLN model

to take advantage of the inverse covariance matrix estimation

substep. On the contrary, approximating the log-likelihood

with MCMC techniques would impose negative effects on the

model estimation and prediction accuracy. This is why we

observe that when 𝜓 is small, the proposed MVPLN model

sometimes does not perform as well as the GLMNET model

in terms of rMSE.

4.3 Algorithm convergence

Another aspect we would like to emphasize here is the

convergence behavior of the algorithms. During the experi-

ments over the simulated data, we notice that the GLMNET

model will not always converge in some parameter settings,

especially when 𝜓 is large. As a result, no parameter esti-

mations are given by the GLMNET model. Figure 4 shows

the convergence ratio (the fraction of experiment replications

that converge and produce valid model estimations) over the

simulated data for various parameter settings. We can see

from the figure that the larger the variations (larger 𝜓) in the

data, the more frequently the GLMNET model fails to yield

a valid model estimation. On the other hand, the proposed

MVPLN model consistently produces valid model estimates

in all scenarios. These results demonstrate that the proposed

MVPLN model is more robust to variations in the underlying

multivariate datasets.

5 REAL CASE STUDY

We apply the proposed MVPLN model to a real ILI dataset

from 2 Latin American countries (Brazil and Chile) each

with 4 types of ILI diseases (FLUAH3, FLUB, FLUH1N1,
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(A) (B)

FIGURE 5 Root-mean-square error (rMSE) box plot of multivariate Poisson log-normal (MVPLN) and univariate Lasso regularized Poisson regression model

(GLMNET) models on the real influenza-like-illness (ILI) dataset for the countries of Brazil (A) and Chile (B). The dash lines indicate the mean of the rMSE

and FLUA). The weekly count data of these 4 types of flus

were collected from WHO FluNet [33] from May 1, 2012,

to December 27, 2014, which serves as the multivariate

responses of the dataset. The predictors of this ILI dataset

are the weekly counts of ILI-related keywords among tweets

(approximate compressed size of 570 GB) collected during

the same period by the EMBERS project [26]. Before apply-

ing the proposed MVPLN model, we scale the count for each

ILI keyword to zero mean and unit standard deviation.

5.1 In-sample prediction

It should also be noticed that although this ILI dataset

is time-indexed, we chose to model it as merely a multi-

variate dataset in our first study here since the proposed

MVPLN model is not specifically designed to model time

series datasets. We use 70% of the preprocessed ILI dataset

as the training set and the rest (30%) as the test set. We

apply the proposed MVPLN model over the training set,

and compute the rMSE of the test set as the criterion for

the prediction performance of the model. As a compari-

son, we also apply the GLMNET model to the same ILI

dataset, and compare the rMSE with the proposed MVPLN

model. We repeat this experiment for 60 independent runs,

and for each run we shuffle the ILI dataset and re-split the

training and test sets. Figure 5 shows the rMSE box plots of

the proposed MVPLN model and the GLMNET model for

Brazil and Chile after removing some extreme outliers. As we

can see from the box plots, although the proposed MVPLN

model generates slightly large rMSE over the test set for some

response dimensions occasionally, in general the rMSEs of

the MVPLN model are much smaller and have less varia-

tion when compared to the GLMNET model for both Brazil

and Chile. This indicates that the proposed MVPLN model

is better and more stable in terms of prediction performance

over real datasets with count responses. Thus, by leveraging

the covariance structure between multiple count responses,

the proposed MVPLN model is able to improve the predic-

tion performance. However, we also notice that for some flu

types, the proposed MVPLN model sometimes generate a

TABLE 2 Median of the rMSE for the MVPLN and the GLMNET
models in the one-step-ahead predictions on the real ILI datasets of
Brazil and Chile

Brazil Chile

GLMNET MVPLN GLMNET MVPLN

FLUA 0.5447 0.3258 4.5019 2.4111
FLUAH3 9.3611 11.5275 7.7388 3.9937
FLUB 6.6138 2.7946 6.7833 5.6197
FLUH1N1 6.2099 4.2896 8.0286 0.9922

Abbreviations: GLMNET, a univariate Lasso regularized Poisson regres-

sion model; ILI, influenza-like-illness; MVPLN, multivariate Poisson

log-normal; rMSE, root-mean-square error.

large rMSE value, for example, FLUAH3 in the Brazil dataset,

and FLUH1N1 and FLUA in the Chile dataset. A poten-

tial reason for this behavior is likely that the data shuffling

procedure happens to place most of the large-response data

instances into the model training set, which could mislead

model estimation and result in overestimation over the test set.

5.2 One-week-ahead predictions

In this experiment, we take the time domain in the ILI dataset

into account and perform a 1-week-ahead prediction of the ILI

counts using a model inferred from data of the past N weeks.

To be more specific, we train the proposed MVPLN model

over the preprocessed ILI dataset filtered by a time window

of size N (weeks), forecast the ILI counts for the consecutive

week, and then move the time window 1 week ahead to make

prediction for the next week. In our experiment, we set the size

of this time window to be N = 80, and perform 50 steps of each

such 1-week-ahead forecast. Table 2 shows the median of the

rMSE for the 1-week-ahead prediction over the ILI datasets

of Brazil and Chile. As we can see, the proposed MVPLN

model performs better than the GLMNET model in terms of

the prediction errors for such 1-week-ahead prediction in most

of the cases.

As mentioned earlier, the proposed MVPLN model is not

particularly designed for modeling time series data. If we

extend the current proposed MVPLN model to be able to



WU ET AL. 75

FIGURE 6 Heatmap of the averaged partial correlation matrix estimated by the multivariate Poisson log-normal (MVPLN) model for the one-step-ahead

predictions on the real influenza-like-illness (ILI) datasets of Brazil (A) and Chile (B)

deal with time series data with multiple count responses, we

believe it would provide more promising results. This could

be an interesting direction for future research and investiga-

tion on this topic.

We also study the dependencies between the multiple

responses (here, different strains of the flu) in the ILI dataset.

Based on the estimated inverse covariance matrix in each iter-

ation of the 1-week-ahead predictions, we calculate the corre-

sponding partial correlation matrix. The heatmap in Figure 6

describes the mean of the partial correlation matrix between

the 4 types of flus under consideration across 50 iterations

of the 1-week-ahead predictions for Brazil and Chile. As the

figure shows, FLUA is weakly correlated with FLUAH3 and

FLUB in Brazil, while in Chile, FLUH1N1 is weakly corre-

lated with FLUAH3 and FLUB compared to the rest of the

combinations of the 4 types of flus in Brazil and Chile. Iden-

tifying such dependency structures between different strains

of flus will aid public health officials in understanding the

prevalence and spread of infectious diseases and support the

organization of suitable countermeasures (eg, vaccines).

6 DISCUSSION OF RELATED WORK

6.1 Multiresponse regression

From the regression perspective, multiresponse regression

aims to estimate the regression coefficients and recover the

covariance structure among response variables. The MRCE

approach [27] simultaneously conducts a sparse estimation of

the coefficient matrix and the covariance structure by opti-

mizing the penalized likelihood. Similarly, Lozano et al. [24]

proposed a framework to jointly estimate a sparse functional

mapping from multiple predictors to multiple responses along

with estimating the conditional dependency structure among

the responses via a penalized l2 distance criterion. Calibrated

multivariate regression [23] calibrates the regularization for

each regression task w.r.t. its noise level to achieve a bet-

ter finite sample performance. In block-regularized Lasso

[31], the authors studied the multivariate multiresponse linear

regression problem via l1/l2 regularized Lasso, which couples

the multiple responses together.

6.2 Multitask Learning

Much work in this area has focused on learning the shared fea-

tures or underlying common structures among multiple tasks.

The l2,1 matrix norm was adopted as a regularizer to learn a

low-dimension shared structure across multiple related tasks

[1]. Here, given a matrix X of size n × p, the l2,1 norm is

defined as ‖X‖2,1 =
∑n

i=1 (
∑p

j=1
|xi,j|2) 1

2 . In the formulation

known as multistage, multitask learning [13], a capped-l1
penalty was imposed to estimate the sparse shared features.

By including a squared norm regularizer, the calibrated

multivariate regression model [15] was applied to learn the

shared features among tasks. Kumar and Daumé III [21] pro-

posed a framework to learn task grouping and overlaps that

enables the selective sharing of information across the tasks.

A multitask learning framework was proposed to forecast

spatiotemporal events in ref. [37]. A multitask feature learn-

ing framework proposed by Gong et al. [14] simultaneously

captures shared features among related tasks and identifies

outlier tasks by imposing group Lasso penalties over row

groups and column groups. Chen et al. [5] proposed a multi-

task learning framework by penalizing the loss function with

trace and l1,2 norms to infer the common low-rank structure

among relevant tasks and uncover the irrelevant tasks using a

group-sparse structure. Here, given the matrix X of size n × p,

the l1,2 norm is defined as ‖X‖1,2 =
∑p

j=1
(
∑n

i=1 |xi,j|2) 1

2 . Yu

et al. [36] studied a Bayesian multitask learning formulation

with t-process, and demonstrated that the t-process could

efficiently distinguish the good tasks from noisy or outlier

tasks through their empirical studies. Compared to the l-norm

as a regularizer, Argyriou et al. [2] proposed a framework

to learn common shared structures based on regularization

with spectral functions of matrices; in the dirty model for

multitask learning [18], the estimated parameter matrix can

be decomposed into a row-sparse matrix corresponding to

overlapping features and an element-wise sparse matrix

corresponding to nonshared features.

6.3 Poisson Models

In addition to multitask learning research, which mainly

focuses on the continuous responses, there are also several
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ideas that adopt Poisson models in the realm of applications

such as ILI, traffic accident analysis, and consumer services.

Wang et al. [32] proposed a dynamic Poisson autoregres-

sion model for short-term ILI case count prediction. Ma et al.

[25] and El-Basyouny and Sayed [7] provided a multivariate

model specification to simultaneously model the crash or col-

lision counts by injury severity in a traffic accident. Wang

et al. [30] proposed a multivariate Poisson regression model to

predict the purchase patterns of cross-category store brands.

However, compared to the proposed model in this paper, the

Poisson regression models in the literature are either univari-

ate or inferred with a Bayesian approach and no sparsity is

enforced over the coefficients, which loses the variable selec-

tion capability. Moreover, the covariance matrix involved in

such multivariate models is sampled from a specific prior dis-

tribution, which requires prior knowledge about the data. Our

approach, in contrast, directly infers the covariance matrix

from the data.

Other related works, for example, ref. [20], formulate

the multivariate Poisson variable as a linear combination

of several independent univariate Poisson random variables,

and the covariance structure is directly captured by shar-

ing the common univariate Poisson variables among dif-

ferent dimensions. However, with such formulations, more

regression coefficients need to be estimated if we want to

capture cross-way covariance patterns. Zoh et al. [38] pro-

pose to use Poisson distributions parameterized by linear

models over latent variables to model multivariate count vari-

ables. This approach induces a factorized covariance matrix

to quantify the dependence among mutiple variables. Dif-

ferent from Zoh’s work, the proposed MVPLN model aims

to establish the connections between the features and count

responses and estimate sparse covariance structures among

multiple responses directly from the data. In contrast, in Zoh’s

work, the covariance structure is parameterized by the coef-

ficients of latent variables and is estimated under a Bayesian

framework.

7 CONCLUSION

In this paper, we have proposed and formulated a multivariate

Poisson log-normal model for data with count responses. By

developing an MCEM algorithm, we accomplished simulta-

neous sparse estimations of the regression coefficients and of

the inverse covariance matrix of the model. Results of sim-

ulation studies on synthetic data and an application to a real

ILI dataset demonstrated that the proposed MVPLN model

could achieve better estimation and prediction performance

vs a classical Lasso-regularized Poisson regression model.

Note that the proposed method is not restricted to using

the l1 regularization in (7) to encourage model sparsity. In

this work, we adopted the l1 regularization to achieve gen-

eral sparse structures in the model parameters (B and 𝚺).

Alternatively, one can also adopt other penalty terms such as

elastic net [39] or group Lasso [28] to encourage certain spe-

cial sparse structure in the model. In addition, there are a few

interesting directions for future work of the proposed model:

(1) it would be interesting to investigate some asymptotic

properties of the proposed model. (2) To mitigate the con-

venience issue of the MCEM techniques, we plan to develop

a better approximation algorithm, for example, using vari-

ational inference [3]. (3) We will also extend the proposed

model to better deal with count data with overdispersion and

zero-inflation situations.
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