
Computational Statistics and Data Analysis 185 (2023) 107757
Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Indicator-based Bayesian variable selection for Gaussian 

process models in computer experiments

Fan Zhang a, Ray-Bing Chen b,c,∗, Ying Hung d, Xinwei Deng e

a School of Mathematical and Statistical Science, Arizona State University, AZ, USA
b Department of Statistics, National Cheng Kung University, Tainan, Taiwan
c Institute of Data Science, National Cheng Kung University, Tainan, Taiwan
d Department of Statistics and Biostatistics, Rutgers University, NJ, USA
e Department of Statistics, Virginia Tech, VA, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 April 2022
Received in revised form 14 March 2023
Accepted 31 March 2023
Available online 25 April 2023

Keywords:
Bayesian variable selection
Emulator
Kriging
Median probability criterion

Gaussian process (GP) models are commonly used in the analysis of computer experiments. 
Variable selection in GP models is of significant scientific interest but existing solutions 
remain unsatisfactory. For each variable in a GP model, there are two potential effects with 
different implications: one is on the mean function, and the other is on the covariance 
function. However, most of the existing research on variable selection for GP models has 
focused only on one of the effects. To tackle this problem, we propose an indicator-
based Bayesian variable selection procedure to take into account the effects from both 
the mean and covariance functions. A variable is defined to be inactive if both effects are 
not significant, and an indicator is used to represent the variable being active or not. For 
active variables, the proposed method adopts different prior assumptions to capture the 
two effects. The performance of the proposed method is evaluated by both simulations 
and real applications in computer experiments.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Physical experiments are often expensive, time-consuming, and dangerous to perform, especially for the study of complex 
systems. An effective and more efficient alternative is computer experiment, which refers to the study of real systems using 
complex mathematical models. However, computer experiments typically require a great deal of computing time to produce 
simulation results, especially for complex problems. Therefore, it is desirable to build a statistical model as an emulator 
for the actual computer experiments for prediction, optimization, and calibration. The construction of emulators for the 
study of computer experiments has received great attention in the past decades (Sacks et al., 1989; Santner et al., 2003). 
Gaussian process (GP) models, also called kriging models, are widely used to construct the emulators due to their flexibility 
in capturing the underlying nonlinearity and quantifying the prediction uncertainty. Their interpolation property is also 
suitable for the study of deterministic computer simulations. Examples of different modifications and applications of GP can 
be found in Joseph (2006), Gramacy and Lee (2008), Levy and Steinberg (2010), Reich et al. (2009), Plumlee and Joseph 
(2018), Chen et al. (2018), etc.

An important issue in GP modeling is to identify variables with significant impacts on the simulation responses. For 
complex systems, there are usually a large number of variables involved in computer experiments. These variables can have 
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very different impacts on the responses. Correct identification of significant variables not only provides scientific insights 
into the underlying systems but also improves the prediction accuracy of the emulator (Joseph et al., 2008). Therefore, the 
focus of this research is to achieve simultaneous estimation and variable selection for GP models.

In general, a GP model contains two parts: a mean function μ(x) and a Gaussian process Z(x). The input variables x will 
affect both the mean function and the Gaussian process. The mean function captures the global trend through the unknown 
coefficients, and the Gaussian process captures the local structure through the correlation parameters. For each variable in 
a GP model, there are potential effects on the two parts of the GP models with different implications. Thus it is crucial 
to identify the important variables by simultaneously considering both of the possible effects. It is worth noting that the 
ordinary kriging is a popular GP model with a grand mean. It generally works well, but it is known that failing to account 
for important variables in the mean function can cause poor performance in prediction (Joseph et al., 2008). Furthermore, 
including unimportant variables in the mean function can also deteriorate the prediction performance.

Most of the existing works on variable selections for GP models often focus only on one of the effects. For example, Welch 
et al. (1992) introduces variable screening methods to identify important correlation parameters sequentially. The idea of 
sequential variable selection in the correlation function was also used for the high-dimensional Gaussian process (Chen 
et al., 2012). Linkletter et al. (2006) propose a Bayesian procedure for the selection of significant correlation parameters. 
These methods allow the variables to have different impacts on the smoothness of the underlying system but overlook the 
potential impacts on the global trend. On the other hand, Joseph et al. (2008), Hung (2011) and Huang et al. (2020) propose 
modifications of GP models to perform variable selection only through the mean function coefficients in GP models. When 
the sample size is huge, Zhao et al. (2018) proposed subsample aggregating (subagging) approach to deal with the variable 
selection in the mean function of GP models.

To conduct variable selection for GP models based on both effects, this work proposes a unified Bayesian variable se-
lection procedure, which is different from the conventional variable selection methods in GP modeling where selections 
are performed in either the mean or the correlation function. Note that when a variable is called active, it may not be 
necessary to affect in both the mean function and the correlation function. For example, in our real data case study shown 
in Section 6, we have found the variable “zone-to-zone transition” has a significant effect on the mean function but not on 
the part of the Gaussian process. Thus for each variable, an indicator is defined to represent the variable being active or not. 
That is, the proposed method simultaneously considers the potential impacts on the mean and correlation function from 
each variable. For active variables, their impacts are further distinguished by two Bayesian priors. A variable is inactive only 
if both effects are not significant. Furthermore, an active variable can be active due to the contributions to the mean, the 
correlation function, or both. The major motivation is to enhance the interpretability of GP model by disentangling the two 
impacts from each variable, one on mean and the other on the correlation function, under a hierarchical Bayesian structure. 
Finally, the proposed method can be modified as a two-indicator approach for detecting the activities of the effects in the 
mean function and the correlation parameter separately.

The remaining of this paper is organized as follows. Section 2 briefly reviews the Gaussian process model. Section 3
details the proposed method. Simulation studies are conducted to examine the proposed method in Sections 4 and 5. 
Section 6 contains an illustration using real data. In Section 7, the proposed method is extended to a two-indicator approach 
for the mean function and the correlation parameter separately. We conclude this work with some discussion in Section 8.

2. Gaussian process model

This section gives a brief review on the Gaussian process model. Denote x = (x1, ..., xp) as a p-dimensional input and 
y(x) ∈ R as the response. Suppose the observed data is denoted by {(xi , yi), i = 1, ..., n}. A Gaussian process model can be 
written as

y(x) = μ(x) + Z(x), (2.1)

where μ(x) is a mean function and Z(x) is a Gaussian process with zero mean and covariance function φ(x). Here μ(x) is 
expressed as

μ(x) =
p∑

k=1

βkxk = f(x)�β,

where f (x) = (x1, . . . , xp)� and β = (β1, ..., βp)� is a vector of unknown coefficients. There are various choices of covariance 
functions (Rasmussen, 2003) such as the Matern function and the powered exponential function. The powered exponential 
function is expressed as

φ(Z(xi), Z(x j)) = σ 2 exp(−
p∑

k=1

θk|xik − x jk|κ ),

where θk is the correlation parameter, θ = (θ1, . . . θp)� , σ 2 is the variance, and 0< κ ≤ 2 controls the underlying smooth-
ness.
2
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The unknown parameters, β, θ , and σ 2, can be estimated by the maximum likelihood approach with

β̂ = (F�−1 F �)−1 F�−1y, σ̂ 2 = (y − F β̂)��−1(y − F β̂)

n
, (2.2)

and

θ̂ = arg min
θi>0,∀i

{
n log(σ̂ 2) + log(|�|)

}
,

where F = [ f (x1), f (x2), . . . , f (xn)]� , y = (y1, y2, . . . , yn)� with yi = y(xi), and � is an n × n correlation matrix with 
elements φ(Z(xi), Z(x j)). Plugging in the estimators, prediction at x can be obtained by

ŷ(x) = f(x)�β̂ + ψ(x)��−1(y − f(x)�β̂), (2.3)

where ψ = (φ(Z(x1), Z(x)), . . . , φ(Z(xn), Z(x)))� .
Based on (2.1), it is clear that each variable has two potential impacts, one is the linear effects through the mean function 

β , and the other is the effects on smoothness through correlation parameters θ . Therefore, in performing variable selection, 
it is important to clearly identify their effects.

3. Indicator-based Bayesian variable selection

In this section, we develop an indicator-based Bayesian variable selection for Gaussian process models. The idea is to 
introduce a latent indicator for each input variable in the Gaussian process model to represent whether the variable is 
active or not. For active variables, different priors are assumed for the mean function coefficients and correlation parameters. 
Moreover, to enhance the computational efficiency, we adopt some techniques from the empirical Bayes (Yuan and Lin, 2005) 
to obtain a meaningful approximation of the corresponding posterior density by setting proper priors of the indicators and 
the unknown parameters.

3.1. Priors and posteriors

Denote γk as the latent indicator for the kth variable, with one indicating active and zero otherwise. The kth variable is 
inactive if βk = 0 and θk = 0. The prior distributions of βk and θk are specified as mixture distributions dependent on γk . 
Using this hierarchical Bayes formulation, γk, βk and θk are well associated with each other. Then a numerical algorithm can 
be used to generate the samples of γk , and these samples can be used to infer which variables are active.

Let us start from setting priors for the indicators. For notation convenience, denote βγ , θγ as the corresponding quanti-
ties β, θ under γ . Let γ = (γ1, ..., γp)′ to be the vector of indicator parameters. For the prior of γk , because of two status 
of each γk , we consider the commonly used Bernoulli prior, Bern(q), where q is the probability of γk = 1. By assuming the 
independence among γk ’s, the prior of γ = (γ1, ..., γp) can be written as

P (γ ) ∝ q|γ |(1 − q)p−|γ |,

where |γ | = ∑p
k=1 γk and q is the prior probability of γk = 1.

Now we specify the priors for β and θ . Straightforwardly, we set βk = 0 if γk = 0. When γk = 1, the double exponential 
distribution is chosen as the prior distribution for βk . Thus, the prior of βk is

π(βk|γk) = (1 − γk)δ(0) + γk D E(0, τk),

where D E(0, τk) is the double exponential distribution and it has a density function as (1/2)τk exp(−τk|βk|) with the 
positive parameter, τk . Note that the double-exponential (DE) prior can be accommodated for large coefficients because of 
its heavier tail property (Casella and Park, 2008). For θk , we set it as

π(θk|γk) = (1 − γk)δ(0) + γk Exp(λk),

where Exp(λk) is an exponential distribution with density function, λk exp(−λkθk) and λk is the positive hyper-parameter. 
In addition, we assume the independence among the priors of βk and θk . To simplify the technique presentation, we assume 
that the hyper-parameters τk = τ and λk = λ for all k. Finally, we set the prior for σ 2 to be an inverse χ -squared distribu-
tion Inv − χ2(ν0), i.e., σ 2 = (σ 2)−ν0/2−1 exp(−1/(2σ 2)). Based on above formulation, we can write the posterior density, 
P (β, θ , γ , σ 2|y) as
3
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P (β, θ ,γ ,σ 2|y)

∝ exp(−1

2
[n logσ 2 + log |�(θ)| + (y − F γ βγ )��−1(θ)(y − F γ βγ )

σ 2
])

×
p∏

k=1

[τ
2

exp(−τ |βk|)]γk ×
p∏

k=1

[λexp(−λ|θk|)]γk

× q|γ |(1 − q)p−|γ | × (σ 2)−ν0/2−1 exp(−1/(2σ 2))

∝ exp(−1

2
[log |�(θ)| + (y − F γ βγ )��−1(θ)(y − F γ βγ ) + τσ 2 ∑

k∈γ |βk| + λσ 2 ∑
k∈γ θk

σ 2
])

× (σ 2)−(n+ν0)/2−1 exp(−1/(2σ 2)) × (
q

1 − q
τλ)|γ |.

Clearly, the posterior density here has a complicated expression. To facilitate the computation, we borrow strength from 
empirical Bayes to obtain a good approximation of the posterior density.

3.2. Posterior approximation

Denote ρ1 = τσ 2, ρ2 = λσ 2, and ω = q
1−q τλ. The posterior distribution can be represented as

P (β, θ ,γ |y) ∝ exp(−1

2
Lρ(β, θ ,γ ))ω|γ |,

where Lρ(β, θ, γ ) is defined as

Lρ(β, θ ,γ ) = log |�(θ)| + (y − Fγ βγ )��−1(θ)(y − Fγ βγ ) + ρ1
∑

k∈γ |βk| + ρ2
∑

k∈γ θk

σ 2
, (3.4)

and the posterior marginal likelihood of γ is

P (γ |y) = C(y)ω|γ |
¨

exp(−1

2
Lρ(β, θ ,γ ))dβγ dθγ .

The major difficulty for obtaining this marginal posterior is the high-dimensional integration. To overcome this drawback, 
we focus on a subset of models with the highest posterior probability, of which the posterior probability can be well 
approximated. Then we introduce a numerical algorithm to generate the samples of γ from this approximation density for 
Bayesian inference.

Here we focus on a subset of models with the highest posterior probability, which can be well approximated. Such an 
idea is similar to the idea of the maximizing-a-posterior (MAP), which is used in approximating the posterior for variable 
selection in linear models (Yuan and Lin, 2005). Note that (β, θ) are dependent on γ . Without loss of generality, we 
hereafter omit this dependency for notation convenience. We define (β∗, θ∗) as

(β∗, θ∗) = arg min
(β,θ)

Lρ(β, θ) (3.5)

Let us denote β = β∗ + u and θ = θ∗ + v . In the formulation of Lρ(β, θ), we can have y − Fβ = y − Fβ∗ − F u. Moreover, 
we consider the Taylor expansion as

�−1(θ) = �−1(θ∗ + v)

≈ �−1(θ∗) − �−1(θ∗)[v� ◦ ∂�(θ∗)
∂θ

]�−1(θ∗); (3.6)

log |�(θ)| = log |�(θ∗ + v)|
≈ log |�(θ∗)| + tr

(
�−1(θ∗)[v� ◦ ∂�(θ∗)

∂θ
])

+ tr
(
�−1(θ∗)[v� ◦ ∂2�(θ∗)

∂θ∂θ� ◦ v])
− tr

(
�−1(θ∗)[v� ◦ ∂�(θ∗)

∂θ
]�−1(θ∗)[v� ◦ ∂�(θ∗)

∂θ
]) (3.7)

� log |�(θ∗)| + tr(L(v)) + tr(Q (v)),
4
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where L(v) and Q (v) are linear terms and quadratic terms in approximating log |�(θ)|. Here the term v� ◦ ∂�(θ∗)
∂θ is a 

matrix with its (i, j) entry as v� ∂φi j(θ
∗)

∂θ , where φi j(θ) is the (i, j)th entry of �(θ). Similarly, the term v� ◦ ∂2�(θ∗)

∂θ∂θ� ◦ v is a 

matrix with its (i, j) entry as v� ∂2φi j(θ
∗)

∂θ∂θ� v . The detailed expression for v� ◦ ∂�(θ∗)
∂θ and v� ◦ ∂2�(θ∗)

∂θ∂θ� ◦ v can be found in the 
Supplementary. Then we can write the posterior marginal as

P (γ |y) = C(y)ω|γ |
¨

exp

(
−1

2
Lρ(β, θ)

)
dβγ dθγ

≈ C(y)ω|γ | exp

(
−1

2
Lρ(β∗, θ∗)

)

×
¨

exp

(
−

[
1

2
tr

(
L(v) + Q (v)

) + 1

2σ 2
f (u, v)

])
dudv. (3.8)

Here f (u, v) is defined as

f (u, v) = −ε∗��ε∗ − 2ε∗��−1(θ∗ + v)F u

+ (F u)��−1(θ∗ + v)(F u) + ρ1

∑
k∈γ

(|β∗
k + ui | − |β∗

k |) + ρ2

∑
k∈γ

vk,

where ε∗ = y − Fβ∗ , � = �−1(θ∗)[v� ◦ ∂�(θ∗)
∂θ ]�−1(θ∗). Now our main task is to evaluate

h(u, v) = 1

2
tr

(
L(v) + Q (v)

) + 1

2σ 2
f (u, v).

Based on the definition of u and v , it is known that h(u, v) is minimized at u∗ = 0 and v∗ = 0 such that h(u∗, v∗) is 
proportional to some constant.

Note that under different scenarios of γ , there can be two different types of models.

Definition 1. A model γ is called a regular model if and only if all coefficients of β∗
γ (and θ∗

γ ) are nonzeros.

Definition 2. A model γ is called a nonregular model if at least one coefficient of β∗
γ (or θ∗

γ ) is zero.

We will discuss the approximation with respect to the two different model scenarios separately in the following propo-
sitions.

Proposition 1. For the regular model in Definition 1, with sample size n large enough and using linearization approximation on both 
β and θ , then one can approximate P (γ |y) as

P (γ |y) = C2C(y)(
√

σ 2ω)|γ | × exp

(
−1

2
min
(β,θ)

Lρ(β, θ)

)
+ o(n). (3.9)

The detailed derivation can be found in the Supplementary. Note that the approximation with o(n) (3.9) comes from 
the Laplace approximation at the β∗ and θ∗ . Here β∗ and θ∗ are essentially the MAP (maximum-a-posterior) estimators 
as shown in (3.5) and (3.4). When the sample size n grows, it is expected that the variance of the posterior distribution 
will become smaller, making the Laplace approximation to be adequate. However, for computer experiments with relatively 
small sample sizes, such an approximation may not be accurate. Based on our extensive simulation study in this work, it 
is found this approximation works fairly reasonable for the sample size n = 30 and p = 5. We have also tried the case of 
n = 50 or 100 for p = 10 or 20. The numerical results are also reasonable. One possible explanation is the design points are 
from a space-filing design and our approximation (i.e., Taylor series expansion) is expanded at the maximizing-a-posterior 
(MAP) estimators. It would be interesting to conduct a rigorous investigation of the approximation bound, which could be 
beyond the scope of this work.

The approximation obtained in (3.9) does not apply to the nonregular model. It is because that h(u, v) may not be dif-
ferentiable at u = u∗, v = v∗ in nonregular model (see Definition 2). In this situation, we show that one can concentrate the 
regular model for the model selection procedure. Specifically, we compare a nonregular model γ with a regular submodel 
included. Assume that the γ has the form γ = (1, . . . , 1, 0, . . . , 0) with the first |γ | entries are 1’s, and only the first s out 
of |γ | components of β∗

γ and θ∗
γ are nonzeros, respectively. It means that s < |γ |. Denote γ ∗ to be a p-dimensional binary 

vector as a submodel of γ with only the first s components being 1. The task here is to compare P (γ |y) and P (γ ∗|y).

Proposition 2. For the nonregular model in Definition 2, for sample size n large enough and using the linearization approximation, 
one can obtain,
5
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P (γ |y)

P (γ ∗|y)
≤ C(

√
σ 2ω)|γ |−s + o(n). (3.10)

The detailed derivation can be found in the Supplementary. One can see that if ω ≤ 1, the data would not give more 
support to the bigger model γ (Yuan and Lin, 2005). Therefore, we can focus on the regular model to avoid computing 
P (γ |y) for the nonregular model. Although the quality of such an approximation would rely on the large sample size, it is 
found in our simulation that this approximation works fairly well even for the small sample size. It would be interesting 
to understand the effect of o(n) under the context of computer experiments when n is relatively small. One possible expla-
nation is that the regular model, based on the Taylor expansion around the MAP estimators, received more support from 
the data than the complex nonregular model. We also would like to remark that the condition of θ > 0 could affect the 
accuracy of approximation in (3.10) since the first-order Laplace approximation at θ∗ is not established under the condition 
of θ > 0. But our empirical study does not encounter such a problem. A possible explanation is that θ > 0 is satisfied in the 
neighborhood of θ∗ .

Remark 1. The issue of identifiability is common in Gaussian process modeling when parameters are estimated for both the 
mean function and the correlation function. The identifiability problem is relatively less an issue in the proposed model due 
to three reasons. First, the proposed method only includes linear terms in the mean function without higher-order terms. 
As a result, the correlation between the mean function coefficients and the correlation parameters is generally smaller and 
thus the identifiability issue has less impact. Second, the proposed Bayesian framework is closely related to a constraint 
estimation which imposes penalties to the parameter estimation, both for the mean function coefficient as well as for the 
correlation parameters, and therefore the identifiability issue can be further alleviated through a penalization. Third, based 
on equation (3.4) in Section 3.2, it can be shown from the empirical Bayes perspective that the regularization term 

∑
θi

plays a similar role as containing the correlation length. Therefore, the estimated length parameters are penalized to avoid 
the identifiability issue. Furthermore, the proposed method is of interest when a large number of variables are involved in 
the computer experiments but a few of them have significant impacts. Thus those larger correlation lengths create a penalty 
to shrink the small lengths to zero and avoid the identifiability issue.

3.3. Bayesian inference procedure

Based on the analysis in Section 3.2, we can focus on the marginal posterior density function for the regular model. 
According to the expression in (3.4) and (3.9), we have

P (γ |y) ≈ C(y)(
√

σ 2ω)|γ | × exp(−1

2
min
β,θ

Lρ(β, θ ,γ ))

= C(y)(
√

σ 2ω)|γ | × exp(−1

2
L̃ρ(γ )), (3.11)

where L̃ρ(γ ) = min(β,θ) Lρ(β, θ, γ ). Note that it is not trivial to find the model for the density in (3.11). To address this 
challenge, we take advantage of the sampling technique to generate the corresponding Monte Carlo samples as the estima-
tion of P (γ |y) for Bayesian inference. The details of the numerical algorithm are described in Algorithm 1. Here the σ 2 is 
chosen to be a pre-specified constant.

Algorithm 1 Numerical sampling algorithm for γ .
Step 1: Set initial values of γ , β and θ .
Step 2: Fix γ and update θ and β by solving the minimization problem, min(β,θ) Lρ(β, θ, γ ).
Step 3: Fix θ and β , and then sequentially sample γi based on

P (γi = 1|y,γ −i) = P (γi = 1,γ −i |y)

P (γi = 0,γ −i |y) + P (γi = 1,γ −i |y)
,

for each i = 1, 2, ..., p. Here γ −i = (γ1, . . . , γi−1, γi+1, . . . , γp)t represents the vector of all γ ’s except γi .
Step 4: Repeat Step 2 - 3 till convergence or the maximal number of iterations.

The proposed numerical algorithm is similar to a Monte Carlo Expectation Conditional Maximization (ECM) algorithm 
(Trevezas et al., 2014). Here we may treat the γi ’s as latent variables. In addition, there are non-explicit forms for both E-
and M-steps. Thus the numerical optimization is adopted to identify the current best values of β and θ , and then a Gibbs 
sampling type method is used to generate the samples of γ as shown in Hastie et al. (2001).

The Algorithm 1 is implemented in MATLAB. In Step 2, the minimization problem is solved respective to β and θ
iteratively by taking “patternsearch” function in MATLAB. Suppose that we iterate the algorithm K times. We will discard 
the first few samples, say T , and then collect the remaining (K − T ) samples of γ vectors as the posterior samples of the 
indicators, γk . Based on our empirical experience, we usually set K = 2, 000 and T = 1, 000.
6
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Table 1
Different values of true β and θ in groups 1 to 5.

β = (β1, β2, β3, β4, β5) θ = (θ1, θ2, θ3, θ4, θ5)

scenario 1 : (-0.2, 0, 0, 0, 0.4) (0.3, 0, 0, 0.2, 0)
scenario 2 : (-1.0, 0, 0, 0, 2.0) (0.3, 0, 0, 0.2, 0)
scenario 3 : (-2.0, 0, 0, 0, 4.0) (0.3, 0, 0, 0.2, 0)
scenario 4 : (-2.0, 0, 0, 0, 4.0) (1.5, 0, 0, 1.0, 0)
scenario 5 : (-2.0, 0, 0, 0, 4.0) (3.0, 0, 0, 2.0, 0)

Having the Monte Carlo samples, we adopt the median probability criterion (Barbieri and Berger, 2004) for variable selec-
tion of active variable Xk ’s. Specifically, we estimate the marginal probability of γk = 1, P̂ (γk = 1), for each variable Xk from 
the Monte Carlo samples and then we consider the kth variable to be active if P̂ (γi = 1) ≥ 0.5. Note that in the literature, 
the highest posterior probability criterion is also commonly used in Bayesian variable selection, where the model is selected 
by maximizing the model posterior probabilities among all 2p possible models. Barbieri and Berger (2004) have shown that 
under certain conditions, one can identify the same model under these two criteria for the linear regression. According to 
our numerical experience, the model identified by the median probability criterion would be in the top ranking in terms of 
the model posterior probabilities. Thus with the consideration of computational efficiency, the median probability criterion 
is used here. Once we determine the active variables, βγ and θγ can be estimated by solving the optimization problem 
in Eq. (3.5) with respect to the selected active variables. Thus the prediction value of y(x) can be obtained according to 
Eq. (2.3).

In Algorithm 1, we treat σ 2 as a tuning parameter. To include σ 2 into the Algorithm 1, one can add a step for sampling 
σ 2 from its conditional distribution. Usually, the sampling of σ 2 is not needed in each iteration. One can update it after a 
few iterations for Steps 2 and 3.

4. Simulation study

In this section, we examine the performance of the proposed method by a five-dimensional simulation study with data 
generated from a pre-specified Gaussian process. In the Supplementary, we also demonstrate a numerical example based on 
the typical setting of a computer experiment and discuss the parameter tuning issue.

Here we compare the proposed method with the blind kriging method (Joseph et al., 2008). The blind kriging method, 
modified from the ordinary kriging, has an unknown mean function to be identified through some data-analytic procedures. 
Joseph et al. (2008) considered the Bayesian forward selection technique for the unknown mean model under the maximum 
likelihood estimates of the correlation parameters. Here, the blind kriging is implemented using a MATLAB toolbox called 
“ooDACE” (Couckuyt et al., 2012) which integrates the correlation parameter estimation and the estimation of the unknown 
mean model. In addition, we consider a variant of the selection approach in Linkletter et al. (2006) such that it can identify 
active variables in the mean function and the covariance function.

We consider the input x with dimensionality to be p = 5. Without loss of generality, we set the experimental region as 
[0, 1]p . To generate the simulation data, we first sample the input data points, xi , i = 1, 2, . . . , n, from a Latin hypercube 
design. Here different sample sizes n = 5, 10, 15, 20, 30 are considered. The responses, yi , are generated by following the 
Gaussian process model in (2.1) with κ = 2 and pre-specified β and θ .

To investigate the effects of different scenarios of β and θ on selecting active variables, we consider five scenarios of 
active variables as shown in Table 1. Here, we consider the variable being active under three different situations: active in 
the mean part, active in the correlation part, and active in both mean part and correlation part. In all set-ups, X1, X4 and 
X5 are active variables. For X1, both β1 and θ1 are non-zeros. For X4, its correlation parameter θ4 is non-zero but β4 is 
fixed as zero. For X5, the β5 is non-zero but θ5 is fixed as zero. The differences among the five scenarios are the scales of 
true β and θ . As the Gaussian correlation function is used, it is interesting to investigate the scale effects with respect to β
and θ .

To evaluate the accuracy of the proposed method, we consider the following performance measures: the True Classifica-
tion Rate (TCR), the True Positive Rate (TPR), the False Positive Rate (FPR),

TCR = number of correctly selected variables

number of variables
;

TPR = number of correctly selected active variables

number of active variables
;

FPR = number of falsely selected active variables

number of inactive variables
.

The TCR is an overall evaluation of the accuracy in the identification of the active and inactive variables. TPR is the average 
rate of active variables identified correctly and is used to measure the power of the method. FPR is the average rate of 
inactive variables that are included in the regression and can be considered as type I error of the selected approach. Larger 
7



F. Zhang, R.-B. Chen, Y. Hung et al. Computational Statistics and Data Analysis 185 (2023) 107757
Table 2
The TCR, TPR and FPR for different n and scenarios.

n = 5 n = 10 n = 15 n = 20 n = 30

Scenario 3 avg. TCR 0.864 0.972 0.996 1 1
avg. TPR 0.913 0.993 1 1 1
avg. FPR 0.21 0.06 0.01 0 0

Table 3
The TCR, TPR and FPR for different values of λ and τ .

(λ, τ )

(0.5, 0.5) (0.5, 1) (1, 0.5) (1, 1) (1, 5) (5, 1) (5, 5)

avg. TCR 1 0.996 1 0.996 0.996 0.992 0.98
avg. TPR 1 1 1 1 1 1 1
avg. FPR 0 0.01 0 0.01 0.01 0.02 0.05

values of TCR and TPR indicate better performance, whereas smaller values of FPR indicate better performance than larger 
values.

Here we fix the tuning parameters as q = 0.5, σ = 1, τ = 1, λ = 1, and κ = 2 for the proposed method. For each scenario 
with sample size n, we independently repeat this simulation 50 times, and the 50 selection results are summarized in Table 
S1 in Supplementary. Table 2 is the selection results for Scenario 3. From the results, it is seen that the values of TCR, TPR 
and FPR in all five scenarios are acceptable when n is relatively large. Specifically, the values of TCR and TPR are close to 
1 and the values of FPR are close to 0, which indicates good accuracy in selecting active variables. In fact, we have tried 
the cases with a larger sample size, n. For example, when n = 500, based on Scenario 3 and the same tuning parameters, 
the values of TCR and TPR are also equal to 1 and the value of FPR is 0. To save space, the results with larger sample sizes 
are omitted here. Moreover, the comparison of Scenarios 1, 2 and 3 indicates that the proposed method can obtain better 
selection performance when βk is larger under fixed θ . The comparison of Scenarios 3, 4 and 5 indicates that when fixing 
β , the smaller θ is, the better selection accuracy of the proposed method can achieve.

Furthermore, we examine the effect of the tuning parameters, λ and τ , on selecting active variables. Taking the setting 
of Scenario 3 with n = 15 for illustration, we consider a set of possible (λ, τ ) to be {(0.5, 0.5), (0.5, 1), (1, 0.5), (1, 1), (1, 5), 
(5, 1), (5, 5)}, while σ 2 is set as 1. We repeat the simulation 50 times under each setting of tuning parameters. Table 3
reports the selection results of the proposed method over 50 replications. Table 3 shows that when the values of λ and 
τ become larger, the values of TPR keep on 1, but the values of FPR become larger accordingly. Larger FPR values mean 
that more inactive variables are identified as active ones by our approach. Thus the results from Table 3 could imply that 
larger values of λ and τ could result in over-selecting the variables. The selection of tuning parameters will be discussed 
in Supplementary. Finally, due to the median probability criterion, we choose 0.5 as the threshold value for the posterior 
probability to decide whether the variable is active or not. We have tried the other threshold values, like 0.1, 0.2, . . . , 0.8
and 0.9 and no matter what the threshold value is, the values of TPR and FPR are similar. Thus we simply fix this threshold 
value as 0.5 for our proposed method.

Note that it is important to show the convergence of the proposed numerical algorithm. Here the Monte Carlo standard 
error (MCSE), introduced in Jones et al. (2006) and Flegal et al. (2008), can be used to check the convergence of the Monte 
Carlo samples. When the corresponding MCSE value is sufficiently small, it indicates the convergence of the Monte Carlo 
samples. Here we compute MCSE of the samples of indicator parameters by choosing the whole samples as one batch, and 
the threshold value of MCSE is set as 0.04 as suggested in Flegal et al. (2008). Take the five scenarios in Section 4 with 
n = 15 as an illustration. Among the total of 250 cases, there is only one case whose maximal MCSE value of the five 
variables is 0.065, and for the other cases, all standard deviation values are less than the threshold values. The samples 
of indicator parameters in the process appeared to be stuck on 0 and 1 for the variables being active or not. Under 2000 
iterations, after burning in the first 1000 samples, the MCSE of the remaining indicators samples is less than the threshold 
value, 0.04. This provides proper evidence of the convergence of the MCMC process.

In addition, we examine the blind kriging method under the five scenarios with n = 15. We compute the average TCR, 
TPR and FPR in each scenario based on 50 independent replications, and the results are reported in Table 4. By comparing 
the results of the proposed method with results in Table 4, the proposed method can generally be more accurate than the 
blind kriging method on variable selection. In particular, it is seen that when true β is large and true θ is small, the blind 
kriging tends to over-select the variables because of the non-zero FPR values.

The blind kriging selects the active variables from the mean function. While the proposed selection approach not only 
targets on the active variables in the mean function but also considers the non-zero correlation parameters. For benchmark 
comparison, we also include a variant of the selection approach in Linkletter et al. (2006). Linkletter et al. (2006) introduced 
a Bayesian selection approach with a focus on the correlation function, which needs to generate a new inert variable in the 
analysis. Since this inert variable must be non-active, we consider a variant of their approach by generating the posterior 
samples of the coefficient and correlation parameter for this inert factor as reference distributions to check whether the 
other variables are active or not. We take the same five scenarios with n = 15 as an illustration, and the selection results 
8
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Table 4
Results of the blind kriging for simulations with 
n = 15.

avg. TCR avg. TPR avg. FPR

scenario 1 0.852 0.8867 0.1267
scenario 2 0.856 0.9267 0.1667
scenario 3 0.868 0.9467 0.1667
scenario 4 0.832 0.8667 0.1467
scenario 5 0.808 0.8267 0.1467

Table 5
The results based on the approach generalized 
from Linkletter et al. (2006).

avg. TCR avg. TPR avg. FPR

scenario 1 1.0000 1.0000 0.0000
scenario 2 1.0000 1.0000 0.0000
scenario 3 1.0000 1.0000 0.0000
scenario 4 0.9840 1.0000 0.0400
scenario 5 0.9520 1.0000 0.1200

are summarized based on 50 independent replications. We first generate the inert variables in each replication and set β6
and θ6 as their corresponding coefficients. Then we iterate our algorithm 2000 times and compute the posterior medians for 
β6 and θ6 based on the last 1000 iterations. Thus, a variable will be considered active if at least one of its posterior medians 
is larger than the median values for β6 and θ6. Table 5 reports the selection performance of this variant method. Generally, 
this method has a similar performance to our proposed approach in terms of TCR, TPR and FPR and outperforms the blind 
kriging. It provides certain evidence that it is useful to consider both effects in the mean function and the correlation 
function.

5. Simulations with 10 and 20 variables

In this section, we consider a large variable dimension in the simulation studies. In computer experiments, the variable 
dimension is not very large due to the concern of the curse of dimensionality and expensive computational cost. Thus we 
set the number of the variables, p = 10 and 20, by extending Scenario 3 shown in Section 4 through adding 5 or 15 inter 
variables, respectively. That is, βtrue = (−2, 0, 0, 0, 4, 0, ..., 0) and θtrue = (0.3, 0, 0, 0.2, 0, 0, ..., 0). It means that there are 
only three active variables, X1, X4 and X5.

First, we consider the cases with p = 10 and n = 50 and 100. In each replication, we choose n points from a LHD in 
[−1, 1]10, and generated the responses based on βtrue and θtrue . Based on 50 independent replications, the selection results 
for n = 50 are summarized as TCR = 1.0000, TPR = 1.0000 and FPR = 0.0000. For the case of n = 100, the selection results 
from 50 replications are TCR = 0.9800, TPR = 0.9933, FPR = 0.0257. Generally, the proposed method can identify active 
variables with very high probability and only over-select few inactive variables in very low frequencies.

The distributions of βi and θ j among 50 replications for the case with n = 50 are in Figure S1 in the Supplementary. 
Here βi and θi are the optimal solutions in each iteration of our algorithm. The variables X6, . . . , X10 can be treated as five 
inert variables. For these inert variables, the corresponding βi and θi are all stuck on zeros. For the active variables, X1, X4
and X5, the medians of the corresponding samples are significantly far from zeros and are all close to the true values. These 
results indicate that the proposed approach can have high TPR and low FPR values. In addition, we also compute the 95%
HPD intervals for all parameters via the R function hdi in the package “HDInterval” and report these values in Table S3 in 
the Supplementary. Overall, the lengths of the HPD intervals are quite small because the parameters, βi and θi , are obtained 
via an optimization approach based on the training data and the current indicators.

Furthermore, we also conduct variance-based sensitivity analysis to compare with the proposed method. A function called 
“sobol2002” from an R-package “sensitivity” is used for sensitivity analysis, which implements the Monte Carlo estimation 
of the Sobol indices for both first-order and total indices at the same time. Here we consider the first-order index value 
generated from this method for identifying active variables. Only the variables with first-order indices that are larger than 
a threshold will be selected as active variables. The case with p = 10 and n = 100 is studied here. To find the best selection 
results, we went over 14 thresholds as 0.01, 0.02,..., 0.09, 0.1, 0.2,..., 0.5. Among these thresholds, the maximum TCR is 0.7960, 
which appears when the threshold is set at 0.05, and the maximum TPR is 0.7933, which appears when the threshold is set 
at 0.01. Both of these two values are smaller than those of the proposed approach. The FPR values decrease as the threshold 
increases: the FPR=0.31 if the threshold is set at 0.01 and the FPR=0.09 if the threshold is set at 0.05. Note that only X1 and 
X5 will be selected when we set the threshold as 0.5. Thus it can be seen that our proposed approach overall has better 
performance in terms of TPR and FPR.

Now we consider the cases of p = 20. The simulation setting is the same as the case of p = 10 except having 15 
inert variables. Here we set the sample size, n, as 100 and 200, and generate the experimental points from an LHD over 
9
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Table 6
RMSE under different parameters.

σ λ τ RMSE σ λ τ RMSE

1 0.1 0.1 1.0463 1.2 1 1 0.8109
1 0.5 0.5 0.6917 1.5 1 1 0.9659
0.6 1 1 0.7330 1 1.5 1.5 0.7741
0.8 1 1 0.7221 1 2 2 0.7333
1 1 1 0.6749 1 5 5 0.7333

[−1, 1]20. To avoid the numerical problems in MATLAB, we multiplied the sample points by eight instead of inputting the 
original sample points. The selection results are summarized from the 50 independent replications. When n = 100, the 
proposed method has TCR = 0.9670, TPR = 0.8933 and FPR = 0.0200. For the case of n = 200, three measurements are TCR 
= 0.9460, TPR = 0.9133, FPR = 0.0482. Overall the proposed method also works quite well even though there are more 
inert variables.

6. A real-data case study

This real example has been studied in Fang et al. (2005) and Joseph et al. (2008). Here we provide a brief background 
of the computer experiment. The engine block and head joint sealing assembly is a fundamental structural design in the 
automotive internal combustion engine. Design decisions need to be made upfront prior to the availability of a physical 
prototype. The design of the joint sealing affects downstream design decisions for other engine components and can signif-
icantly impact the long lead time tooling and machining facility setup. It is very expensive in time and expense to conduct 
such designs. The use of a computer simulation model is indispensable (Chen et al., 2002). The engine block and head joint 
sealing assembly is very complex due to multiple functional requirements (e.g., combustion gas, high-pressure oil, oil drain, 
and coolant sealing) and complicated geometry. The interactions among design parameters in this assembly (block and head 
structures, gasket, and fasteners) have significant effects. Usually, a finite element model was used to capture the complexity 
of part geometry, the compliance in the components, non-linear material properties, and the contact interface between the 
parts. To address the performance robustness of the joint sealing, manufacturing variability of the mating surfaces and head 
bolt tensional load are included in the analysis for which design parameters are optimized.

Here, eight factors are selected for experimentation. These are gasket thickness (x1), number of contour zones (x2), 
zone-to-zone transition (x3), bead profile (x4), coining depth (x5), deck face surface flatness (x6), load/deflection variation 
(x7), and head bolt force variation (x8). Because of the complexity in the simulation setup and the excessive computing 
requirements, a 27-run orthogonal array is used and is shown in Supplementary Section S7. In this example, the gap lift (y) 
is the response variable.

For using the proposed variable selection method to consider both effects in the mean function and the correlation 
parameters, we only involve the main effects in the mean part, i.e., f (x)T β = xT β . Note that in Joseph et al. (2008), the 
main effects and interaction effects are used to construct the mean model for the blind kriging. The predictive RMSE, based 
on leave-one-out cross validation (LOOCV), is used as a performance measure. A smaller value of RMSE indicates better 
performance on prediction. The values of RMSE under different settings of tuning parameters are reported in Table 6

Clearly, it is seen that (σ , λ, τ ) = (1, 1, 1) gives the smallest RMSE than other settings in the table. This smallest RMSE is 
also smaller than the RMSE obtained by the ordinary kriging model which is 0.7333. This result indicates that the proposed 
method can obtain a better prediction through the proper variable selection. According to the table in Supplementary 
Section S8, it shows that the posterior probabilities of γi = 1 for i = 1, . . . , 8 in each trail in the LOOCV by fixing (σ , λ, 
τ ) = (1, 1, 1). Based on the median probability criterion, once the posterior probability of γi = 1 is great than or equal to 
0.5, xi is treated as active. Thus x1, x3, x6 and x8 are the active variables. The other variables should be inactive because 
in most trails, the corresponding posterior probabilities are less than 0.5. For these four active variables, we estimate the 
corresponding βi and θi via the MLE method. The results show that x1, x6 and x8 have significant effects in both the mean 
function and correlation function. While for x3, we have β3 = 0.0166 and θ3 = 7.04 × 10−4 close to 0. It implies that x3 may 
only affect the mean function.

7. Extension to two-indicator approach

When considering the different meanings of β and θ , instead of single indicator, we define two indicators for βk and θk
separately. Unlike the single indicator approach used above, two binary vectors are used to denote respectively whether βi
and θi are zeros or not. Let γβ = (γβ,1, ..., γβ,p). Specifically γβ,k = 1 if βk is non-zero, and γβ,k = 0 otherwise. Similarly, let 
γθ = (γθ,1, ..., γθ,p). Thus, γθ,i = 1 if θi is non-zero, and γθ,i = 0 otherwise.

The priors of βk and θk are also the mixture distributions, and the same as these used in Algorithm 1 by replacing γk

with γβ,k and γθ,k , separately. For the priors of γβ and γθ , Bernoulli distributions with different probabilities are adopted 
here. By assuming the independence among factors, the priors can be written as

P (γ β) ∝ q
|γ β |

(1 − q1)
p−|γ β |,
1
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Table 7
The averages of TCR, TPR and FPR for 
β and θ for the Algorithm 2.

TCR TPR FPR

β 0.7880 0.7800 0.2067
θ 0.7960 1.0000 0.3400

Table 8
Different values of true β and θ in new scenarios.

β = (β1, β2, β3, β4, β5) θ = (θ1, θ2, θ3, θ4, θ5)

scenario 3 : (-2, 0, 0, 0.0, 4) (0.3, 0, 0, 0.2, 0)
scenario 3.1 : (-2, 0, 0, 0.3, 4) (0.3, 0, 0, 0.2, 0)
scenario 3.2 : (-2, 0, 0, 0.3, 4) (0.3, 0, 0, 2.0, 0)
scenario 3.3 : (-2, 0, 0, 3.0, 4) (0.3, 0, 0, 2.0, 0)

P (γ θ ) ∝ q
|γ θ |
2 (1 − q2)

p−|γ θ |,

where |γ β | = ∑p
k=1 γβ,k and |γ θ | =

∑p
k=1 γθ,k . Denote ω1 = q1

1−q1
λ and ω2 = q2

1−q2
τ . In addition to the independent as-

sumptions in Section 3.1, we also assume that the priors of γβ and γθ are independent. Then we can write

P (β, θ ,γ β,γ θ |y) ∝ exp(−1

2
Lp(β, θ ,γ β,γ θ ))ω

γβ

1 ω
γθ

2 ,

where Lp(β, θ, γ β, γ θ ) is defined as

Lp(β, θ ,γ β,γ θ ) ∝ log |�(θγθ )|

+
(y − F γ β

βγ β
)��−1(θ)(y − F γ β

βγ β
) + ρ1

∑
k∈γ β

|βk| + ρ2
∑

k∈γ θ
θk

σ 2

Following the similar approximation procedures, the posterior marginal likelihood of γβ and γθ can be approximated as

P (γβ |γθ , y) ∝ ω
|γβ |
1 ω

|γθ |
2 exp(−1

2
Lp(β, θ ,γ β,γ θ )).

P (γθ |γβ, y) ∝ ω
|γβ |
1 ω

|γθ |
2 exp(−1

2
Lp(β, θ ,γ β,γ θ )).

Here we also treat σ as a tuning parameter and it should be specified before implementing the following Algorithm 2.

Algorithm 2 Numerical sampling algorithm for γ β and γ θ .

Step 1: Set initial values of γ β , γ θ , β and θ .
Step 2: Fix γ β and γ θ and update θ and β by solving the minimization problem, min(β,θ) Lρ(β, θ, γ β , γ θ ).
Step 3: Fix θ and β , and then sequentially sample γβ,i based on

P (γβ,i = 1|y,γ β,−i) = P (γβ,i = 1,γ β,−i |y)

P (γβ,i = 0,γ β,−i |y) + P (γβ,i = 1,γ β,−i |y)
,

And sample γθ,i based on

P (γθ,i = 1|y,γ θ,−i) = P (γθ,i = 1,γ θ,−i |y)

P (γθ,i = 0,γ θ,−i |y) + P (γθ,i = 1,γ θ,−i |y)
,

for each i = 1, 2, ..., p. Here γ β,−i = (γβ1 , . . . , γβi−1 , γβi+1 , . . . , γβp )t represents the vector of all γβ ’s except γβi . And γ θ,−i = (γθ1 , . . . , γθi−1 , γθi+1 , . . . , γθp )t

represents the vector of all γθ ’s except γθi

Step 4: Repeat Step 2 - 3 till convergence or the maximal number of iterations.

Here Algorithm 2 is also implemented by MATLAB. To illustrate the performance of Algorithm 2, we revisit scenario 3 in 
Table 1 with n = 15. Based on the same simulation set-ups, the means of TCR, TPR and FPR for β and θ are used to evaluate 
the performance of Algorithm 2. The results are as shown in Table 7. The TPR of β equals 0.78, which means that only few 
true active variables might not be correctly selected as important variables, and the FPR of β equals 0.2067, which means 
that the over-selection problem for the mean function does exist. For the correlation parameters, Algorithm 2 can identify 
all active θi , because the TPR value is equal to 1.0000. However, the over-selection problem for θi still exists and based on 
Table 7, more than one-third of the inactive θi are selected as important variables.

To compare the performance of Algorithms 1 and 2, in addition to scenario 3 in Section 4, more different scenarios are 
considered. In these scenarios, the different values of β4 are chosen and these scenarios are shown in Table 8. To have a fair 
11
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Table 9
Average TCR, TPR and FPR for Algorithm 1 and 2, and different scenarios.

TCR TPR FPR Time(s)

Algorithm 1 scenario 3 1.0000 1.0000 0.0000 148342
scenario 3.1 0.9840 0.9933 0.0300 170667
scenario 3.2 0.9800 1.0000 0.0500 190144
scenario 3.3 0.9920 1.0000 0.0200 185888

Algorithm 2 scenario 3 0.8960 1.0000 0.2600 200687
scenario 3.1 0.9000 1.0000 0.2500 208005
scenario 3.2 0.8640 1.0000 0.3400 227651
scenario 3.3 0.8640 1.0000 0.3400 251695

comparison, the results of two indicators in Algorithm 2 are re-summarized as the one indicator approach in Algorithm 1. 
That is that a variable, xk , is active if γβ,k or γθ,k is equal to 1, and is non-active only when γβ,k = γθ,k = 0. For these 
scenarios, we still fix n = 15 and the other set-ups are the same as those in Section 4. The averages of TCR, TPR and FPR 
among 50 replications for both algorithms are reported in Table 9, and we also report the CPU time for each scenario with 
50 replications. Here we run our MATLAB codes on the computer with Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz & 2.10 
GHz and 128 GB RAM. According to Table 9, firstly, both algorithms have high TPR values, because the lowest value is 0.9933, 
which is quite close to one. It means that both algorithms can identify the true active variables. In addition, Algorithm 1 has 
higher TCR values and lower FPR values in all four scenarios. Thus Algorithm 2 has more serious over-selection problems. 
Finally Algorithm 2 takes more CPU time. This is because twice the number of indicators are used in Algorithm 2 and thus 
the larger model space is defined for Algorithm 2 to search the best active variable set.

8. Discussion

In this work, we proposed an indicator-based Bayesian variable selection method for Gaussian process model. To take 
into account the correlation in the regularization procedure, a hierarchical Bayesian structure is superimposed in this paper 
by the design of indicator functions and therefore, the identified active variables may have effects in the mean function 
and/or in the correlation function. The use of group selection in the proposed method rather than separate selection is 
to tie the regularization of two effects, one in the mean function and one in the correlation function, from the same 
variable by a hierarchical Bayesian structure, which is not only intuitive but also parsimonious. For active variables, their 
estimation may suffer from the identifiability issue. The use of empirical Bayesian procedure in the proposed method can 
potentially alleviate this issue through constraining the correlation lengths with a proper prior. Another possible mitigation 
is to consider the orthogonal GPs (Plumlee and Joseph, 2018) for the proposed selection framework.

Note that the proposed method is also applicable to general power exponential correlation functions with different 
smoothness. Instead of pre-specifying the hyper-parameter for smoothness, one direction for future work is to incorporate 
the estimation of smoothness into the proposed Bayesian framework. In a preliminary study of Scenario 3 in Section 4, we 
have observed promising results of TCR = 0.988, TPR = 1.000 and FPR = 0.03 by using L1-norm in the power exponential 
correlation function, i.e., κ = 1. We will further extend the proposed method to other correlation functions, such as variants 
of the Matern function (Gu et al., 2018), to enable meaningful variable selection. Another direction for future work is to 
seek a more effective procedure of parameter estimation under the empirical Bayes framework. Currently, the estimation 
of β and θ can be viewed as a penalized likelihood estimation. Alternatively, one can consider the restricted likelihood 
estimation (REML) approach (Lewis et al., 2021). It will be interesting to integrate the REML procedure with the proposed 
Bayesian selection method.

For the proposed algorithms, one needs to pre-specify the number of iterations. To determine the number of iterations 
automatically, we suggest using the MCSE value to define the stopping criterion. That is, for every certain iterations (e.g., 
100 iterations), one can compute the MCSE values for all indicators. If the maximal MCSE value is less than the pre-specified 
threshold value, we can stop the algorithm; otherwise, we keep implementing the procedure. To implement the proposed 
algorithms, one also needs to pre-specify the tuning parameters, like λ and τ . The leave-one-out cross validation (LOOCV) 
can be a data-driven approach to determine the proper parameter values. We have implemented the LOOCV approach in 
our real data case study in Section 6 to choose the proper values. Moreover, take scenario 3 and n = 15 in Section 4 as 
an illustration. The values of RMSE generated from the LOOCV under different settings of tuning parameters, λ and τ , 
are reported in Table 10. The case with (λ, τ ) = (1, 0.5) has the smallest RMSE value. This best parameter setup is the 
same as what we have used in Section 4. In addition to the LOOCV, Nguyen (2019) introduced the Bayesian optimization 
approach for parameter tuning. In the Bayesian optimization approach, one can consider the parameter tuning as a black-
box optimization problem and a sequential design procedure is used to identify the best parameter values within a few 
iterations. Note that the proposed method only has two or three tuning parameters, the LOOCV approach can be a proper 
choice when the number of tuning parameters is small.

Moreover, the proposed variable selection for GPs can be extended for the group variable selection (Lai and Chen, 2021). 
We can use an indicator parameter to denote a group is active or not, and the proposed approach could be modified 
accordingly. One can also extend the proposed variable selection method for the Gaussian process models of computer 
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Table 10
The RMSE values under dif-
ferent parameters via the 
LOOCV.

σ λ τ RMSE

1 0.5 0.5 0.1721
1 0.5 1 0.3129
1 1 0.5 0.1664
1 1 1 0.3026
1 1 5 0.8326
1 5 1 0.7333
1 5 5 0.6663

experiments with both quantitative and qualitative factors (Zhou et al., 2011; Qian et al., 2008; Deng et al., 2017). Note 
that when the qualitative factors, discrete in nature, are presented in the model, it will be interesting to investigate how 
the indicator-based variable selection can be adopted for the variable selection of qualitative factors. Finally, an interesting 
direction is to consider a full Bayesian MCMC procedure for inference. Based on our empirical study, the key to efficiently 
implementing a fully Bayesian MCMC relies on an efficient sampling procedure for the correlation parameter θ . Some 
existing approaches, such as the “slice sampling” discussed by Huang et al. (2020), have not yet achieved sufficient efficiency 
in the estimation based on our preliminary study. It is also pointed out by Huang et al. (2020) that the direct use of the 
slice sampling is not generally recommended because of the computational issues in high-dimensional problems. As a future 
research, it will be interesting to investigate how to conduct an efficient sampling procedure for θ to enable a fully Bayesian 
approach.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .csda .2023 .107757.
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