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ABSTRACT
We propose a robust framework to jointly perform two key
modeling tasks involving high dimensional data: (i) learn-
ing a sparse functional mapping from multiple predictors to
multiple responses while taking advantage of the coupling
among responses, and (ii) estimating the conditional depen-
dency structure among responses while adjusting for their
predictors. The traditional likelihood-based estimators lack
resilience with respect to outliers and model misspecifica-
tion. This issue is exacerbated when dealing with high di-
mensional noisy data. In this work, we propose instead to
minimize a regularized distance criterion, which is motivated
by the minimum distance functionals used in nonparamet-
ric methods for their excellent robustness properties. The
proposed estimates can be obtained efficiently by leveraging
a sequential quadratic programming algorithm. We provide
theoretical justification such as estimation consistency for
the proposed estimator. Additionally, we shed light on the
robustness of our estimator through its linearization, which
yields a combination of weighted lasso and graphical lasso
with the sample weights providing an intuitive explanation
of the robustness. We demonstrate the merits of our frame-
work through simulation study and the analysis of real fi-
nancial and genetics data.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

Keywords
Robust estimation, high dimensional data, sparse learning,
variable selection, multiresponse regression, inverse covari-
ance, L2E

1. INTRODUCTION
We focus on multiresponse regression where both predic-

tor and response spaces may exhibit high dimensions. We
propose a robust framework to jointly and synergistically
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solve two important tasks: (i) learning the sparse functional
mapping between inputs and outputs while taking advan-
tage of the coupling among responses, and (ii) estimating
the conditional dependency structure among responses while
adjusting for the covariates. This is motivated by the cru-
cial need of integrating genomic and transcriptomic datasets
in computational biology in order to solve two fundamental
problems effectively: identifying the genetic variations in the
genome that influence gene expression levels (a.k.a. expres-
sion quantitative trait loci eQTLs mapping), and uncovering
gene expression networks. In fact, the accuracy of the first
problem can then be improved by leveraging the gene relat-
edness, and similarly the accurate and faithful estimation of
the gene expression networks can be obtained by accounting
for the confounding genetic effects on gene expression.

Multiresponse regression [5] generalizes the basic single-
response regression to model multiple responses that might
significantly correlate with each other. As opposed to treat-
ing each response independently, one can jointly learn multi-
ple regression mappings to improve the estimation and pre-
diction accuracy by exploiting the conditional dependencies
among responses. Variable selection in multiresponse re-
gression can be accomplished via the penalized approaches
including lasso [31] and multitask lasso [24].

Sparse estimation of inverse covariance matrix is an im-
portant area in the multivariate analysis with broad applica-
tions in graphical models. A major focus in this area is that
of penalized maximum likelihood formulations [15, 34, 1, 16].
Alternatively, modified Cholesky decompositions based on
the likelihood can be used to estimate the sparse inverse co-
variance [17, 4, 21]. A simpler approach of “neighborhood
selection” [22] estimates sparse graphical models using lasso
to regress on each variable with the others as predictors.

Combining multiresponse regression and inverse covari-
ance estimation has recently begun to attract more attention
in the machine learning community. Rothman et al. [27] pro-
posed a multivariate regression with covariance estimation
(MRCE) to jointly estimate the sparse regression and inverse
covariance matrices. They demonstrated that exploiting the
correlation structures can significantly improve the predic-
tion accuracy. The same model was also studied by Lee
and Liu [20] who provided some theoretical properties for
their developed method. An alternative parameterization
was considered by Sohn and Kim [29], which is based on the
joint distribution of predictors and responses and yields an
l1-penalized conditional graphical model (l1-CGGM). An-
other relevant method is that of covariate adjusted preci-
sion matrix estimation (CAPME) [7], a two-stage approach
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to estimate the conditional dependency structure among re-
sponse variables by adjusting for covariates. The first stage
is to estimate the regression coefficients via a multivariate
extension of the l1 Dantzig selector [8], and the second stage
is to estimate the inverse covariance matrix using l∞ error
with an l1 penalty.

Robustness is an important aspect often overlooked in the
sparse learning literature, while critical when dealing with
high dimensional noisy data. Traditional likelihood-based
estimators such as MRCE and l1-CGGM lack resilience to
outliers and model misspecification. Additionally, to the
best of our knowledge, estimates based on Dantzig selector
have not been compared to lasso counterparts in terms of ro-
bustness. Thus it is unclear whether CAPME, for instance,
can address the robustness issue. There is limited existing
work on robust sparse learning methods in high-dimensional
modeling. The LAD-lasso [32] performs single response re-
gression using the least absolute deviation combined with an
l1 penalty. The tlasso [14] performs inverse covariance esti-
mation using penalized log-likelihood with the multivariate
t distribution. However, neither of these methods can be
easily extended to the setting of this paper.

We propose a robust approach to jointly estimate mul-
tiresponse regression and inverse covariance matrix. Our ap-
proach is based on a regularized distance criterion motivated
by minimum distance estimators. Minimum distance esti-
mators [33] are popularized in nonparametric methods and
have exhibited excellent robustness properties [3, 12]. Their
use for parametric estimation has been discussed in [28, 2].
In this work, we propose a penalized minimum distance cri-
terion for robust estimation of sparse parametric models in
the high dimensional settings. Our key contributions to this
robust approach are as follows.

• The objective, which is denoted as REG-ISE, is based
on the integrated squared error distance (ISE) between
the model and the “true” distribution, and imposes
the sparse model structure by adding sparsity-inducing
penalties to the ISE criterion.

• Theoretical guarantees are provided on the estimation
consistency of the proposed REG-ISE estimator.

• We leverage a sequential quadratic programming algo-
rithm [9] to efficiently solve our objective.

• We shed light into the robustness of our framework
by linearizing our objective. The linearization yields
a problem combining weighted versions of l1-penalized
regression (lasso) and l1-penalized inverse covariance
estimation (glasso), where the weights assigned to the
instances are theoretically derived and can be inter-
preted in terms of “outlying degrees”.

• We propose a modified cross-validation and hold-out
validation methods for the choice of tuning parame-
ters, which are also applicable to other penalized re-
gression methods.

The strength of our method is demonstrated via simulation
data with and without outliers. Our study also confirms that
outliers can severely influence the variable selection accuracy
of some existing sparse learning methods. Experiments on
real financial and eQTL data further illustrate the merits of
the proposed method.

2. MODEL SETUP
Denote the response vector y = (y1, . . . , yq)

′ ∈ Rq and
the predictor vector x = (x1, . . . , xp)

′ ∈ Rp. We consider a
multiresponse linear regression model

y = B′x+ ε, ε ∼ N (0,Σ), (1)

where B = (bij) is a p× q matrix of coefficients and the kth
column is the coefficients associated with kth response yk
regressing on the predictors x. The q× q covariance matrix
Σ describes the covariance structure of response vector y
given the predictors x. Moreover, its inverse Σ−1 = (cij)
represents the partial covariance structure [19] and has been
widely used to learn a sparse graphical model under Gaus-
sian assumption. Note that Σ−1 in (1) captures the partial
covariances among responses y after adjusting for the effects
of covariates x. For simplicity of notation, we assume the
data are centered so that the model (1) does not contain
intercepts.

Suppose there are n observational vectors xi = (xi1, . . . , xip)
′,

i = 1, . . . , n and the corresponding response vectors are
yi = (yi1, . . . , yiq)

′. To jointly obtain sparse estimates of
coefficient matrix B and precision matrix Σ−1, we consider
a loss function Ln(B,Σ) that measures the goodness-of-fit
on the multivariate response. The sparse structures of B
and Σ−1 are encouraged by using l1 penalties. Specifically,
the penalized loss function Ln,λ(B,Σ) is written as

Ln,λ(B,Σ) = Ln(B,Σ) + λ1‖Σ−1‖1 + λ2‖B‖1. (2)

where ‖Σ−1‖1 =
∑
i≤j |cij | and ‖B‖1 =

∑
i,j |bij | are l1

matrix norms. Following the principle of parsimony, we con-
sider l1 penalty functions to seek a most appropriate model
that adequately explains the data. With carefully selected
tuning parameters λ1 and λ2, we can achieve an optimal
trade-off between the parsimoniousness and goodness-of-fit
of the model.

The loss Ln(B,Σ) is typically derived from a likelihood-
based approach. For instance the MRCE method [27] uses
Ln(B,Σ) = trace

(
(Y −XB)T (Y −XB)Σ−1

)
− log Σ−1.

Altenatively, if one ignores the contribution of the inverse
covariance matrix (by implicitely assuming that it is the
identity matrix), one can consider the traditional squared
loss Ln = ‖Y −XB‖2F and a straighforward generalization
of the traditional Lasso estimator [31] to the mutiresponse
setting.

3. A REGULARIZED INTEGRATED SQUA-
RED ERROR ESTIMATOR

We begin this section by showing how a minimum dis-
tance criterion yields our proposed estimator for achieving
robustness under the model in (1).

3.1 Derivation of the REG-ISE Objective
We first apply the Integrated Squared Error (ISE) cri-

terion to the conditional distribution of response vector y
given the predictors x. It leads to an L2 distance between
the true conditional distribution f(y|x) and the parametric
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distribution function f(y|x;B,Σ) as follows

L̃(B,Σ) =

∫
[f(y|x;B,Σ)− f(y|x)]2 dy

=

∫
f2(y|x;B,Σ)dy − 2

∫
f(y|x;B,Σ)f(y|x)dy

+

∫
f2(y|x)dy

=

∫
f2(y|x;B,Σ)dy − 2E[f(y|x;B,Σ)] + constant.

where f(y|x;B,Σ) is the probability density function of
multivariate normal N (B′x,Σ) and

∫
f(y|x)2dy is a con-

stant independent of B and Σ.
Note that f(y|x;B,Σ) ≡ f(y − B′x; Σ) because of the

conditional distribution assumption. Since ε = y−B′x are
independently and identically distributed, one can consider
approximating E[f(y|x;B,Σ)] by the empirical mean

1

n

n∑
i=1

f(yi|xi;B,Σ).

Similar approximation techniques have also been used for
Gaussian mixture density estimation [28]. Now the resulting

empirical loss function of L̃(B,Σ) can therefore be written
as

L̃n(B,Σ) =

∫
f2(y|x;B,Σ)dy − 2

n

n∑
i=1

f(yi|xi;B,Σ)

(3)

where
∫
f2(y|x;B,Σ)dy = 1/(2qπq/2|Σ|1/2). Note that we

assume a parametric family for the model while using a non-
parametric ISE criterion to measure goodness of fit.

From the perspective of the loss function, ISE is a more
robust measure of the goodness-of-fit compared with the
likelihood-based loss function. It can match the model with
the largest portion of the data because the integration in (3)
accounts for the whole range of the squared loss function.

Using ISE criterion as the loss function, the objective func-
tion in (2) becomes

L̃n,λ(B,Σ) =
|Σ−1|1/2

2qπq/2
− 2

n

n∑
i=1

f(yi|xi;B,Σ)

+ λ1‖Σ−1‖1 + λ2‖B‖1. (4)

However, the minimization of the objective in (4) is challeng-
ing. To circumvent this difficulty, we consider minimizing an
upper bound of (4) which retains the robustness property.

For that purpose, we introduce a lemma which is essential
for deriving the proposed objective (8) for estimating the
sparse multiresponse regression model in (1).

Lemma 1. For a positive definite matrix Σ−1 with di-
mension q, the relation between its determinant value and l1
norm can be described in the following inequality |Σ−1|1/2 ≤(
‖Σ−1‖1

q

)q/2
.

The proof of Lemma 1 is provided in the Appendix. Using
Lemma 1, we can derive an upper bound for the objective

function (4) as follows

c∗‖Σ−1‖q/21 − 2

n

n∑
i=1

f(yi|xi;B,Σ) + λ1‖Σ−1‖1 + λ2‖B‖1,

(5)

where c∗ = 2−q(πq)−q/2 is a constant. The above optimiza-
tion problem amounts to minimizing

L̆n,λ(B,Σ) = L̆n(B,Σ) + λ∗1‖Σ−1‖1 + λ2‖B‖1, (6)

where L̆n(B,Σ) = − 2
n

∑n
i=1 f(yi|xi;B,Σ) and λ∗1 is ap-

propriately chosen. The value of λ∗1 here should be slightly
larger than the value of λ1 in (4). Moreover, the diagonal
elements of Σ−1 are also penalized.

Note that L̆n,λ(B,Σ) is an upper bound of L̃n,λ(B,Σ),

however, the difference L̃n,λ(B,Σ)−L̆n,λ(B,Σ) is well con-
trolled by the penalty term λ∗1‖Σ−1‖1 in (6). By properly
adjusting the value of λ∗1, we can make the difference reason-
ably small. Therefore, by minimizing L̆n,λ(B,Σ), we expect

to approach the solution of L̃n,λ(B,Σ) and thus still retain
the robustness property in the estimators.

Taking the logarithm on L̆n(B,Σ), we obtain the loss

Ln(B,Σ) = − log

[
1

n

n∑
i=1

exp(−
1

2
(yi −B′xi)

′Σ−1(yi −B′xi))

]

− 1

2
log |Σ−1|. (7)

We note that the logarithm is employed to strike a better
balance between goodness of fit and the sparsity inducing
penalty (similarly one considers the penalized negative log-
likelihood rather than dealing with the likelihood directly).
This yields the estimator proposed and studied in this paper,
the Regularized Integrated Square Error (REG-ISE) estima-
tor, which minimizes the following objective function:

Ln,λ(B,Σ) =

− log

[
1

n

n∑
i=1

exp(−1

2
(yi −B

′xi)
′Σ−1(yi −B

′xi))

]

−1

2
log |Σ−1|+ λ1‖Σ−1‖1 + λ2‖B‖1. (8)

For notational convenience, here and in later sections, we
use λ1 for λ∗1.

Some intuition can already be gained on the objective
robustness by considering the ratio between data and model
pdf: f(y|x)/f(y|x;B,Σ). An outlier in the data may drives
this ratio to infinity, in which case the log-likelihood is also
infinity. In contrast, the difference f(y|x) − f(y|x;B,Σ)
is always bounded. This property makes the L2-distance a
favourable choice when dealing with outliers. We note that a
similar reasoning holds in the context of density estimation,
as pointed out in the recent work of [30] on density-difference
estimation.

3.2 Optimization
The REG-ISE objective function (8) is non-convex and

non-smooth. In order to solve it, one could consider ap-
proximating the “log-sum-exp” term in the objective, com-
bined with alternate optimization for B and Σ−1 respec-
tively (as done in MRCE). However, the convergence of al-
ternate optimization can be very slow, as observed in the
case of MRCE [27].
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Instead, we propose to adopt a sequential quadratic pro-
gramming algorithm recently developed by Curtis & Over-
ton [9] for the non-smooth and non-convex optimization.
The basic idea of their algorithm SLQP-GS is to combine
sequential quadratic approximation with a process of gradi-
ent sampling so that the computation of the search direction
is effective in nonsmooth regions. The only requirement for
SLQP-GS to be applicable is that the objective and con-
straints (if any) be continuously differentiable on open dense
subsets, which is satisfied in our case. We also benefit from
the convergence guarantees of SLQP-GS, namely that the
algorithm is guaranteed to converge to a solution regardless
of the initialization with probability one.

We employed the Matlab implementation of SLQP-GS
provided by the authors, which is available from http://

coral.ie.lehigh.edu/~frankecurtis/software. Due to
space constraints, we refer the reader to Curtis & Overton [9]
for details on the algorithm, its matlab implementation and
convergence results. We note that the gradient sampling
step in SLQP-GS can be efficiently parallelized for fast com-
putation in high dimensional applications. Alternatively one
can perform adaptive sampling of gradients over the course
of the optimization process as described in [10].

3.3 Consistency Results
The L2 distance estimators are known to strike the right

balance between statistical efficiency and robustness [2, 28].
In this section, we add to this body of evidence by showing
that the REG-ISE estimator is root-n consistent for the set-
tings of the fixed dimensionality p. Denote by B̄ the true
regression coefficient matrix, and by Σ̄ the true covariance
matrix. We assume the following conditions:
(C1) 1

n
X ′X → A, where A is positive definite.

(C2) There exist
√
n-consistent estimators of B̄ and Σ̄

−1
.

Condition (C2) can be replaced by some technical regular-
ity conditions as in [13] so as to guarantee the consistency
of ordinary maximum likelihood estimators.

Theorem 1. Consider sequences λ1,n and λ2,n of regu-
larization parameters, such that

λ1,nn
−1/2 → 0 and λ2,nn

−1/2 → 0.

Then under the conditions (C1) and (C2), there exists a

local minimizer (B̂, Σ̂
−1

) of REG-ISE such that

‖(vec(B̂)′, vec(Σ̂
−1

)′)′−(vec(B̄)′, vec(Σ̄
−1

)′)‖ = Op(1/
√
n).

The proof is provided in the Appendix.

The above theoretical results hold for the case where the
dimensionality p is fixed, while the sample size n is allowed
to grow. As a future work we plan to extend our results
to the case where p is allowed to grow with the sample size
n. We conjecture that condition (C1) might be replaced by
conditions on sample and population covariance while (C2)
is still achieved by certain penalized maximum likelihood
estimators [23]. We note however that such an extension
is highly non-trivial. In fact, to our knowledge, no theory
is yet available for joint estimation in the high dimensional
case even for the standard maximum likelihood estimator,
the non-convexity being the source of the difficulty. Nev-
ertheless, in view of our superior empirical results, we hope
that theoretical results can be obtained by making use of the

techniques in [26] which solely deal with inverse covariance
estimation, and those in [23] which solely concern regression.

3.4 Insights into Robustness
We provide some insights for the robustness of REG-ISE

by considering a first order approximation of the “log-sum-
exp” term in (8).

Define the parameter set β = (B,Σ−1) and denote gi(β) =
− 1

2
(yi −B′xi)′Σ−1(yi −B′xi). We consider a first-order

approximation for log
[

1
n

∑n
i=1 exp(gi(β))

]
with respect to

β as follows:

log

[
1

n

n∑
i=1

exp(gi(β))

]
≈

C0 +
1

n

n∑
i=1

exp(gi(β0))
1
n

∑n
i=1 exp(gi(β0))

∇gi(β0)T (β − β0),

where β0 is an initial estimate and C0 is some constant
independent of β.

Using the fact that gi(β) ≈ gi(β0) + ∇gi(β0)T (β − β0),
we have the following

log

[
1

n

n∑
i=1

exp(gi(β))

]
∝ 1

n

n∑
i=1

exp(gi(β0))
1
n

∑n
i=1 exp(gi(β0))

gi(β),

up to some constant independent of β. Therefore, the ob-
jection function (8) can be approximated by

− log |Σ−1|+ 1

n

n∑
i=1

wi(yi −B
′xi)

′Σ−1(yi −B
′xi)

+ λ1‖Σ−1‖1 + λ2‖B‖1, (9)

up to some constant and where

wi ≡ wi(β0) =
exp(gi(β0))

1
n

∑n
i=1 exp(gi(β0))

. (10)

By defining S∗ = S∗(β0) = 1
n

∑n
i=1 wi(yi −B

′xi)(yi −
B′xi)

′, we can rewrite (9) as

− log |Σ−1|+ trace[Σ−1S∗(β0)] + λ1‖Σ−1‖1 + λ2‖B‖1.
(11)

Note that S∗ can be viewed as a weighted sample covariance
matrix where weights are with respect to n observations.

One could then envision an approximate iterative proce-
dure where given initial estimates, data are first re-weighted
by wi in (10) and then alternately passed to lasso and l1
penalized inverse covariance solvers (e.g. QUIC, glasso) to
provide new estimates, and the procedure would be repeated
until convergence (see details in the appendix). This intu-
itively elaborates the robustness property of REG-ISE. In-
deed the weights wi are proportional to the likelihood func-

tions of individual data points, i.e., wi =
L(yi|xi;β0)∑n

i=1 L(yi|xi;β0)
.

Thus data with high likelihood values are given more weights
in the estimation. Conversely, data with low likelihood val-
ues, which are more likely to be outliers, contribute less
to the estimation. The connection between the likelihood
functions and weights nicely explains the resilience of the
proposed estimator to outliers.

3.5 Tuning Parameter Selection
Approaches for choosing tuning parameters include cross-

validation (CV) [4], the hold-out validation set method [21],

296

http://coral.ie.lehigh.edu/~frankecurtis/software
http://coral.ie.lehigh.edu/~frankecurtis/software


and information criteria such as Bayesian information crite-
rion (BIC) [34]. Here we proposed a modified scheme for the
cross-validation method. The common K-fold CV consists
in randomly partitioning the data into K folds, and then
leaving out one fold of data as validation set while all the
other folds are used as training set in each CV iteration.
Note that CV assumes that the data are i.i.d. distributed,
and therefore the validation set and training set are consid-
ered statistically equivalent. However, such an assumption
is no longer valid in the presence of outliers since the propor-
tions of the outliers in the validation data and training data
can be different. Consequently, the validation set cannot be
used to evaluate the model obtained by the training set.

To tackle this issue, we develop a modified cross-validation
scheme motivated by the idea of sliced designs [25]. Specifi-
cally, we perform K-fold cross-validation for n = mK obser-
vations as follows. Based on initial estimates of the model
parameters, we first rank the observed data according to the
values of their likelihood functions. Then the first K data
points are randomly assigned to K folds, one point per fold.
Subsequently the next K data points are randomly assigned
to K folds. This procedure is repeated m times. In this
way, the data in each fold are more likely to have similar
distributions. This modified scheme can also be applied to
tuning via hold-out validation set method.

4. SIMULATION STUDY
We compare the proposed REG-ISE with MRCE [27], l1-

CGGM [29], CAPME [7], and LAD-Lasso [32]. Note that
LAD-Lasso can only estimate regression coefficients.

In our experiments, the rows of n×p predictor matricesX
are sampled independently from N (0,Σx) where (Σx)i,j =

0.5|i−j|. We consider the following two cases.
Case 1: The covariance matrix is set to Σi,j = 0.7|i−j|

which corresponds to an AR(1) model with banded Σ−1. We
randomly select 10 percent of the predictors to be irrelevant
to all the responses. Then for each response, we randomly
select half of the remaining predictors to be relevant for that
response. The corresponding non-zero entries in the regres-
sion matrix B are sampled independently from N (0, 1). We
consider 60 predictors, 20 responses and 100 observations.

Case 2: Σ−1 is the graph Laplacian of a tree with outde-
gree of 4 and edge weights uniformly sampled from [0.3, 1.0].
For each response we randomly select 10 percent of the pre-
dictors to be relevant, and sample the corresponding non-
zero enties in B independently from N (0, 1). We consider
1000 predictors, 100 responses and 400 observations.

To address the robustness issue, we consider various per-
centages of outliers contaminating the responses. The un-
contaminated data are generated from y ∼ N (B′x,Σ),
where B and Σ are specified above. Two scenarios pre-
senting outliers are considered: (i) outliers with respect to
the mean: y ∼ N (B′x+C,Σ) where C is a constant vec-
tor of 5 and (ii) outliers regarding the covariance structure:
y ∼ N (B′x, I) where I is an identity matrix.

To measure variable selection accuracy, we use the F1

score defined by F1 = 2PR/(P + R), where P is precision
(fraction of correctly selected variables among selected vari-
ables) and R is recall (fraction of correctly selected vari-
ables among true relevant variables). To measure the esti-
mation accuracy of B, we report the model error defined

as ME(B̂,B) = tr
[
(B̂ −B)TΣx(B̂ −B)

]
, where B̂ is

the estimated regression coefficient matrix. The estima-
tion accuracy for Σ−1 is measured by its l2 loss, defined

as ‖Σ̂−1 −Σ−1‖F , under Frobenius norm where Σ̂
−1

is the
estimated inverse covariance matrix.

For each of the above settings, we generate 50 simulated
dataset. For all five comparison methods, for each dataset
we use the modified 5-fold cross-validation described in Sec-
tion 3.5 to tune parameters λ1 and λ2.

The choice of initial parameter estimates is important for
MRCE and REG-ISE as their respective objective functions
are non-convex. The initial estimates for B are obtained
using ridge regression. In addition for REG-ISE, Σ is ini-
tialized as the inverse of the sample covariance matrix of
ridge regression residuals perturbed by a positive diagonal
matrix.

Figures 1 and 2 present the results for Case 1. Results for
Case 2 are summarized in Table 1 Similar behavior in terms
of robustness is observed for both cases. Our proposed REG-
ISE estimator clearly outperforms other methods due to its
robustness against outliers with respect to both mean and
covariance deviations. Performance of MRCE, l1−CGGM
and CAPME seriously degrade once outliers are introduced.
Surprisingly, LAD-Lasso does not show much resilience to
outliers. Moreover, with “clean” data, its estimation and
variable selection accuracy is inferior to other methods as
it ignores the dependencies among responses. Interestingly,
even when there are no outliers in the data, REG-ISE is
competitive, since it is more likely to distinguish true signals
from various noise amplitudes.

Figure 1: Average model error ME(B̂,B) (top) and
F1 scores (bottom) for B estimated by REG-ISE,
MRCE, l1−CGGM, LAD-Lasso, and CAPME on
simulated data of Case 1. Outliers in terms of the
mean (left), and covariance (right). The x-axis cor-
responds to the percentage of outliers.
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Table 1: Simulation results for Case 2. Top: Model error for B/l2 loss for Σ−1. Bottom: F1 for B/F1 for
Σ−1.

Measure Outlier Type Outlier % REG-ISE MRCE l-1 CGGM CAPME LAD-Lasso
ME(B)/l2(Σ−1) None 0 33.12/48.3 33.92/61.88 32/47.6 33.4/49.6 47.96/NA
ME(B)/l2(Σ−1) Mean 5 33.44/49.28 87.56/109.4 78/75.8 53.12/59.3 94.04/NA
ME(B)/l2(Σ−1) Mean 10 34/52.84 90.28 / 178.2 82.4/80 73.2/72.79 94.24/NA
ME(B)/l2(Σ−1) Mean 20 35.96/53.4 102.6/196.3 98.4/101 79.36/80.23 113/NA
ME(B)/l2(Σ−1) Cov 5 34.04/51.04 90.96/81.04 97.36/62.8 60.2/96.34 92.68/NA
ME(B)/l2(Σ−1) Cov 10 34.29/52.6 96.39/102.1 110.16/104.2 77.28/156.2 103.6/NA
ME(B)/l2(Σ−1) Cov 20 36.5/56.92 122.6/186.4 133/167.1 87.4/153.4 146.68/NA

F1(B)/F1(Σ−1) None 0 0.8/0.77 0.71/0.32 0.79/0.78 0.72/0.76 0.6/NA
F1(B)/F1(Σ−1 ) Mean 5 0.78/0.79 0.65/0.24 0.65/0.7 0.28/0.59 0.45/NA
F1(B)/F1(Σ−1 ) Mean 10 0.78/0.76 0.54/0.23 0.67/0.58 0.3/0.57 0.4/NA
F1(B)/F1(Σ−1 ) Mean 20 0.76/0.75 0.49/0.21 0.48/0.49 0.27/0.57 0.39/NA
F1(B)/F1(Σ−1 ) Cov 5 0.77/0.75 0.58/0.3 0.59/ 0.58 0.48/0.68 0.39/NA
F1(B)/F1(Σ−1 ) Cov 10 0.77/0.75 0.64/0.29 0.57/0.57 0.42/0.67 0.39/NA
F1(B)/F1(Σ−1 ) Cov 20 0.78/0.73 0.38/0.23 0.49/0.47 0.38/0.48 0.37/NA

Figure 2: Average estimation error ‖Σ̂−1 − Σ−1‖F
(top) and F1 scores (bottom) for Σ−1 estimated
by REG-ISE, MRCE, l1−CGGM, LAD-Lasso, and
CAPME on simulated data of Case 1. Outliers in
terms of the mean (left), and covariance (right). The
x-axis corresponds to the percentage of outliers.

5. APPLICATIONS
In this section, we illustrate the usefulness of the proposed

robust methods through two motivating applications and
compare the results of our robust estimators with those of
existing methods.

5.1 Asset Return Prediction
As a toy example for multivariate time series, we analyze

a financial dataset which has been studied in [27] and [34].
This dataset contains weekly log-returns of 9 stocks for year
2004. Given multivariate time series data of log-returns yt
for weeks t = 1, ..., T , a first-order vector autoregressive

model is considered as follows

yt = B′yt−1 + εt, εt ∼ N (0,Σ), t = 2, . . . , T

where the response matrix yt is formed by observations at
week t and the predictor matrix yt−1 contains observations
at the previous week t− 1. Following the analysis in Roth-
man et al. [27], we used log-returns of the first 26 weeks as
training set, and log-returns of the remaining 26 weeks as
testing set. The tuning parameters were selected using the
modified 10-fold cross-validation described in Section 2.4.
Table 2 reports the mean squared prediction error (MSPE)
of the five comparison methods. Even though all methods
are competitive on this dataset, REG-ISE estimator achieves
the smallest prediction error. Figure 3 presents the graphs
induced by the estimates of Σ−1 using MRCE and REG-
ISE, respectively. Comparing the two graphs, both MRCE
and REG-ISE indicate that companies from the same indus-
try are partially correlated, e.g. GE and IBM (technology),
Ford and GM (auto industry). AIG (insurance company)
seems to be partially correlated with most of the other com-
panies. However, there are some discrepancies between the
two graphs, e.g., GM is found to be partially correlated to
IBM by REG-ISE but to be uncorrelated by MRCE. Over-
all, the results from REG-ISE have reasonable financial in-
terpretation.

5.2 eQTL Data Analysis
We analyze yeast eQTL dataset [6] which contains geno-

type data for 2,956 SNPs (predictors) and microarray data
for 6,216 genes (responses) regarding 112 segregants (in-
stances). We extracted 1,260 unique SNPs, and focused
on 125 genes belonging to cell-cycle pathway provided by
the KEGG database [18]. For all methods, the tuning pa-
rameters were chosen via 5-fold modified cross-validation de-

Table 2: Prediction accuracy measured by MSPE
for various methods for the asset return dataset.

Method MSPE
REG-ISE 0.69± 0.11
MRCE 0.71± 0.12
l1-CGGM 0.72± 0.10
CAPME 0.72± 0.11

LAD-Lasso 0.73± 0.12
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Figure 3: Graphs from the estimates of the inverse
covariance matrix Σ−1 obtained by MRCE (left) and
REG-ISE(right).

scribed in Section 3.5. We first evaluated the predictive ac-
curacy of our method and the comparison methods by ran-
domly partitioning the data into training and test sets, using
90 observations for training and the remainder for testing.
We computed the MSPE for the testing set. The average
MSPEs based on 20 random partitions are presented in Ta-
ble 3. We can see that overall the predictive performance of
REG-ISE is superior to the other methods.

Figure 4 shows the cell-cycle pathways estimated by the
proposed REG-ISE, MRCE method, CAPME method along
with the benchmark KEGG pathway. MRCE tends to es-
timate many spurious links. Similar observation holds for
l1−CGGM, so its estimated graph is not represented here.
CAPME recovers some of the links but not as accurately
as REG-ISE. This can be partly explained by the fact that
CAPME does not take into account the covariance structure
in its regression stage and does not have any feedback loop.
This can result in poor estimation of the regression matrix
B, which in turn may negatively impact the estimation of
precision matrix Σ−1. In addition, lack of robustness can
also result in inaccurate network reconstruction. Certain
discrepancies between true and estimated graphs may also
be caused by inherent limitations in this dataset. For in-
stance, some edges in cell-cycle pathway may not be observ-
able from gene expression data. Additionally in this dataset,
the perturbation of cellular systems may not be significant
enough to enable accurate inference of some of the links.

Using the KEGG pathway as the “ground truth”, we also
computed the F1 scores for the estimates of Σ−1 shown in
Table 4. As a sanity check, we analyzed the microarray
data without SNPs as predictors using glasso. The resulting
graph was extremely dense with F1 score to be 0.033. This
indicates the disadvantage of procedures like glasso which is
unable to adjust for predictors (hereby the genetic variants)
in inverse covariance matrix estimation.

Table 3: MSPEs under different methods based on
20 random partitions of the eQTL into training and
test sets.

REG-ISE MRCE l1-CGGM CAPME
2.36± 0.07 6.25± 0.22 4.46± 0.17 4.38± 0.09
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Figure 4: Yeast cell cycle network provided in the
KEGG database (top left), estimated by REG-ISE
(top right), MRCE (bottom left), and CAPME (bot-
tom right).

Table 4: F1 scores of the estimated cell-cycle net-
work (higher values indicate higher accuracy).

REG-ISE MRCE l1-CGGM CAPME Glasso
0.635 0.042 0.089 0.348 0.033
±0.009 ±0.008 ±0.011 ±0.034 ±0.014

From reconstructed network and F1 scores, we conclude
that REG-ISE most faithfully estimates the cell-cycle net-
work compared to the other methods, which clearly demon-
strates the value of embracing the robustness.

6. CONCLUDING REMARKS
In this work, we have developed a robust framework to

jointly estimate multiresponse regression and inverse covari-
ance matrix from high dimensional data. Our formulation is
readily applicable to deal with single regression and sparse
inverse covariance estimation by itself, as well as to the
parameterization used in [29], which will be an interest-
ing future work. The proposed methodology is valuable
for many applications beyond the integration of genomic
and transcriptomic data and finantial data analysis. Ad-
ditional interesting future work includes extending the pro-
posed method to directed graph modeling via vector autore-
gressive models, and extending our theoretical results to the
high-dimensional setting.
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APPENDIX
A. PROOF OF LEMMA 1

Suppose that the eigenvalues of Σ−1 are di, i = 1, . . . , q.
Using the fact that q

√∏q
i=1di ≤

1
q

∑q
i=1 di, one can have

|Σ−1|1/2 ≤
(∑q

i=1 di

q

)q/2
.

For each eigenvalue di, we apply the Gershgorin’s circle the-
orem to obtain its upper bound. That is

|di − cii| ≤
∑
j 6=i

|cij | ⇒ di ≤
q∑
j=1

|cij |

where cij , i = 1, . . . , q; j = 1, . . . , q are the elements in ma-
trix Σ−1. Therefore, we have

∑q
i=1 di ≤

∑q
i=1

∑q
j=1 |cij | =

‖Σ−1‖1, which leads to

|Σ−1|1/2 ≤
(
‖Σ−1‖1

q

)q/2
.

This ends the proof of Lemma 1.

B. PROOF SKETCH OF THEOREM 1
Recall our objective function:

Ln,λ(B,Σ−1) =

− log

[
1

n

n∑
i=1

exp(−1

2
(yi −B

′xi)
′Σ−1(yi −B

′xi))

]

−1

2
log |Σ−1|+ λ1‖Σ−1‖1 + λ2‖B‖1 (12)

Let B̄ and Σ̄
−1

be the true regression and inverse covariance
matrices. We follow the same reasoning as in the proof of
Theorem 1 in [13]. The key idea is that it’s enough to show
that for any δ > 0 there exists a large constant C, such that

P{ sup
‖U‖=C

Ln,λ(B̄+
U1√
n
, Σ̄
−1

+
U2√
n

) > Ln,λ(B̄, Σ̄
−1

)} ≥ 1−δ

with U = (vec(U1)′, vec(U2)′)′.
Define Q(B,Σ−1) as

Q(B,Σ−1) = − log

[
1

n

n∑
i=1

exp(−1

2
(yi −B

′xi)
′Σ−1(yi −B

′xi))

]
.

By using a similar reasoning as in Section 3.4, one can show

that around the true parameters (B̄, Σ̄
−1

), the difference

Q(B̄+ U 1√
n
, Σ̄
−1

+ U 2√
n

)−Q(B̄, Σ̄
−1

) can be lower-bounded

by

1

n

n∑
i=1

wi(yi − (B̄ +
U1√
n

)′xi)
′(Σ̄
−1

+
U2√
n

)(yi − (B̄ +
U1√
n

)′xi)

− 1

n

n∑
i=1

wi(yi − B̄
′
xi)
′Σ−1(yi − B̄

′
xi) + o(1)

where wi ≡ wi(β0) =
exp(gi(β0))

1
n

∑n
i=1 exp(gi(β0))

. Even though Q is

globally non-convex, such an approximation is valid as Q
is locally bi-convex in a neighborhood of the true parame-

ters (B̄, Σ̄
−1

) with asymptotic probability one. Briefly, one

can show that the events
UT

1√
n
∇2
BQ(B̄ + tU 1√

n
)U 1√

n
< 0 and

UT
2√
n
∇2

Σ−1Q(Σ̄
−1

+ tU 2√
n

)U 2√
n
< 0 for t ∈ (0, 1) are small

uniformly on U1 and U2 as long as ‖U‖√
n

is small enough.

Briefly, this can be done by ‘brute force’ calculation of the
Hessians around the true solution, noticing that the ex-

pected value of
UT

1√
n
∇2
BQ(B̄+tU 1√

n
)U 1√

n
and

UT
2√
n
∇2

Σ−1Q(Σ̄
−1

+

tU 2√
n

)U 2√
n

are both non-negative for ‖U‖√
n

small enough and

then upper-bounding the large deviations from the expected
values using Azuma-Hoeffding’s inequality.

Let us define Vn(U) as

Vn(U) = Ln,λ(B̄ +
U1√
n
, Σ̄
−1

+
U2√
n

)− Ln,λ(B̄, Σ̄
−1

).

For notation convenience, denote Ỹ = diag(
√
w1, . . . ,

√
wn)Y ,

and X̃ = diag(
√
w1, , . . . ,

√
wn)X. Noting that |B̄jk +

u1j,k√
n
| − |B̄jk| = |u1j,k√

n
| for B̄jk = 0 and |Σ̄−1

st +
u2s,t√
n
| −

|Σ̄−1
st | = |

u2s,t√
n
| for Σ̄

−1
st = 0, we then have

Vn(U) ≥ − log |(Σ̄−1
+
U2√
n

)Σ̄|

+
1

n
trace{(Σ̄−1

+
U2√
n

)(Ỹ − X̃(B̄ +
U1√
n

))′(Ỹ − X̃(B̄ +
U1√
n

))}

− 1

n
trace{Σ̄−1

(Ỹ − X̃B̄)′(Ỹ − X̃B̄)}

+ λ1

∑
Bkj 6=0

(|B̄jk +
u1j,k√
n
| − |B̄jk|)

+ λ2

∑
¯Σ
−1

st6=0

(|Σ̄−1
st +

u2s,t√
n
| − |Σ̄−1

jk |).

Following the same derivations as the proof of Lemma 3
in [20], we can show that for a sufficiently large C, Vn(U) >
0 uniformly on {U : ‖U‖ = C} with probability greater
than 1− δ. This completes the proof.

C. APPROXIMATE ITERATIVE PROCEDURE
For completeness we provide the details of the

approximate iterative procedure discussed in Section 3.4.

Algorithm 1 Approximate Iterative Procedure

Step 1: Given an initial estimate Σ−1
0 and an initial esti-

mate B0.
Step 2: Compute wi based on (10) and obtain S∗ =
1
n

∑n
i=1 wi(yi −B

′
0xi)(yi −B′0xi)′.

Step 3: Estimate Σ−1 by minimizing (11) given B0:

Σ̂
−1

= arg min− log |Σ−1|+ trace[Σ−1S∗] + λ1‖Σ−1‖1.

Step 4: Estimate B by minimizing (9) given Σ−1
0 :

B̂ = arg min
1

n

n∑
i=1

wi(yi −B′xi)
′Σ−1

0 (yi −B′xi) + λ2‖B‖1.

Step 5: If ‖Σ̂−1−Σ−1
0 ‖2F ≤ δ1 and ‖B̂−B0‖2F ≤ δ2, stop.

Else set Σ−1
0 = Σ̂

−1
and B0 = B̂ and go back to Step 2.
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