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ABSTRACT
A good visualisation method can greatly enhance human-machine collaboration in target con-
texts. To aid the optimal selection of visualisations for users, visualisation recommender systems
have been developed to provide the right visualisation method to the right person given spe-
cific contexts. A visualisation recommender system often relies on a user study to collect data
and conduct analysis to provide personalised recommendations. However, a user study without
employing an effective experimental design is typically expensive in terms of time and cost. In
this work, we propose a prediction-oriented optimal design to determine the user-task alloca-
tion in the user study for the recommendation of visualisation methods. The proposed optimal
design will not only encourage the learning of the similarity embedded in the recommendation
responses (i.e., users’ preference), but also improve themodelling accuracyof the similarities cap-
tured by the covariates of contexts (i.e., task attributes). A simulation study and a real-data case
study are used to evaluate the proposed optimal design.
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1. Introduction

Visualisation methods have been widely investigated
to graphically represent complex data sets for effective
comprehension and generation of insights
(Spence, 2001). With multiple visualisation methods
available (e.g., use of colour, layout and labelling, user-
system interaction, visual encodings), the effectiveness
and efficiency of a visualisation is largely determined by
the contexts (e.g., tasks, environments, devices, modal-
ities) and individual differences (e.g., personal prefer-
ence, perceptual and cognitive capabilities) (Bednarik
et al., 2012; Chen& Jin, 2017; Voigt et al., 2012). Beyond
visualisation, recommender systems have been widely
adopted to provide personalised suggestions based on
attributes of the contexts and historical information
of users’ interests. Therefore, in the literature, rec-
ommender systems for personalised visualisation have
been developed to provide the right visualisationmeth-
ods to the right people given specific contexts. Among
the various approaches of visualisation recommender
systems, there are three major categories: (i) content-
based filtering that predicts the recommendation scores
(e.g., user’s rating, preference score, completion time,
cognitive workload, etc.) based on the similarity among
users and contexts captured by the corresponding
covariates (Bogdanov et al., 2013); (ii) collaborative fil-
tering that makes the recommendation based on the
similarity hidden in the historical responses (Kunkel
et al., 2017); and (iii) a hybrid approach as a combi-
nation of (i) and (ii), which considers both similarities

from the users and contexts of a visualisation, as well as
the historical rating of a visualisation method (Mutlu
et al., 2016).

This research focuses on the hybrid approach for the
personalised visualisation recommendation by formu-
lating the problem as a recommender system consid-
ering both responses and covariates. Specifically, the
recommendation score in a visualisation recommender
system is modelled as a compound response of (i) col-
laborative information that quantifies the implicit simi-
larities among users’ ratings over tasks and visualisation
methods, and (ii) content-based information that quan-
tifies the explicit similarities represented by covariates
(i.e., user input logs and task attributes). It is commonly
assumed that the implicit similarities can be repre-
sented by a latent low-rank matrix, and the relation
between covariates and the content-based response can
be modelled by a linear regression term. For example,
Chen et al. (2020) developed a Personalised Recom-
mender system for Information visualisation Methods
via Extended matrix completion (PRIME) for the rec-
ommendation of optimal visualisation methods cater-
ing to users’ characteristics and contexts.

The development of such a recommender system
relies on the collection of training data including users’
and tasks’ information as covariates, and the users’ rat-
ings on tasks as the response. Here we assume there is
no learning effect for users conducting tasks in order.
However, the collection of training data by the user
study is often an expensive process in terms of time and
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cost. A good offline experimental design is therefore
desired to optimise the user-task allocation to collect
data efficiently and effectively for the user study. With
a limited budget on the number of experiments, it is
crucial to design an optimal user-task allocation such
that the collected training data is highly informative for
constructing a recommender system.

The objective of this work is to create an optimal
experimental design, i.e., an optimal user-task alloca-
tion, to enhance the recommendation accuracy of a
visualisation recommender system. Here we focus on
constructing experimental designs to collect the initial
training data set offline from user studies. To this end,
the offline Design of Experiments (DoE) are commonly
used for similar design problems. For example, opti-
mal designs, based on some optimality criteria, have
been applied in collaborative filtering methods to eval-
uate a new item on existing users (Anava et al., 2015).
Another design criterion, space-filling design criterion,
is commonly adopted in computer simulations with
design points evenly spread over the experiment region
(Joseph, 2016). For thematrix completion as techniques
for recommender systems, space-filling designs were
applied as an initial design strategy to sample the initial
observed entries for accurate recovery of the low-rank
matrix (Mak&Xie, 2017). However, these designmeth-
ods either focus on the implicit similarities in the low-
rank response matrix or the explicit similarities in the
covariates. Hence, they may not work well in the visu-
alisation recommender system due to the lack of joint
consideration for both types of similarities.

To overcome the aforementioned challenges, we
propose a prediction-oriented optimal design to col-
lect an informative training data set for the visualisa-
tion recommender system through jointly considering
the collaborative information (implicit similarity) and
content-based information (explicit similarity). As both
types of similarities are important for the visualisation
recommendation, the proposed optimal design can effi-
ciently enhance the performance of the recommender
system. The key idea of the proposed design is to first
explore the overall design space to find the candidate
design region to recover the low-rank matrix by space-
filling design criterion, and then exploit this candidate
design region by the optimality criterion such that the
selected design achieves superior prediction accuracy
over all candidate designs. The contributions of the pro-
posed method are in two folds. First, a constrained
optimality criterion is proposed to balance the opti-
mal design for both the low-rank matrix response and
the linear response decomposed from the recommen-
dation score. This lays a foundation of initial training
data sampling for the recommender system with a lim-
ited number of experiments. Second, an efficient design
construction algorithm is proposed to find the optimal
design to achieve the high recommendation accuracy
over user and context space in the practical application.

The remainder of this paper is organised as fol-
lows. Section 2 provides a literature review. Section 3
gives a brief introduction to the PRIME model and
then details the proposed prediction-oriented optimal
design. Section 4 evaluates the performance of the pro-
posed method by a numerical study. Section 5 validates
the proposed design via a real case study of the visu-
alisation recommender system. We conclude this work
with some discussions in Section 6.

2. Literature review

In this section, we review existing recommender sys-
tems with a focus on visualisation recommendation,
and experimental design methods for recommender
systems.

2.1. Recommender systems and applications in
visualisations

Recommender systems have become ubiquitous in e-
commerce to generate customised recommendations
for users (Ricci et al., 2015). In the context of visuali-
sation recommendation, a visualisation recommender
system aims to provide accurate suggestions of visuali-
sation methods for users given specific contexts. Exist-
ing methods for visualisation recommender systems
broadly fall into three categories: (i) content-based fil-
tering; (ii) collaborative filtering; and (iii) hybrid filter-
ing (Jones et al., 2015; Vartak et al., 2017).

The content-based filtering matches the attributes of
users’ profiles with those of items. Hence, visualisation
recommender systems built by content-based filtering
predict the recommendation score based on the covari-
ates of users and contexts (Mutlu et al., 2016). However,
the content-based filtering cannot provide satisfac-
tory performance when limited information is available
from the covariates. In contrast, collaborative filtering-
based recommender systems suggest items based on
the implicit similarity of a group of users on a set of
items among the historical users’ ratings. With a small
sample size, the implicit similarity is usually modelled
by a low-rank matrix with random Gaussian noise,
and thus formulated as a matrix completion problem
(Candès & Recht, 2009). But the collaborative filter-
ing approach suffers from the so-called the cold-start
problem (Schein et al., 2002). The cold-start problem in
the context of visualisation recommendation refers to
providing recommendations for new users or visualisa-
tion tasks without historical responses available, where
the pure collaborative filtering cannot provide good
results (Melville & Sindhwani, 2010; Schein et al., 2002).
Therefore, a hybrid filtering method considering both
explicit and implicit similarities is desired to leverage
the advantages of both methods. For example, Mutlu
et al. (2016) developed VizRec as a hybrid visualisa-
tion recommender system considering the information
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of both the recommendation context and score via
a weighted combination. However, the ambiguity of
weights limits its practical application. In PRIME (Chen
et al., 2020), the recommendation score is formulated
as the compound response of two kinds of similari-
ties, i.e., a low-rank matrix and a covariate-based linear
regression term. In this work, we adopt PRIME, a more
generic hybrid approach, as the underlying model for
the visualisation recommender system.

2.2. Experimental designs for recommender
systems

In the literature, few works focussed on offline
experiment designs for recommender systems to col-
lect informative training data under limited resources
(e.g., limited runs, limited budget for user study, lim-
ited time). Most of the existing methods fall into the
offline experimental design, including optimal designs
and space-filling designs. The optimal designs belong to
a class of experimental designswith respect to some sta-
tistical criteria (Pukelsheim, 2006). Several prediction-
oriented criteria have been developed in the optimal
design literature, including I-optimality criterion for
minimising the average variance in prediction over
the entire design space (Box & Draper, 1959), G-
optimality criterion for minimising themaximum vari-
ance of the estimation across the design space (Kiefer &
Wolfowitz, 1959), and V-optimality criterion for min-
imising the integrated variance over the region of inter-
est within the design space (Laake, 1975). In terms
of their related application to recommender systems,
Anava et al. (2015) formulated the cold-start prob-
lem in collaborative filtering as a model-based opti-
mal design to minimise the prediction error based on
A-optimality criterion. However, their method only
considers the optimality of the linear interaction
between users and items captured by the latent factor
model. Bhat et al. (2020) adopted optimal design for the
offline user-treatment allocation problem in A/B test-
ing under the linear relationship between the observed
covariates of treatments and their impact on users. Sim-
ilarly, this design only considers the explicit similarities
represented by covariates. Thus, thesemethodsmay not
work well for the visualisation recommendation due
to their lack of joint consideration of both important
similarities.

Another DoE strategy that has been adopted in
related experimental design problems in recommender
systems is the space-filling design (Joseph, 2016; Sant-
ner et al., 2003). Intuitively, such a design is suitable
for enhancing the prediction accuracy over the design
region with deterministic response since the prediction
error can be considered as a function of its location rel-
ative to the design point. There is no direct application
of this design criterion to recommender systems. As a
related work, the idea of space-filling design criterion

has been adopted by Mak and Xie (2017) for an active
matrix completion problem, which actively selects the
entries to be observed to recover the low-rank matrix
(Chakraborty et al., 2013; Ruchansky et al., 2015). Their
study validated the effectiveness of the balanced prop-
erty in the initial design (see the detail in Section 3),
and as a designwith balanced property, the space-filling
design was thus adopted as the initial sampling strategy
in the proposed active sampling scheme. Although the
use of space-filling designs can enhance the estimation
of low-rankmatrix, it may not work well for the recom-
mender system when the content-based information
(i.e., linear response) is dominant in users’ ratings and
the number of runs of experiments is small. More-
over, without an accurate predictive model obtained by
an initial training data set, it is difficult for the active
sampling strategy to quantify the information of the
entry to be observed on the matrix. Thus, the online
schema does not fit the offline design problem. Except
active matrix sampling, there is few work focussing on
the offline design of optimal observation allocation for
matrix completion in the context of recommendation
problems.

In summary, there is limited research on the exper-
imental design for offline initial training of recom-
mender systems. The proposed method could be a
pioneer work on the optimal experimental design, i.e.,
user-task allocation, for the user study of visualisation
recommender systems catering to both implicit and
explicit similarities.

3. The proposed prediction-oriented optimal
design

Asdiscussed in Section 2, an offline prediction-oriented
optimal design criterion is desired to consider both
low-rank matrix estimation and the linear estimation
in order to enhance the recommendation performance
over the user and context space. In this section, we
first formulate the user-task allocation in the user study
as an optimal design problem. Then we detail the
prediction-oriented optimal design and the design con-
struction algorithm.

3.1. Problem setup

Suppose that Y = (yi,j)U×T is the response matrix,
where U is the number of users and T is the num-
ber of tasks. That is, yi,j is the response to be obtained
when the ith user is assigned to complete the jth task.
The value of yi,j represents the recommendation score
(e.g., user’s rating, preference score, cognitive work-
load). Denote the whole indices of the response matrix
Y as� = {(i, j), i = 1, . . .U; j = 1, . . .T} = [U] × [T]
which contains UT design points. The user-task allo-
cation is to select an appropriate size-S subset �S ⊂ �

such that experimenters can assign users to complete
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the selected tasks to obtain the responses. Specifically,
we define the design indicator variable zi,j as

zi,j =

⎧⎪⎨
⎪⎩
1, the ith user is assigned to complete the

jth task;
0, otherwise.

(1)
Then the response entry yi,j will be collected by con-
ducting the corresponding experiment with zi,j = 1.
The user-task allocation is to select �S = {(i, j) : zi,j =
1, i = 1, . . .U; j = 1, . . .T}.

Denote xi,j to be a p-dimensional covariate vector
(e.g., users’ input logs, task’s information) associated
with the ith user and the jth task, which is observable
before conducting the experiment. Thus, the whole set
of covariate vectors can be written as X ∈ R

UT×p with
each row being xi,j ∈ R

p, i = 1, . . . ,U; j = 1, . . . ,T.
Note that xi,j is a column vector. Here we assume X
to be available before designing the experiment since
they are gathered from the candidate users and candi-
date tasks. To prevent one user from conducting one
task for multiple times, we do not consider the repeti-
tion in the design. Table 1 illustrates an example of one
possible design.

As an experimental design problem, instead of opti-
mising the level of factors (i.e., the value of xi,j), here
our goal is to select the optimal design runs (i.e., zi,j =
1) according to the covariates such that the obtained
experimental outcomes can be used to accurately pre-
dict the full responsematrixY . Clearly, such an optimal
design will depend on the model in use for quanti-
fying the relationship between the covariates and the
response. Here we consider the PRIMEmodel based on
matrix completion with the consideration of covariates
information:

Y = R + A (Xβ) + E, (2)

where E = (εi,j)UT×p is an error matrix with εi,j
i.i.d∼

N(0, σ 2), R ∈ R
U×T is the low-rank matrix modelling

the implicit similarity, β ∈ R
p are the linear regression

coefficients quantifying the explicit similarity among
covariates X. Here A (·) is a linear mapping operator
from R

UT to R
U×T .

Table 1. Illustration of one possible design: the coloured rows
represent the selected runs.

Design Indicator (zi,j) Possible Run(k) User(i) Task(j) xi,j

1 1 1 1 x1,1
0 2 1 2 x1,2
1 3 1 3 x1,3

. . . . . . . . . . . . . . .

0 T + 1 1 T x1,T
1 T + 2 2 1 x2,1

. . . . . . . . . . . . . . .

1 2T 2 T x2,T
0 . . . . . . . . . . . .

1 (U − 1)T + 1 U 1 xU,1
. . . . . . . . . . . .

0 UT U T xU,T

3.2. The proposed optimal design criterion

As a user-task allocation problem, the optimal design is
to choose S optimal design runs from the candidate of
UT design points, with the aim to enable optimal pre-
diction accuracy for the PRIME model. Denote z to be
a matrix of indicators with zi,j as elements. In the set-
ting of visualisation recommendation, we propose the
prediction-oriented optimal design formulation as:

min
z

tr

⎧⎨
⎩

⎡
⎣ U∑

i=1

T∑
j=1

zi,jxi,jxTi,jf (xi,j)

⎤
⎦

×
⎛
⎝ U∑

i=1

T∑
j=1

zi,jxi,jxTi,j

⎞
⎠

−1⎫⎬
⎭ (3a)

s.t.
U∑
i

T∑
j
zi,j = S, zi,j ∈ {0, 1},

i = 1, . . . ,U, j = 1, . . . ,T; (3b)
U∑
i
zi,j ≥

⌊
S
T

⌋
, for j = 1, . . . ,T; (3c)

T∑
j
zi,j ≥

⌊
S
U

⌋
, for i = 1, . . . ,U. (3d)

The solution of z corresponds to the indices (i, j) of the
selected design points in the optimal design space �S∗ .
In the proposed design criterion, the objective function
in (3) is aV-optimality criterion over the selected design
points (Crary et al., 1992). The constraints in (3) are to
pursue the space-filling characteristics on the selected
design of size S. The proposed formulation takes both
the low-rank matrix estimation and the linear estima-
tion into consideration through the optimality objec-
tive and space-filling constraints.

Specifically, the PRIME model at selected design
points X�S can be expressed as

yi,j = xTi,jβ + ri,j + εi,j, (i, j) ∈ �S, (4)

where ri,j is the element of the unknown low-rank
matrix R. When R is given, it is easy to show that the
model in (4) is a linear model, of which the V-optimal
criterion (Crary et al., 1992) can be expressed as:

φV(X�S) =
∫

(i,j)∈�V

xTi,j

⎛
⎝ U∑

i=1

T∑
j=1

zi,jxi,jxTi,j

⎞
⎠

−1

× xi,j df (xi,j)

= tr

⎡
⎣B

⎛
⎝ U∑

i=1

T∑
j=1

zi,jxi,jxTi,j

⎞
⎠

−1⎤
⎦ , (5)

where B = ∫
(i,j)∈�V

xi,jxTi,j df (xi,j) and �V represents
the region of interest. Here f (xi,j) is a probability mea-
sure as a weighting for different regions of inputs, which
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can be specified based on the selection of the region of
interest and the available information about covariates.
Note that when one chooses�V = �S, it is improper to
select the uniform distribution for the probability mea-
sure since it will lead to a constant objective function,
resulting in a randomly selected space-filling design.
It should be noticed that the objective of the original
V-optimality is tominimise the average prediction vari-
ance over the region of interest �V . The PRIMEmodel
is distinguished from the linear regression due to the
unknown term R. The alternating direction method of
multiplier (ADMM) was utilised to solve the PRIME
model (Chen et al., 2020), in which the low-rank R
and regression parameters β are iteratively estimated.
Herewe adopt the use of V-optimality criterion for con-
structing designs for the recommender system,which is
new to the literature.

Regarding the region of interest �V , we adopted
the choice to make �V = �S, under the consideration
of the optimisation objective function and constraints.
The constraints (3c) and (3d) pose space-filling charac-
teristics to one feasible design �S, which implies that
the selected design points in �S could enhance the
estimation of low-rank matrix. Therefore, we apply V-
optimality to �S to further improve the estimation of
the linear term. Moreover, since the region of interest
with a larger size will be more informative when we
want to optimise the estimation variance with a limited
number of runs available, we will select all points in �S
as �V instead of a subset of �S.

It should be noticed that the region of interest �V
can be selected among the whole experiment space �,
which does not necessarily need to be the same as the
selected design space�S. Hence, with�V = �S, the V-
optimal criterion in (5) becomes (3a) in the proposed
design criterion.

With the V-optimality as the objective function
in (3), we further impose some constraints to enhance
the prediction accuracy with respect to the low-rank
matrix R. Specifically, we consider the constraints
in (3c) and (3d) for a space-filling and balanced design.
That is, we constrain the number of entries in each row
(i.e., observed responses for each user) to be similar and
the number of entries in each column (i.e., observed
responses for each task) to be similar. Thus, the con-
straints in (3d) balance the number of selected experi-
ments among users and the constraints in (3c) balance
the number of selected experiments among tasks. It was
proven that sampling an entry in every row and column
(i.e., the balance property) improves low-rank matrix
completion (Mak & Xie, 2017).

We would like to remark that the proposed design
criterion in (3) is a constrained V-optimality with the
balanced constraints on the number of entries in the
rows and columns of the observed response matrix.
It was discussed by Mak and Xie (2017) that when
all row and column spaces are equally likely, all the

observed response matrices with balanced characteris-
tics yield the same performance on average in recover-
ing R from the perspective of the expected information
gain.Meanwhile, the objective of V-optimality criterion
is to enhance the prediction from the perspective of
minimising the average prediction variance over �S in
terms of β .

3.3. Design construction algorithm

Note that the V-optimality criterion in (3) itself is
NP-hard. Here we consider an efficient practical con-
struction algorithm to obtain the optimal design.
Specifically, a multi-step optimisation procedure is pro-
posed as the construction algorithm. The key idea is
to effectively seek and reduce the feasible region by
the constraints so that the objective function can be
optimised efficiently. In Step 1, a candidate pool is gen-
erated with designs feasible to the size constraint (3b).
The candidate pool should be sufficiently large to sup-
port a wide searching space for space-filling designs.
Denote the searching size of the candidate pool as K
(i.e., to generate K candidate designs in the pool). In
Step 2, we apply (3c) and (3d) as a screening step to
keep the designs satisfying the balance constraints in
the candidate pool. Denote the space-filling filter as
P�SF (·), where P�SF (X�S) = 1 if a design X�S satis-
fies the space-filling constraints (3c) and (3d). In Step
3, the objective of V-optimality criterion is optimised
within the reduced candidate design pool efficiently
through calculating and sorting the V-optimality crite-
rion value. The design with the smallest V-optimality
criterion value will be selected as the optimal design
X�∗

S
. A pseudo-code of the algorithm is reported in

Algorithm 1.
For Algorithm 1, the searching size K typically

should be set large enough to find enough space-filling
designs. In order to construct a larger candidate design
set F , an alternative approach is to find the feasible
solutions to constraints (3b), (3c) and (3d) by the inte-
rior point method or directly by off-the-shelf solvers
(e.g., CPLEX, Gurobi).

4. Numerical simulation

4.1. Simulation setting

In this section, we evaluate the performance of
the proposed optimal design through several sim-
ulated data sets. For each run of experiment, sup-
pose that the underlying PRIME model yi,j = xTi,jβ +
ri,j + ei,j is used to generate the response, where xi,j ∈
R
1×p; yi,j, ri,j, ei,j are the (i, j)th elements of Y , R

and E, respectively. Here ei,j ∼ N(0, 0.1). The covari-
ates xi,j, i = 1, . . . ,U, j = 1, . . . ,T, are independently
and identically generated from a multivariate nor-
mal distribution N(0,�), where the covariance matrix
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Algorithm 1: The Construction Algorithm of Prediction-oriented Optimal Design
1 Initialize: candidate design pool F = ∅, candidate objective value set V = ∅
2 Step 1: for k=1,2,. . . ,K do
3 generate random candidate design indicator matrix zk with run size S, and the corresponding design

X
�k
S

4 F := F ∪ zk

5 Step 2: for k=1,2,. . . ,K do
6 if P�(X

�k
S
) 	= 1 then

7 F := F \ {zk}
8 Step 3: for zm ∈ F do
9 Vm = tr{[∑U

i=1
∑T

j=1 z
m
i,jxi,jx

T
i,jf (xi,j)](

∑U
i=1

∑T
j=1 z

m
i,jxi,jx

T
i,j)

−1}
10 V := V ∪ Vm

11 m∗ = argminV
12 Output: X�S∗ = X

�m∗
S
, z∗ = zm∗

� = (σi,j)p×p with σi,j = ρ|i−j| follows the simulation
setup in Deng and Jin (2015). In this simulation study,
we set the dimension of covariates p = 12, the num-
ber of users and tasksU = T = 10, and ρ = 0.5, where
ρ controls the correlation among covariates. Given
the covariates X, we choose a multivariate Gaussian
distribution for the weighting function f (·). That is,
f (xi,j) = (2π)−

p
2 det(�)−

1
2 e−

1
2 (xi,j−μ)T�(xi,j−μ), where

μ ∈ R
p and� ∈ R

p×p are the mean vector and covari-
ance matrix to be estimated from X. Specifically, we use
the sample mean and sample covariance matrix as the
estimates. Other covariance matrix estimation meth-
ods (Deng & Tsui, 2013; Kang & Deng, 2020) can also
be adopted here. With all U × T = 100 design points,
the searching size K in Algorithm 1 is set to be 10,000,
which works well empirically to balance the optimal-
ity and computation speed. Figure 1 shows a graphi-
cal representation of the proposed optimal design with
PRIME as the underlying model.

Based on the setting of the covariates, we consider
different scenarios to generate the simulation data by
varying the number of runs of experiment S, the spar-
sity level of β , the low-rank structure of R, and the
relative significance of implicit and explicit similarities
(i.e., magnitude ratio) of R over Xβ . Since the maximal
number of runs of experiments is S = U × T = 100,we
vary S in two levels: S ∈ {40, 60}, such that the cost for
60% and 40% experiment runs can be saved, respec-
tively. For the explicit similarity modelled by a linear
term Xβ in PRIMEmodel, the sparsity is defined as the
percentage of zero elements in β . We consider the spar-
sity with two levels {0%, 66%} with the zero elements
in β independently and identically from a normal dis-
tribution N(ξ , 1). Here ξ ∈ {−1, 1} is randomly gen-
erated from a Bernouli distribution Ber(0.5) for each
scenario.

To generate R with a low-rank structure, we set the
rank q = 2 in all scenarios and consider the following

Figure 1. A graphical representation of the proposed optimal design with PRIME as the underlying model.



140 Y. ZENG ET AL.

Figure 2. (a) The block icon used to generate Rwith higher coherence; (b) The value of entries inR generated by the block icon; (c)
The value of entries in R generated byQV .

two approaches based on coherence. Here, coherence
measures the extent to which the singular vectors of
a matrix are correlated with the standard basis, which
can characterise the ability to extract information from
a small subset of columns (Mohri & Talwalkar, 2011).
The first method generates R from a block icon (see
Figure 2(a)) to mimic the low-rank structure used
in tensor regressions (Zhou et al., 2013). The second
method generates R ∈ R

U×T with rank q by the prod-
uct of two base matrices: R = QV , where Q ∈ R

U×q

and V ∈ R
q×T are two randomly generated matrices.

Note that the first method provides a higher coherence
(Donoho et al., 2005) for R, which is easier to recover
given the same number of observations. Examples of
the generated R from the two methods are presented
in Figure 2(b,c), respectively.

The magnitude ratio indicates the dominant type
of similarity in the response Y , which is denoted as
mr. We select mr with two levels {0.1, 0.5} following
the simulation setup in Chen et al. (2020). The ratio
is controlled through rescaling the elements in R so
that the value of the (i, j)th element in the rescaled R′
is: r′i,j = ri,j · mr · max(Xβ)−min(Xβ)

max(R)−min(R)
. Note that all the low

rank matrices R mentioned later have been rescaled in
their generation process.

To examine the performance of the proposed
method, we evaluate the recommendation accuracy
for the PRIME model with the training data speci-
fied by the optimal design X�S∗ and the corresponding
observed response matrix Y�S∗ . The Root-Mean-
Square Error (RMSE) over the non-allocated entries
(i.e., empty entries) in Y predicted by PRIME model
is adopted as the performance measure. The perfor-
mance of the proposed optimal design is systemati-
cally evaluated for (EV1) evaluating the performance
of V-optimality criterion as the objective Function (3a)
over other optimal design criteria with the same set
of space-filling constraints, (EV2) evaluating the per-
formance of the space-filling Constraints (3c), (3d)
over the same set of unconstrained optimality cri-
teria, and (EV3) comparing the performance of the
proposed optimal design (3) with randomly generated
designs.

Here I-optimality (Box & Draper, 1959) and
G-optimality criteria (Kiefer & Wolfowitz, 1959), both
of which are related to the model prediction accu-
racy, are adopted as benchmarks to compare with the
selected V-optimality criterion for the objective func-
tion (3). The I-optimality is to minimise the aver-
age variance of prediction over the entire experiment
region �. Given a design X�S with its correspond-
ing indicator variable z, the I-optimality value can be
computed as:

φI(X�S) =
∫

(i,j)∈�

xTi,j

⎛
⎝ U∑

i=1

T∑
j=1

zi,jxi,jxTi,j

⎞
⎠

−1

× xi,j df (xi,j). (6)

The G-optimality aims at minimising the maximum
variance of the predicted values, which gives the G-
optimality value for design X�S as:

φG(X�S) = max diag

⎡
⎣X

⎛
⎝ U∑

i=1

T∑
j=1

zi,jxi,jxTi,j

⎞
⎠

−1

XT

⎤
⎦.

(7)

Based on the benchmark criteria, four variants of the
proposed optimal design method will be evaluated
from the aforementioned three perspectives, which
results in 12 constructions of optimal designs for each
simulation scenario. Specifically, taking V-optimality
criterion as the objective function (3), for each simu-
lation scenario, the four variants include:

V-Opt-SF: the design optimal to the proposed V-
optimality criterion with space-filling con-
straints (denoted as Opt-SF in Table 2);

V-Opt: the design optimal to V-optimality crite-
rion without considering space-filling con-
straints (denoted as Opt);

V-SF: one design randomly selected from the
candidate pool of K designs which satis-
fies the space-filling constraints (denoted
as SF), where K is the searching size in
Algorithm 1;



STATISTICAL THEORY AND RELATED FIELDS 141

Table 2. The average RMSEs for recommendation accuracy in simulation study.

Setting Run size S = 40 Run size S = 60

Generation of R Magnitude ratio Sparsity Criteria Opt-SF Opt SFa Randomb Opt-SF Opt SFa Randomb

QV 0.1 0% V 0.446 0.458 0.455 0.462 0.313 0.316 0.337 0.376
I 0.450 0.477 0.425 0.453 0.359 0.335 0.362 0.368
G 0.448 0.380 0.447 0.449 0.380 0.333 0.341 0.342

66% V 0.261 0.283 0.306 0.403 0.253 0.282 0.271 0.307
I 0.317 0.287 0.294 0.293 0.282 0.302 0.290 0.284
G 0.316 0.294 0.290 0.324 0.263 0.196 0.273 0.257

0.5 0% V 2.557 2.705 2.689 2.901 1.241 1.324 1.393 1.340
I 2.633 2.417 2.558 3.003 1.403 1.524 1.417 1.397
G 2.761 2.450 2.471 2.763 1.319 1.243 1.451 1.311

66% V 1.491 1.408 1.580 1.610 1.080 1.171 1.182 1.332
I 1.417 1.266 1.540 1.551 1.245 1.484 1.208 1.244
G 1.579 1.446 1.482 1.619 1.235 1.089 1.271 1.296

Block 0.1 0% V 0.677 0.825 0.777 0.829 0.520 0.814 0.687 0.752
I 0.826 0.720 0.812 0.979 0.736 0.557 0.743 0.903
G 0.706 0.815 0.804 0.748 0.709 0.622 0.672 0.707

66% V 0.454 0.534 0.476 0.513 0.306 0.452 0.352 0.415
I 0.470 0.441 0.488 0.540 0.331 0.314 0.362 0.349
G 0.448 0.491 0.490 0.548 0.329 0.340 0.375 0.402

0.5 0% V 3.309 3.800 3.691 4.110 2.685 3.927 3,124 3.511
I 3.814 3.444 3.827 3.963 3.769 2.841 3.138 2.898
G 3.283 4.024 3.813 3.552 3.356 2.979 3.296 3.024

66% V 2.135 2.230 2.324 2.483 1.879 2.493 2.086 2.176
I 2.104 1.868 2.143 2.876 2.457 1.990 2.467 1.955
G 1.829 2.124 2.302 2.303 2.450 2.049 2.578 2.308

Note: Best results for all 16 scenarios are highlighted in bold.
aThree replicates for the (–SF) designs in each scenario.
bThree replicates for the (–Random) designs in each scenario

V-Random: one design randomly selected from the
candidate pool of K designs (denoted as
Random).

Similarly, we can define I-Opt-SF to I-Random with
respect to I-optimality criterion and G-Opt-SF to G-
Randomwith respect to G-optimality criterion for each
simulation scenario. Note that the V-Opt-SF method is
the proposed optimal design. It should also be men-
tioned that the construction methods for (-SF) designs
in each scenario are the same which do not need to
consider the optimality criterion, thus can be viewed as
three replicates. Same for the (-Random) designs.

4.2. Simulation results

Table 2 summarises the RMSEs as the recommendation
performance metric in 16 simulation scenarios. Over-
all, it can be observed that the proposed method (i.e.,
Opt-SF with V-optimality criterion) gives consistently
better performance over benchmark criteria and vari-
ants by comparing the RMSEs when run size S = 60.
However, for the scenarios when run size S = 40, the
proposedmethod does not consistently outperform the
benchmark methods, which could be due to the lim-
ited sample size. Xu (2018)’s study on noisy matrix
completion showed that 4nq − 4q2 is the tight lower
bound for the number of entries to be observed to
obtain a unique solution for the matrix completion for
Cn×n with its rank q ≤ n/2. With rank q = 2 to gener-
ate R10×10 in the simulation, S = 64 is the theoretical
least number of entries to be observed to successfully
recover the low-rank structure. It implies that, when

S = 40, it is theoretically difficult to complete the low-
rank matrix R in PRIME, especially when the linear
regression coefficients β should also be estimated.

Regarding to the performance evaluation EV1, it
can be observed that the proposed V-optimality cri-
terion with space-filling constraints (V-Opt-SF) out-
performs I-Opt-SF and G-Opt-SF in most (i.e., 12 out
of 16) scenarios by comparing RMSEs within Opt-SF
columns in Table 2. For EV2, it is seen that the use of
space-filling constraints significantly enhances the rec-
ommendation accuracy by comparing RMSEs between
V-Opt-SF and V-Opt for 15 out of 16 scenarios. In
terms of performance evaluation EV3, the proposed
V-Opt-SF presents its superior performance in all sce-
narios in comparison with V-Random. The advantage
of the proposed prediction-oriented optimal design
method V-Opt-SF demonstrated from all three evalu-
ation perspectives can be attributed to the integration
of V-optimality criterion and space-filling constraints.
This integration effectively balances the enhancement
in estimating linear regression coefficients from V-
optimality criterion and the enhancement in estimating
low-rank matrix from space-filling constraints.

This simulation study also demonstrates the infe-
rior performance of adopting I- and G-optimality cri-
teria as the objective function in (3). For example, I-
optimality criterion does not performwell compared to
another two criteria by investigating Opt-SF columns
in Table 2. Another disadvantage of I-optimality crite-
rion is the increasing computation burden caused by
the integral over the entire design space (6). In terms
of G-optimality criterion, with a small run size (i.e.,
S = 40), it leads to the design with better prediction
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accuracy when R is generated by the block icon and
the significance of implicit similarity is higher (i.e.,
mr = 0.5). Since G-optimality criterion aims at opti-
mising the worst estimation variance, it could provide
a robust design against overfitting and other possible
worse cases with a small observation and an under-
lying R with lower coherence. Correspondingly, when
R is generated by the base matrices, the designs with
the optimal I-optimality criterion value perform bet-
ter without considering the space-filling constraints. A
possible explanation can be that, due to the small run
size and high coherence on R, directly optimising the
overall estimation variance will lead to better overall
estimation. As mentioned above, the three criteria are
all related to prediction accuracy with similar expres-
sion. Therefore, it is not realistic for one optimality
criterion to dominate all scenarios.

The advantage of V- over I- and G-optimality crite-
ria can also be demonstrated by investigating the pre-
diction errors for each entry of Y in PRIME model.
Figures 3 and 4 present the absolute error of each
entry |yi,j − ŷi,j| in V-Opt-SF, I-Opt-SF, and G-Opt-SF
designs with run size S ∈ {40, 60}, where the optimal
design points are marked with ‘X’. It can be observed
that the prediction errors in the proposed V-Opt-SF

design are more evenly distributed compared to the
other two optimality criteria, which indicates its robust-
ness in terms of the recommendation accuracy for all
potential users and tasks.

Furthermore, the advantage of space-filling con-
straints can be clearly demonstrated by comparing the
performance of the designs with (i.e., SF) and with-
out (i.e., Opt and Random) space-filling constraints.
Figure 5 shows the box plots of RMSEs by adopting SF
designs, Opt designs and Random designs. Note that
the SF designs represented by the box plots are gen-
erated from the candidate K designs in Algorithm 1
which satisfy the space-filling constraints. Correspond-
ingly, we picked 500 designs with top-ranked criterion
value for Opt designs. Similarly, 500 designs are ran-
domly picked from the candidate pool of K designs
for Random designs. In Figure 5, the box plots for SF
designs have a narrow range with much fewer ourliers
than those for Opt and Random designs. It implies
the robustness provided by the space-filling constraints.
The plausible explanation is that these space-filling con-
straints are effective in restricting the feasible region
for design generation to prevent PRIME from making
extreme predictions that directly lead to low recom-
mendation accuracy.

Figure 3. Absolute value of prediction error of Opt-SF designs with S = 40,R generated by block, Sparsity= 66%,mr = 0.1, anno-
tated with RMSE and its Standard Deviation (SD). (a) V-Opt-SF: RMSE = 0.454, SD = 0.259. (b) I-Opt-SF: RMSE = 0.470, SD = 0.269
and (c) G-Opt-SF: RMSE = 0.448, SD = 0.261.

Figure 4. Absolute value of prediction error of Opt-SF designs with S = 60, R generated by block, Sparsity= 0%,mr = 0.1, anno-
tated with RMSE and its Standard Deviation (SD). (a) V-Opt-SF: RMSE = 0.520, SD = 0.272. (b) I-Opt-SF: RMSE = 0.709, SD = 0.375
and (c) G-Opt-SF: RMSE = 0.736, SD = 0.365.



STATISTICAL THEORY AND RELATED FIELDS 143

Figure 5. Box plots of the RMSE of SF designs, Opt designs and Random designs. (a) V criterion with R by Block,mr = 0.1, S = 40,
Sparsity = 66%. (b) G criterion with R by Block, mr = 0.1, S = 40, Sparsity = 66% and (c) I criterion with R by Block, mr = 0.1,
S = 40, Sparsity= 66%.

4.3. An approximate sampling algorithm for
scalability

The proposed design construction algorithm
(Algorithm 1) is suitable for the small-scale user study
in visualisation recommendation. However, in applica-
tions with large size of users and tasks, the searching
size K should be set large enough to ensure the opti-
mality, which can cause high computation workload.
To address this challenge of scalability, we develop an
approximate sampling algorithmas an alternative for an
efficient implementation.

Firstly, we consider an approximation solution for
the proposed optimal design criterion (3) which relaxes
the decision variable z to be continuous (i.e., zi,j ∈
[0, 1]) and relaxes the size constraints accordingly
(Boyd et al., 2004). Denote λi,j = zi,j

S as the relative fre-
quency of the (i, j)th design. The relaxed problem can
be expressed as follows:

min
z

tr

⎧⎨
⎩

⎡
⎣ U∑

i=1

T∑
j=1

λi,jxi,jxTi,jf (xi,j)

⎤
⎦

×
⎛
⎝ U∑

i=1

T∑
j=1

λi,jxi,jxTi,j

⎞
⎠

−1⎫⎬
⎭ (8a)

s.t.
U∑
i

T∑
j

λi,j ≤ 1, λi,j ∈ [0, 1], i = 1, . . . ,U,

j = 1, . . . ,T; (8b)
U∑
i

λi,j ≥
⌊
1
T

⌋
, for j = 1, . . . ,T; (8c)

T∑
j

λi,j ≥
⌊
1
U

⌋
, for i = 1, . . . ,U. (8d)

In this way, the solution λ∗ can be viewed as the sam-
pling probability where λi,j is the probability of sam-
pling the (i, j)th design point. Also, we have z∗

i,j = λ∗
i,j ·

S. Secondly, we sample from the obtained distribu-
tion forM = 1000 times to get 1000 candidate designs.
Finally, the design with the smallest V-optimality crite-
rion value will be selected as the selected design X�S∗ .

We applied this approximate sampling algorithm to
all simulation scenarios and summarised the corre-
sponding results in Table 3. We evaluated the recom-
mendation accuracy for the PRIMEmodel as well as the
computational efficiency of the proposed algorithm and
the approximate sampling algorithm. The continuous
constrained optimisation problem (8) is solved numer-
ically by Nelder-Mead method (Nelder & Mead, 1965).
From the results in the table, although the designs
obtained by the approximate sampling (V-Approximate
Sampling) are not as good as those obtained by the pro-
posed algorithm (V-Opt-SF) in 12 out of 16 scenarios,
it is seen than the performance of the V-Approximate
Sampling is generally better than those of Opt, SF
and Random in Table 2. Moreover, the approximate
sampling algorithm achieves higher computational effi-
ciency when comparing the computational time of
these two methods in Table 3.

We further investigated the performance of the
approximate sampling method using the relaxed for-
mulation in (8). Figure 6 demonstrates the optimal
design obtained by the proposed algorithm (V-Opt-SF)
with run size S ∈ {40, 60}, where the optimal design
points are marked with ‘X’ and the colour shows the
value of each entry z∗

i,j obtained from the relaxed prob-
lem (8). The covariatesX for these two scenarios are the
same, which causes similar patterns in the heatmaps.
It can be shown that in general the V-Opt-SF design
points are allocated to entities z∗

i,j with higher value,
which indicates the proposed Algorithm 1 and the
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Table 3. The average RMSEs for recommendation accuracy and the corresponding computational time in simulation.

Setting RMSE Computational time (sec)a

Run size S Generation of R Magnitude ratio Sparsity V-Opt-SF V-approximate sampling V-Opt-SF V-approximate sampling

40 QV 0.1 0% 0.446 0.442 22.172 12.673
66% 0.261 0.277 35.417 17.665

0.5 0% 2.557 2.375 83.159 17.757
66% 1.491 1.478 51.563 16.888

Block 0.1 0% 0.677 0.722 45.450 24.898
66% 0.454 0.462 25.654 15.623

0.5 0% 3.309 3.644 26.425 15.541
66% 2.135 2.119 46.912 17.010

60 QV 0.1 0% 0.313 0.327 69.846 24.519
66% 0.253 0.278 32.910 24.272

0.5 0% 1.241 1.494 98.129 32.505
66% 1.080 1.351 56.572 26.284

Block 0.1 0% 0.520 0.532 47.665 23.603
66% 0.306 0.334 51.871 23.192

0.5 0% 2.685 2.870 80.968 26.133
66% 1.879 2.038 84.045 26.489

aThe simulation is implemented in Python 3.7.6 and R 3.6.1 on a laptop with 1.80 GHz Intel Core i7-8565U Processor, 16.0 GB RAM and Windows 10.

Figure 6. The optimal designs obtained by the proposed algorithm (V-Opt-SF) with different run size S and the corresponding z∗i,j
value obtained from the relaxed problem (8).

approximate sampling algorithm optimise the design in
a similar way. The slightly inferior performance of the
V-Approximate Sampling designs might be caused by
the existence of multiple local optimums in the optimi-
sation process of problem (8), which indicates that the
final solution can be easily affected by the choice of the
starting point.

In a short summary, the approximate sampling
algorithm can be an efficient solution with less com-
putation workload, and it can be easily extended to
large-scale scenarios. To further improve the compu-
tational efficiency, one can consider a tractable con-
vex programme formulation such as the second-order
conic program (SOCP) (Sagnol & Harman, 2015) for
the V-optimal criterion in (8).

5. Case study

In this section, we demonstrate the merits of the pro-
posed optimal design to support data collection in a
user study for the visualisation recommender system

PRIME. We refer Chen and Jin (2017) for the details
of the visualisation evaluation study. In this study, three
interactive visualisation methods (i.e., static node-link
tree, collapsible node-link tree, and zoomable layout)
were evaluated for 14 participants performing 11 pre-
defined visual searching tasks (Chen et al., 2020). Here
we only focus on the visualisation method of static
node-link tree as shown in Figure 7, and we target
at making accurate predictions on recommendation
scores for user i performing task jwith this visualisation
method.

For the 11 tasks, their contents are about search-
ing for the required information from a hierarchical
data set with simple calculations. The 11 tasks can be
classified into three types: (1) finding the nodes with
target names; (2) finding the parent nodes of those
with target names; (3) counting the number of children
nodes of those with target names. The difficulty of the
tasks can be divided into three levels, which directly
result in different responses (i.e., perceived task dif-
ficulty rated by participants). These information will



STATISTICAL THEORY AND RELATED FIELDS 145

Figure 7. The visualisation method of static node-link tree,
where hierarchical relationships between names were reflected
by the node links.

be utilised to generate covariates characterising each
task. After performing the assigned tasks, the partici-
pants would rate the complexity of the performed tasks,
whichwould form the responsematrix representing the
users’ evaluation on the task complexity.

To develop the recommender system for visualisa-
tion tasks, covariates X characterising the tasks and
users are collected for the estimation of explicit similar-
ity. CovariatesX aremainly generated by the descriptive
information related to users and tasks (i.e., gender, age,
major information of the users, and the type, difficulty
level of the tasks) so that they can be observed before
conducting the experiments. ThemultivariateGaussian
distribution is adopted for theweight function f (xi,j) for
each design point, which is similar as the setting in the
simulation study. Same to the setting in the simulation
section, the PRIME is adopted as the underlying model
for the visualisation recommender system. In Chen
et al. (2020), the data of all 14 users performing all 11
tasks have been collected, which is helpful for us to eval-
uate the performance of the proposed design. When
an optimal design is used to form the training data for
the PRIME model, we still consider the Root-Mean-
Square Error (RMSE) over the non-allocated entries
(i.e., empty entries) in Y predicted by PRIME model as
the performance measure. We evaluated the proposed
optimal design criterion ondifferent numbers of runs of
experiments.With totalU · T = 154 (U = 14,T = 11)
design points, the number of runs of experiments S is
set as five levels S ∈ {60, 70, 80, 100, 120} with a focus
on smaller run size. For each size of runs of experi-
ments, four designs will be evaluated on their predic-
tion RMSE: (1) the proposed optimal design (Opt-SF);
(2) the design optimal to the criterion without consid-
ering space-filling constraints (Opt); (3) one randomly

Table 4. TheRMSE recommendationaccuracy in the case study.

Evaluation

Run size S Criterion Opt-SF Opt SF Random

60 V 1.515 1.563 1.536 2.117
I 1.707 1.543
G 1.662 1.730

70 V 1.518 1.896 1.539 1.815
I 1.547 1.660
G 1.529 1.801

80 V 1.461 1.745 1.648 1.739
I 1.640 1.523
G 1.693 1.872

100 V 1.512 1.645 1.554 1.616
I 1.390 1.482
G 1.614 1.418

120 V 1.322 1.614 1.538 1.726
I 1.326 1.628
G 1.534 1.658

selected space-filling design (SF); (4) one randomly
generated design (Random). Here, K is also selected as
K = 10,000.

Table 4 summarises the performance of all designs
with different levels of run size, where the results in
bold represent the best design with the highest recom-
mendation accuracy in each run size. In general, the
proposed optimal design achieves the best performance
in four out of five scenarios, especiallywhen the run size
is small. With its high computational efficiency of V-
optimality criterion, the proposed method establishes
the superiority by its efficiency and robustness in practi-
cal applications. It is also seen that the designs achieving
the optimality criterion with space-filling constraints
(Opt-SF), perform better than the designs only con-
sidering the optamility (Opt) or the designs only con-
sidering the space-filling constraints (SF). Besides, the
advantage of random space-filling designs over ran-
dom designs demonstrates the effectiveness of impos-
ing space-filling constraints. It can also be shown
that the uncertainty of the recommendation accuracy
rapidly increases when the run size is quite limited
(i.e., 60/154). In such scenarios, the data collected by
a randomly generated design will lead to very low rec-
ommendation accuracy (e.g., RMSE=2.117). A rec-
ommender system developed by such less informative
datamaynot be able to provide trustworthy recommen-
dations for new users, which could imply the neces-
sity and importance of a prediction-oriented optimal
design. In a short summary, the case study for visualisa-
tionmethod recommendation shows that the proposed
optimal design can be efficiently and effectively adopted
in practice to enable informative data collection and the
development of an accurate recommender system with
limited experiments.

6. Discussion

This work studies the optimal design problem for
the visualisation recommender system. A V-optimality
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design criterion with space-filling constraints are inte-
grated to form the proposed prediction-oriented opti-
mal design criterion. The proposed optimal design
jointly considers the low-rank property of the deter-
ministic collaborative information and the content-
based informationwith linear response. By constructing
the proposed optimal design to collect informative data
with limited runs of experiments, the resultant rec-
ommender system can achieve high recommendation
accuracy over the possible users and contexts.

It is worth remarking that the proposed design strat-
egy can be applied to other recommender systems
with limited resources to collect the training data. For
example, it can be adopted to the visualisation system
based on augmented reality (AR) for worker’s train-
ing and guidance in manufacturing processes (Chen
et al., 2016). The proposed design can also be extended
to support recommender systems in other fields with
abundant covariates information of the tasks and users
to be matched, such as personalised knowledge discov-
ery (Vozniuk et al., 2016).

Note that in this work, the users’ rating scores are
used as the response in the proposed design for the
recommender system. However, the ranking informa-
tion can be more effective in suggesting the top-ranked
visualisation methods to users. In this case, the pair-
wise loss can be adopted instead of the prediction error
in the underlying model to provide pairwise compar-
isons of visualisationmethods (Chen& Jin, 2018, 2020).
Then the objective of the proposed optimal design
criterion (3a) can be modified accordingly to reduce
the average variance in the ranking prediction, thus
enhancing the accuracy of ranking recommendation.
Besides, although we selected the selected design space
�S as the region of interest �V based on the space-
filling constraints and the objective function, further
investigation is expected to find the optimal region of
interest with theoretical support. Moreover, the pro-
posed method is suitable for a small-size user study
in visualisation recommendation. However, in practical
scenarios with large size of users and tasks, a screening
step is useful to select the users from a large user pool
to conduct the user study. Various sampling strategies
such as cluster sampling and stratified sampling can be
used for the screening step before the proposed optimal
design (Sharma, 2017). The ethical consideration such
as the fairness for the screening process is also of great
importance in practice.

There are several future research directions. First,
the proposed method can be extended to optimal A/B
testing to support the recommendation of the optimal
visualisation method for a user given a task. Second,
visualisation methods will be parameterised based on
the characteristics (i.e., layout parameters, colour cod-
ing, etc.) to generate a continuous design space. Thus,
more effective and efficient optimal design methods
can be investigated based on the continuous design

space to improve the recommendation performance
for visualisation methods. Third, in practical applica-
tions, besides the observable covariates such as survey
results and users’ input logs, unobservable covariates
are usually available, which can only be collected dur-
ing the experiments (e.g., wearable sensor signals).
Including unobservable covariates to better quantify
the explicit similarity will enhance the performance
of the recommender system, which can be consid-
ered by online optimal design methods. Besides, after
conducting offline experiments, an online active sam-
pling method can be investigated to adaptively enhance
the performance of the recommender system. In the
online sampling, the ensemble modelling method (Jin
& Deng, 2015) can be utilised to ensemble the online
schema with the initial offline design criterion.
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